Deep Learning for Vision & Language

Natural Language Processing II: Embeddings / Representing Words and Sentences

Second Assignment

• Released! Start working on it – due next week – start early.

How to represent a word?

one-hot encodings

dog	1	[1	0	0	0	0	0	0	0	0	0]
cat	2	[0	1	0	0	0	0	0	0	0	0]
person	3	[0	0	1	0	0	0	0	0	0	0]
holding	4	[0	0	0	1	0	0	0	0	0	0]
tree	5	[0	0	0	0	1	0	0	0	0	0]
computer	6	[0	0	0	0	0	1	0	0	0	0]
using	7	[0	0	0	0	0	0	1	0	0	0]

How to represent a phrase/sentence?

bag-of-words representation

person using computer person holding cat

$$\{3, 3, 7, 6, 2\}$$
 $[0$ 1 2 1 0 1 1 0 0

What if vocabulary is very large?

Sparse Representation

bag-of-words representation

person holding dog	{1, 3, 4}	indices = $[1, 3, 4]$	values = [1, 1, 1]
person holding cat	{2, 3, 4}	indices = [2, 3, 4]	values = [1, 1, 1]
person using computer	{3, 7, 6}	indices = [3, 7, 6]	values = [1, 1, 1]

```
person using computer
person holding cat
```

```
\{3, 3, 7, 6, 2\} indices = [3, 7, 6, 2] values = [2, 1, 1, 1]
```

Recap

 Bag-of-words encodings for text (e.g. sentences, paragraphs, captions, etc)

You can take a set of sentences/documents and classify them, cluster them, or compute distances between them using this representation.

Problem with this bag-of-words representation

my friend makes a nice meal

These would be the same using bag-of-words

my nice friend makes a meal

Bag of Bi-grams

```
indices = [10132, 21342, 43233, 53123, 64233]
values = [1, 1, 1, 1, 1]
  {my friend, friend makes, makes a,
  a nice, nice meal}
indices = [10232, 43133, 21342, 43233, 54233]
values = [1, 1, 1, 1, 1]
{my nice, nice friend, friend makes,
makes a, a meal}
```

my nice friend makes a meal

my friend makes a nice meal

A dense vector-representation would be very inefficient Think about tri-grams and n-grams

Recommended reading: n-gram language models

Kai-Wei's course on Natural Language Processing

http://www.cs.virginia.edu/~kc2wc/teaching/NLP16/slides/02-ngram.pdf

http://www.cs.virginia.edu/~kc2wc/teaching/NLP16/slides/03-smooth.pdf

Yejin Choi's course on Natural Language Processing

http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

Problem with this bag-of-words representation

my friend makes a nice meal

Alternatives:

Continuous Bag of Words (CBOW) – Word embeddings

Sequence-based representations (RNNs, LSTMs)

Transformer-based representations (e.g. BERT)

chicken makes a nice meal

Back to how to represent a word?

Problem: distance between words using one-hot encodings always the same

dog	1	[1	0	0	0	0	0	0	0	0	0]
cat	2	[0	1	0	0	0	0	0	0	0	0]
person	3	[0	0	1	0	0	0	0	0	0	0]

Idea: Instead of one-hot-encoding use a histogram of commonly co-occurring words.

Distributional Semantics

Dogs are man's best friend.

I saw a dog on a leash walking in the park.

His dog is his best companion.

He walks his dog in the late afternoon

...

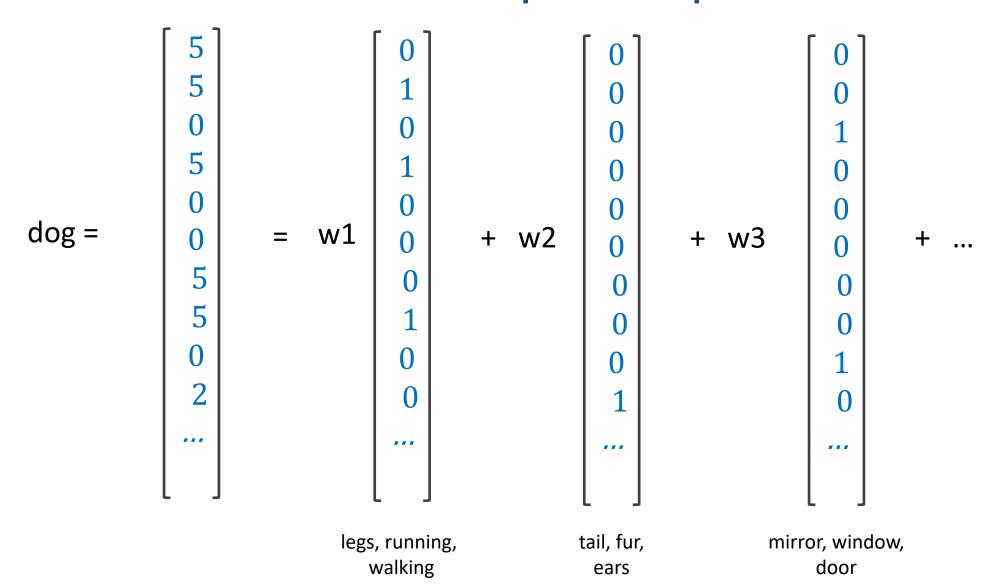
Distributional Semantics

```
[5 5 0 5 0 0 5 5 0 2 ...]
dog
cat
               5 1 5 0 2 5 5 0
person
             food
walks
window
runs
mouse
invented
legs
sleeps
sleeps
mirror
tail
              This vocabulary can be extremely large
```

Toward more Compact Representations

```
[5 5 0 5 0 0 5 5 0 2 ...]
dog
                             0 3 4 0 3 ... ]
cat
               5 1 5 0 2 5 5 0 0
person
            food
walks
window
runs
mouse
invented
legs
sleeps
sleeps
mirror
tail
             This vocabulary can be extremely large
```

Toward more Compact Representations



Toward more Compact Representations

The basis vectors can be found using Principal Component Analysis (PCA)

This is known as Latent Semantic Analysis in NLP

Toward more Compact Representations: Word Embeddings

The weights w1, ..., wn are found using a neural network

Word2Vec: https://arxiv.org/abs/1301.3781

Word2Vec – CBOW Version

 First, create a huge matrix of word embeddings initialized with random values – where each row is a vector for a different word in the vocabulary.

 w_1 w_2 ...

