Deep Learning for Vision & Language

Machine Learning II: SGD, Generalization, Regularization, Softmax, MLPs

About the class

- COMP 646: Deep Learning for Vision and Language
- Instructor: Vicente Ordóñez (Vicente Ordóñez Román)
- Website: https://www.cs.rice.edu/~vo9/deep-vislang
- Location: Keck Hall 100
- Times: Tuesdays and Thursdays from 4pm to 5:15pm
- Office Hours: Wednesdays 10am to noon (DH2080)
- Teaching Assistants: Ayush, Jefferson, Jaywon, Zilin
- Discussion Forum: Piazza (Sign-up Link on Rice Canvas and Class Website)

Assignment 1

 Assignment 1 is released and is available on the class website and to be submitted via Canvas.

• Due: Friday January 26th, midnight (you can and should submit early but not late – do not wait until finishing the whole assignment to have a version uploaded on canvas)

Grading for this class: COMP 646

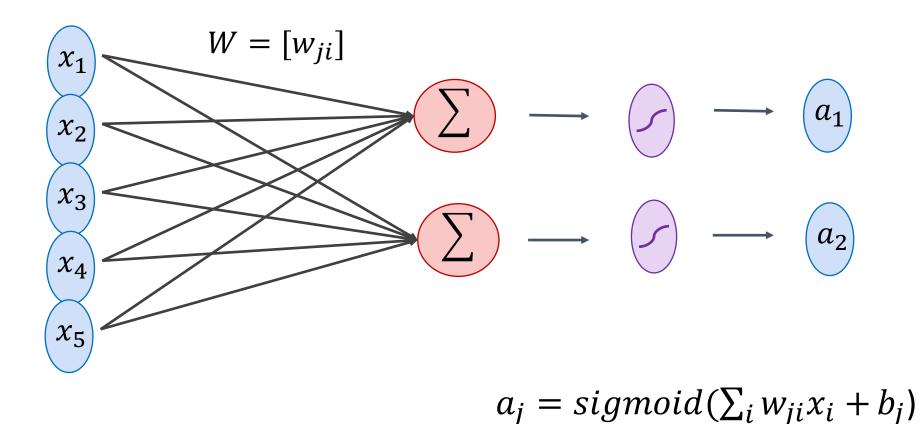
- Assignments: 30pts (3 assignments: 10pts + 10pts + 10pts)
- Class Project: 60pts
- Quiz: 10pts

Total: 100pts

Grade cutoffs: no stricter than the following:
A [between 90% and 100%], B [between 80% and 90%),
C [between 70% and 80%), D [between 55% and 70%),
F [less than 55%)

$$sigmoid(z) = \frac{1}{1 + e^{-z}}$$

Neural Network with One Layer



Gradient Descent

$$\lambda = 0.01$$

Initialize w and b randomly

Compute: dL(w,b)/dw and dL(w,b)/db

Update w: $w = w - \lambda dL(w, b)/dw$

Update b: $b = b - \lambda dL(w, b)/db$

Print: L(w,b) // Useful to see if this is becoming smaller or not.

end

$L(w,b) = \sum_{i=1}^{n} l(w,b)$

Stochastic Gradient Descent (mini-batch)

```
\lambda = 0.01
                                                L_B(w,b) = \sum_{i=1}^{\infty} l(w,b)
Initialize w and b randomly
for e = 0, num_epochs do
for b = 0, num_batches do
   Compute: dL_B(w,b)/dw and dL_B(w,b)/db
   Update w: w = w - \lambda dl(w, b)/dw
   Update b: b = b - \lambda \, dl(w, b)/db
   Print: L_R(w,b) // Useful to see if this is becoming smaller or not.
end
end
```

Stochastic Gradient Descent

- How to choose the right batch size B?
- How to choose the right learning rate lambda?
- How to choose the right loss function, e.g. is least squares good enough?
- How to choose the right function/classifier, e.g. linear, quadratic, neural network with 1 layer, 2 layers, etc?

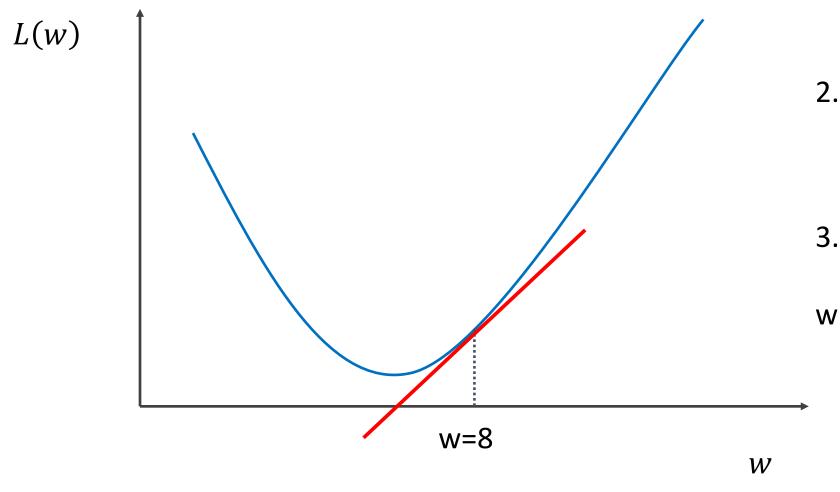
Training, Validation (Dev), Test Sets

Training, Validation (Dev), Test Sets

Training, Validation (Dev), Test Sets

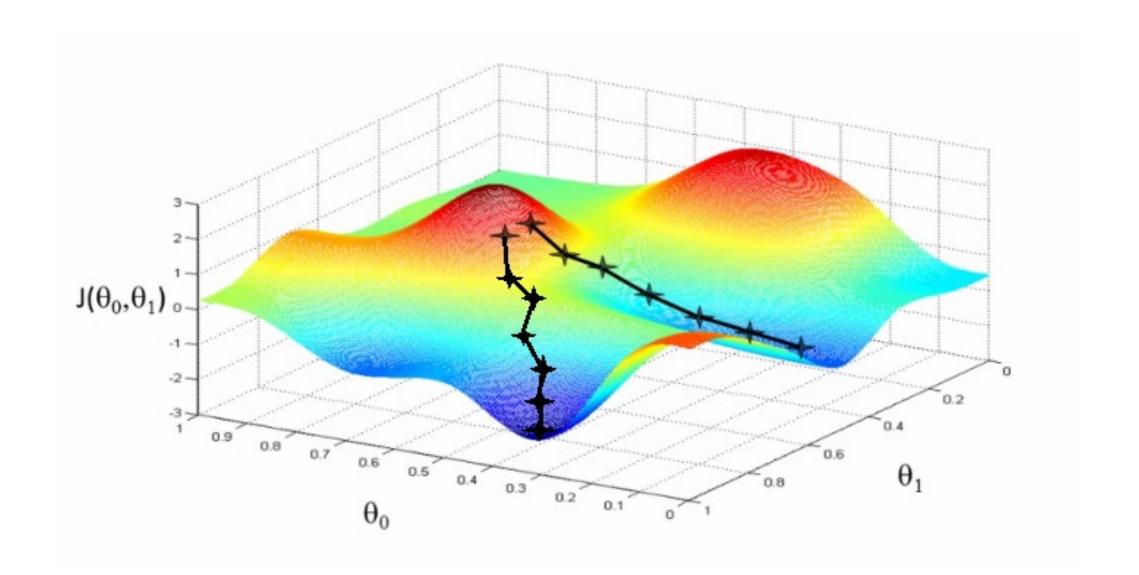
Only to be used for evaluating the model at the very end of development and any changes to the model after running it on the test set, could be influenced by what you saw happened on the test set, which would invalidate any future evaluation.