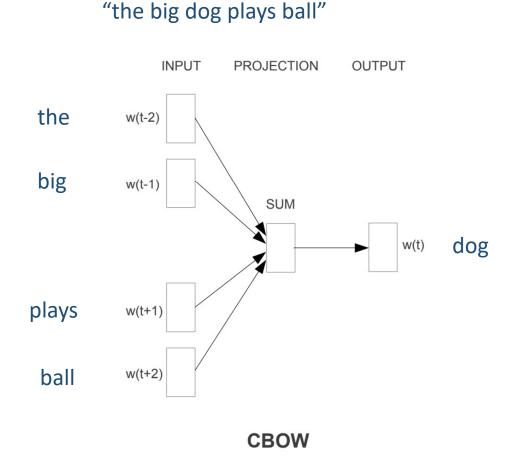
Word2Vec – CBOW Version

• Then, collect a lot of text, and solve the following regression problem for a large corpus of text:

 w_1 W_2 w_n

n

d



Practical Issues - Tokenization

 For each text representation we usually need to separate a sentence into tokens – we have assumed words in this lecture (or pairs of words) – but tokens could also be characters and anything inbetween.

- Word segmentation can be used as tokenization.
 - In the assignment I was lazy I just did "my sentence".split(" ") and called it a day.
 - However, even English is more difficult than that because of punctuation, double spaces, quotes, etc. For English I would recommend you too look up the great word tokenization tools in libraries such as Python's NLTK and Spacy before you try to come up with your own word tokenizer.

Issues with Word based Tokenization

- We already mentioned that tokenization can be hard even when word-based for other languages that don't use spaces in-between words.
- Word tokenization can also be bad for languages where the words can be "glued" together like German or Turkish.
 - Remember fünfhundertfünfundfünfzig? It wouldn't be feasible to have a word embedding for every number in the German language.
- It is problematic to handle words that are not in the vocabulary e.g. a common practice is to use a special <OOV> (out of vocabulary) token for those words that don't show up in the vocabulary.

Tokenization can be complex

- Think of Japanese
 - Three vocabularies/sets of symbols:
 Katakana and Hiragana symbols represent syllables / sounds く = ku, ぎ = gi, ナ = na, ア = a
 Kanji represent ideas / words (Chinese characters).
 日 = day, sun, 大 = big, 凸 = convex 凹 = concave
 - They can be combined e.g. tomorrow = 明日
 - Each symbol also has some structure within the symbols. They are not independently created. e.g. bright= 明るい, rising sun = 旭
 - And of course there are no spaces in between the characters.

Solution: Sub-word Tokenization

- Byte-pair Encoding Tokenization (BPE)
 - Start from small strings and based on substring counts iteratively use larger sequences until you define a vocabulary that maximizes informative subtokens. That way most will correspond to words at the end.
- Byte-level BPE Tokenizer
 - Do the same but at the byte representation level not at the substring representation level.

We will discuss these more as we discuss Transformer Models

Rust passing license Apache-2.0 downloads/week 169k

Provides an implementation of today's most used tokenizers, with a focus on performance and versatility.

Main features:

- Train new vocabularies and tokenize, using today's most used tokenizers.
- Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server's CPU.
- Easy to use, but also extremely versatile.
- · Designed for research and production.
- Normalization comes with alignments tracking. It's always possible to get the part of the original sentence that corresponds to a given token.
- Does all the pre-processing: Truncate, Pad, add the special tokens your model needs.

huggingface/tokenizers

BPE Tokenization Overview

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch School of Informatics, University of Edinburgh {rico.sennrich,a.birch}@ed.ac.uk,bhaddow@inf.ed.ac.uk

- Learn BPE operations (python code on the right) – from the paper.
- Use said operations to construct your subword vocabulary.
- Treat each sub-word token as a "word" in any models we will discuss.

Algorithm 1 Learn BPE operations

```
import re, collections
def get stats(vocab):
  pairs = collections.defaultdict(int)
  for word, freq in vocab.items():
    symbols = word.split()
    for i in range(len(symbols)-1):
      pairs[symbols[i],symbols[i+1]] += freq
  return pairs
def merge vocab(pair, v in):
 v out = \{\}
  bigram = re.escape(' '.join(pair))
  p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)')
  for word in v in:
    w out = p.sub(''.join(pair), word)
   v out[w out] = v in[word]
 return v out
vocab = {'low </w>' : 5, 'lower </w>' : 2,
         'n e w e s t </w>':6, 'w i d e s t </w>':3}
num merges = 10
for i in range(num merges):
  pairs = get stats(vocab)
  best = max(pairs, key=pairs.get)
 vocab = merge vocab(best, vocab)
 print(best)
```

https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbB P-6MkE_BMck6gm?usp=sharing

Questions?