Gradient Descent



- 2. Compute the gradient (derivative) of L(w) at point w = 12. (e.g. dL/dw = 6)
- 3. Recompute w as:

w = w - lambda * (dL / dw)

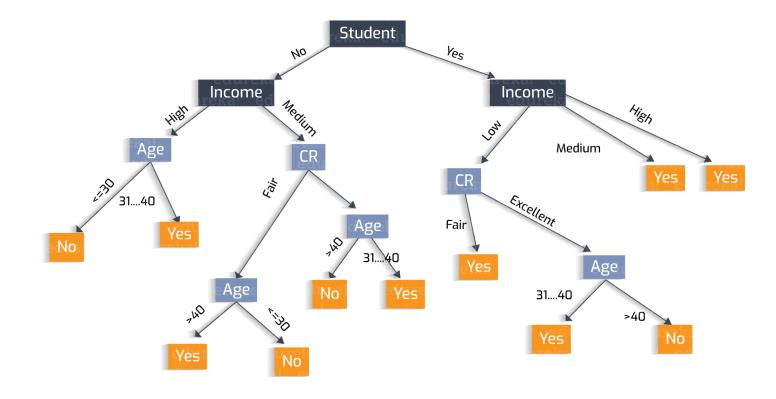


In this class we will mostly rely on...

- K-nearest neighbors
- Linear classifiers
- Naïve Bayes classifiers
- Decision Trees
- Random Forests
- Boosted Decision Trees
- Neural Networks

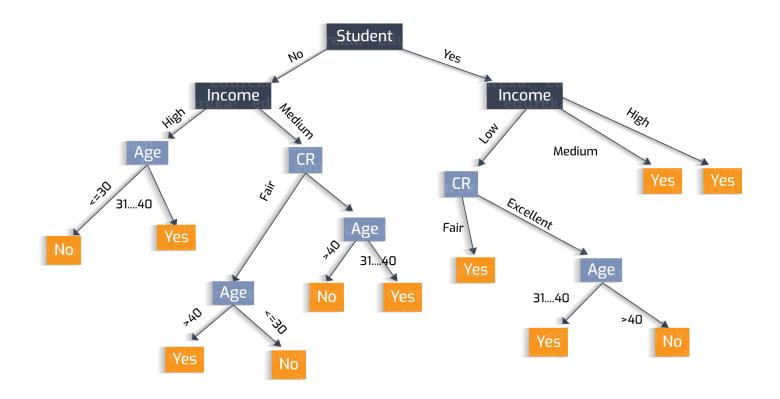
Why?

• Decisions Trees

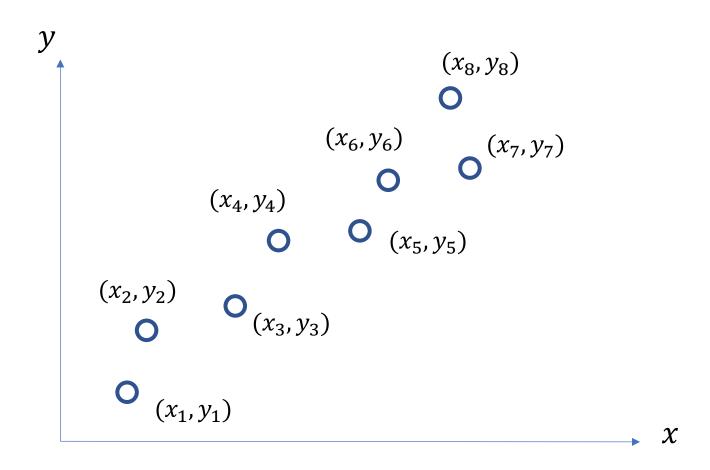


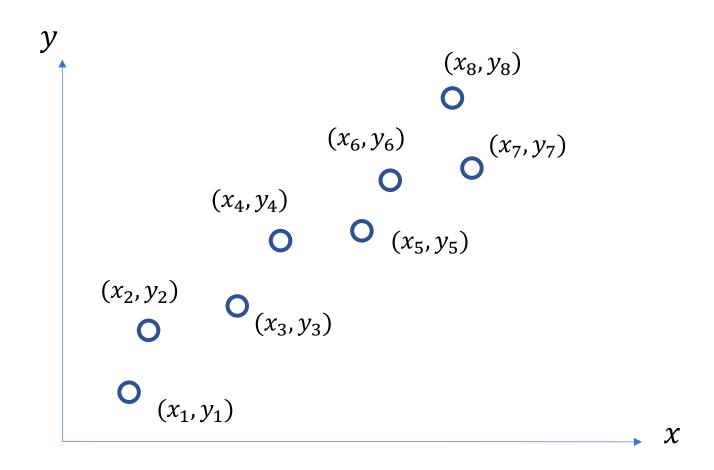
Why?

- Decisions Trees
 are great because
 they are often
 interpretable.
- However, they
 usually deal
 better with
 categorical data –
 not input pixel
 data.

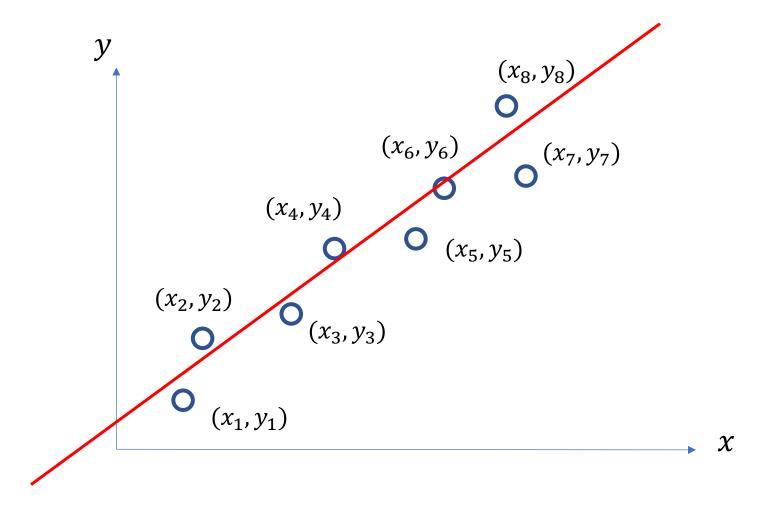


How to pick the right model?

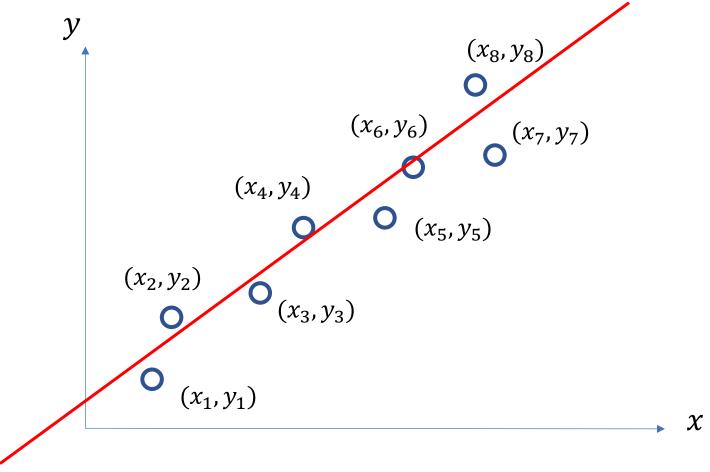




Model: $\hat{y} = wx + b$



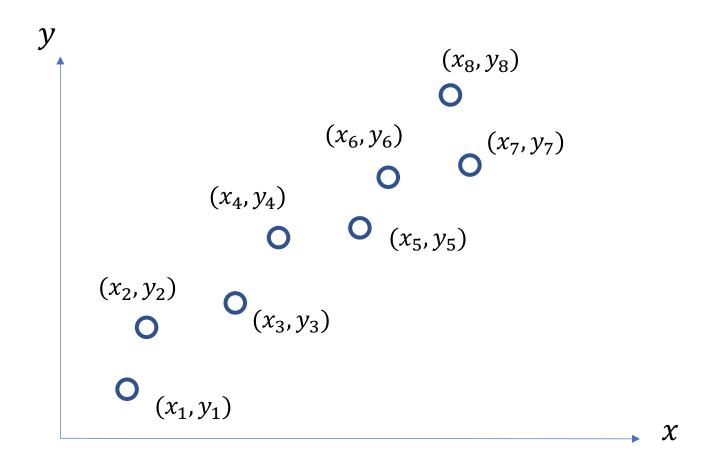
Model: $\hat{y} = wx + b$



Model: $\hat{y} = wx + b$

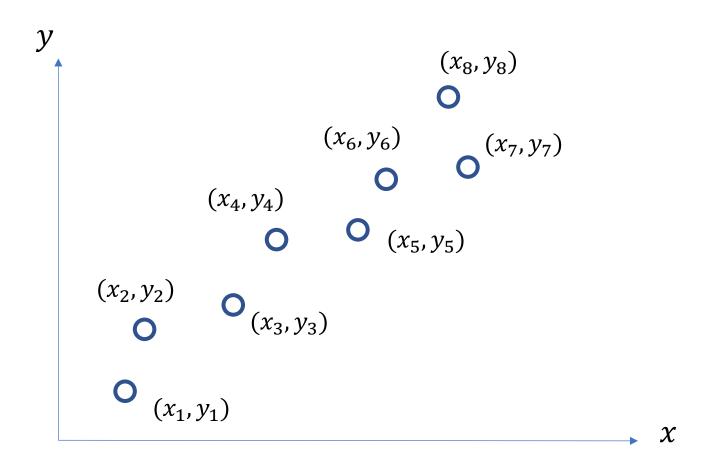
Loss:
$$L(w,b) = \sum_{i=1}^{N-1} (\hat{y}_i - y_i)^2$$

Quadratic Regression



Model:
$$\hat{y} = w_1 x^2 + w_2 x + b$$
 Loss: $L(w, b) = \sum_{i=1}^{t-0} (\hat{y}_i - y_i)^2$

n-polynomial Regression

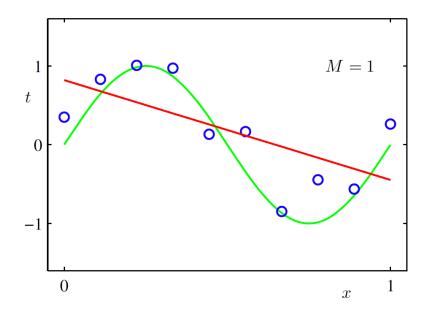


Model:
$$\hat{y} = w_n x^n + \dots + w_1 x + b$$

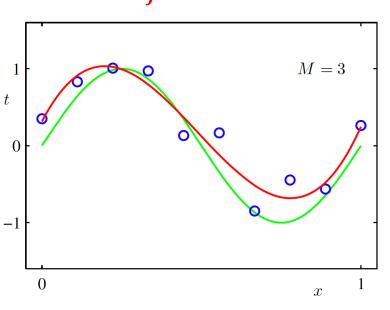
Loss:
$$L(w,b) = \sum_{i=1}^{i=8} (\hat{y}_i - y_i)^2$$

Overfitting

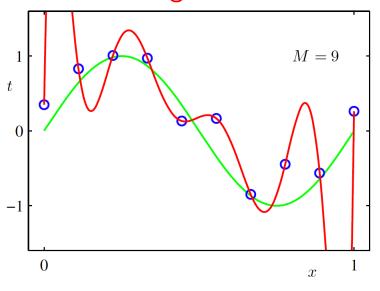
f is linear



f is cubic



f is a polynomial of degree 9



Loss(w) is high

Underfitting High Bias

Loss(w) is low

Loss(w) is zero!

Overfitting
High Variance

(mini-batch) Stochastic Gradient Descent (SGD)

```
\lambda = 0.01
                                          l(w,b) = \sum_{i \in R} Cost(w,b)
Initialize w and b randomly
for e = 0, num_epochs do
for b = 0, num batches do
   Compute: dl(w,b)/dw and dl(w,b)/db
   Update w: w = w - \lambda dl(w, b)/dw
   Update b: b = b - \lambda \, dl(w, b)/db
   Print: l(w,b) // Useful to see if this is becoming smaller or not.
end
end
```

Regularization

- Large weights lead to large variance. i.e. model fits to the training data too strongly.
- Solution: Minimize the loss but also try to keep the weight values small by doing the following:

minimize
$$L(w,b) + \alpha \sum_{i} |w_i|^2$$

Regularization

- Large weights lead to large variance. i.e. model fits to the training data too strongly.
- Solution: Minimize the loss but also try to keep the weight values small by doing the following:

minimize
$$L(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$
 Reg

Regularizer term e.g. L2- regularizer

SGD with Regularization (L-2)

```
\lambda = 0.01
                                                   l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}
Initialize w and b randomly
for e = 0, num_epochs do
for b = 0, num_batches do
   Compute: dl(w,b)/dw and dl(w,b)/db
   Update w: w = w - \lambda \, dl(w, b)/dw - \lambda \alpha w
   Update b: b = b - \lambda dl(w, b)/db - \lambda \alpha w
    Print: l(w,b) // Useful to see if this is becoming smaller or not.
end
end
```

Revisiting Another Problem with SGD

$$\lambda = 0.01$$

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$

Initialize w and b randomly

for e = 0, num_epochs do

for b = 0, num_batches do

Compute:

dl(w,b)/dw

and

dl(w,b)/db

Update w: $w = w - \lambda dl(w, b)/dw - \lambda \alpha w$

Update b:
$$b = b - \lambda dl(w, b)/db - \lambda \alpha w$$

Print: l(w,b) // Useful to see if this is becoming smaller or not.

end end These are only approximations to the true gradient with respect to L(w, b)

Revisiting Another Problem with SGD

$$\lambda = 0.01$$

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$

Initialize w and b randomly

for e = 0, num_epochs do

for b = 0, num_batches do

Compute:

dl(w,b)/dw

and

dl(w,b)/db

Update w: $w = w - \lambda dl(w, b)/dw - \lambda \alpha w$

Update b:
$$b = b - \lambda dl(w,b)/db - \lambda \alpha w$$

learning" what has been learned in some previous steps of training.

This could lead to "un-

Print: l(w,b) // Useful to see if this is becoming smaller or not.

end end

Solution: Momentum Updates

$$\lambda = 0.01$$

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$

Initialize w and b randomly

for e = 0, num_epochs do

for b = 0, num_batches do

Compute: dl(w,b)/dw

and dl(w,b)/db

Update w: $w = w - \lambda dl(w, b)/dw - \lambda \alpha w$

Update b: $b = b - \lambda dl(w,b)/db - \lambda \alpha w$

Keep track of previous gradients in an accumulator variable! and use a weighted average with current gradient.

Print: l(w,b) // Useful to see if this is becoming smaller or not.

end end

Solution: Momentum Updates

$$\lambda = 0.01$$
 $\tau = 0.9$

Initialize w and b randomly

$$l(w,b) = l(w,b) + \alpha \sum_{i} |w_{i}|^{2}$$

global v

for e = 0, num_epochs do

for b = 0, num_batches do

Compute: dl(w,b)/dw

Compute: $v = \tau v + dl(w, b)/dw + \alpha w$

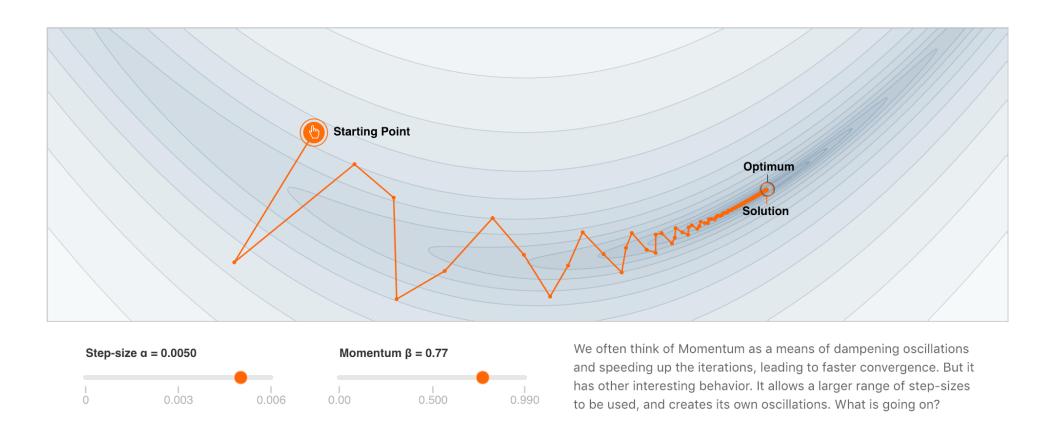
Update w: $w = w - \lambda v$

Keep track of previous gradients in an accumulator variable! and use a weighted average with current gradient.

Print: l(w,b) // Useful to see if this is becoming smaller or not.

end end

More on Momentum



https://distill.pub/2017/momentum/

Supervised Learning - Classification

Training Data

cat

dog

cat

bear

Test Data

Supervised Learning - Classification

Training Data

$$x_1 = [$$
] $y_1 = [$ cat] $x_2 = [$] $y_2 = [$ dog] $x_3 = [$] $y_3 = [$ cat]

$$x_n = [$$
 $y_n = [$ bear $]$

Supervised Learning - Classification

Training Data

inputs

$$x_1 = [x_{11} \ x_{12} \ x_{13} \ x_{14}]$$
 $y_1 = 1$ $\hat{y}_1 = 1$

$$x_2 = [x_{21} \ x_{22} \ x_{23} \ x_{24}]$$
 $y_2 = 2$ $\hat{y}_2 = 2$

$$x_3 = [x_{31} \ x_{32} \ x_{33} \ x_{34}]$$
 $y_3 = 1$ $\hat{y}_3 = 2$

$$x_n = [x_{n1} \ x_{n2} \ x_{n3} \ x_{n4}] \ y_n = 3 \ \hat{y}_n = 1$$

$$y_n = 3$$

$$\hat{y}_n = 1$$

targets / labels / predictions ground truth

$$y_1 = 1 \qquad \hat{y}_1 = 1$$

$$\hat{y}_2 = 2 \quad \hat{y}_2 = 2$$

$$\hat{y}_3 = 1 \quad \hat{y}_3 = 2$$

$$\hat{y}_3 = 2$$

We need to find a function that maps x and y for any of them.

$$\widehat{y}_i = f(x_i; \theta)$$

How do we "learn" the parameters of this function?

We choose ones that makes the following quantity small:

$$\sum_{i=1}^{n} Cost(\widehat{y}_i, y_i)$$

Supervised Learning - Classification

Training Data

cat

dog

cat

bear

Test Data

Supervised Learning - Classification

Training Data

$$x_1 = [$$
] $y_1 = [$ cat] $x_2 = [$] $y_2 = [$ dog] $x_3 = [$] $y_3 = [$ cat]

$$x_n = [$$
 $]$ $y_n = [$ bear $]$

Supervised Learning - Classification

Training Data

inputs

$$x_1 = [x_{11} \ x_{12} \ x_{13} \ x_{14}]$$
 $y_1 = 1$ $\hat{y}_1 = 1$

$$x_2 = [x_{21} \ x_{22} \ x_{23} \ x_{24}]$$
 $y_2 = 2$ $\hat{y}_2 = 2$

$$x_3 = [x_{31} \ x_{32} \ x_{33} \ x_{34}]$$
 $y_3 = 1$ $\hat{y}_3 = 2$

$$x_n = [x_{n1} \ x_{n2} \ x_{n3} \ x_{n4}] \ y_n = 3 \ \hat{y}_n = 1$$

$$y_n = 3$$

$$\hat{y}_n = 1$$

targets / labels / predictions ground truth

$$y_1 = 1 \qquad \hat{y}_1 = 1$$

$$\hat{y}_2 = 2 \quad \hat{y}_2 = 2$$

$$\hat{y}_3 = 1 \quad \hat{y}_3 = 2$$

$$\hat{y}_3 = 2$$

We need to find a function that maps x and y for any of them.

$$\widehat{y}_i = f(x_i; \theta)$$

How do we "learn" the parameters of this function?

We choose ones that makes the following quantity small:

$$\sum_{i=1}^{n} Cost(\widehat{y}_i, y_i)$$

Training Data

inputs

targets / labels / ground truth

$$x_1 = [x_{11} \ x_{12} \ x_{13} \ x_{14}] \ y_1 = 1$$

$$y_1 = 1$$

$$x_2 = [x_{21} \ x_{22} \ x_{23} \ x_{24}] \ y_2 = 2$$

$$y_2 = 2$$

$$x_3 = [x_{31} \ x_{32} \ x_{33} \ x_{34}] \ y_3 = 1$$

$$y_3 = 1$$

$$x_n = [x_{n1} \ x_{n2} \ x_{n3} \ x_{n4}] \ y_n = 3$$

Training Data

inputs

$$x_1 = \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \end{bmatrix} \quad y_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

$$x_2 = \begin{bmatrix} x_{21} & x_{22} & x_{23} & x_{24} \end{bmatrix}$$
 $y_2 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$ $\hat{y}_2 = \begin{bmatrix} 0.20 & 0.70 & 0.10 \end{bmatrix}$

$$x_3 = \begin{bmatrix} x_{31} & x_{32} & x_{33} & x_{34} \end{bmatrix}$$
 $y_3 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $\hat{y}_3 = \begin{bmatrix} 0.40 & 0.45 & 0.15 \end{bmatrix}$

$$y_1 = [1 \ 0 \ 0]$$

$$y_2 = [0 \ 1 \ 0]$$

$$y_3 = [1 \ 0 \ 0]$$

predictions

$$\hat{y}_1 = [0.85 \quad 0.10 \quad 0.05]$$

$$\hat{y}_2 = [0.20 \quad 0.70 \quad 0.10]$$

$$\hat{y}_3 = [0.40 \quad 0.45 \quad 0.15]$$

$$y_n = [0 \ 0 \ 1]$$

$$x_n = \begin{bmatrix} x_{n1} & x_{n2} & x_{n3} & x_{n4} \end{bmatrix}$$
 $y_n = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ $\hat{y}_n = \begin{bmatrix} 0.40 & 0.25 & 0.35 \end{bmatrix}$

$$x_{i} = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}] \qquad y_{i} = [1 \ 0 \ 0] \qquad \hat{y}_{i} = [f_{1} \ f_{2} \ f_{3}]$$

$$a_{1} = w_{11}x_{i1} + w_{12}x_{i2} + w_{13}x_{i3} + w_{14}x_{i4} + b_{c}$$

$$a_{2} = w_{21}x_{i1} + w_{22}x_{i2} + w_{23}x_{i3} + w_{24}x_{i4} + b_{d}$$

$$a_{3} = w_{31}x_{i1} + w_{32}x_{i2} + w_{33}x_{i3} + w_{34}x_{i4} + b_{b}$$

$$f_{1} = e^{a_{1}}/(e^{a_{1}} + e^{a_{2}} + e^{a_{3}})$$

$$f_{2} = e^{a_{2}}/(e^{a_{1}} + e^{a_{2}} + e^{a_{3}})$$

$$f_{3} = e^{a_{3}}/(e^{a_{1}} + e^{a_{2}} + e^{a_{3}})$$

How do we find a good w and b?

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$
 $y_i = [1 \ 0 \ 0]$ $\hat{y}_i = [f_1(w,b) \ f_2(w,b) \ f_3(w,b)]$

We need to find w, and b that minimize the following:

$$L(w,b) = \sum_{i=1}^{n} \sum_{j=1}^{3} -y_{i,j} \log(\hat{y}_{i,j}) = \sum_{i=1}^{n} -\log(\hat{y}_{i,label}) = \sum_{i=1}^{n} -\log f_{i,label}(w,b)$$

This is what we have:

$$L(w,b) = \sum_{i=1}^{n} \sum_{j=1}^{3} -y_{i,j} \log(\hat{y}_{i,j}) = \sum_{i=1}^{n} -\log(\hat{y}_{i,label}) = \sum_{i=1}^{n} -\log f_{i,label}(w,b)$$

To simplify let's assume n = 1

$$\ell(W,b) = -\log(\hat{y}_{label}(W,b)) = -\log\left(\frac{\exp(a_{label}(W,b))}{\sum_{k=1}^{3} \exp(a_k(W,b))}\right)$$

$$x = [x_1 \ x_2 \ x_3 \ x_4] \qquad y = [1 \ 0 \ 0] \qquad \hat{y} = [f_1 \ f_2 \ f_3]$$

$$a_1 = w_{11}x_1 + w_{12}x_2 + w_{13}x_3 + w_{14}x_4 + b_c$$

$$a_2 = w_{21}x_1 + w_{22}x_2 + w_{23}x_3 + w_{24}x_4 + b_d$$

$$a_3 = w_{31}x_1 + w_{32}x_2 + w_{33}x_3 + w_{34}x_4 + b_b$$

$$f_1 = e^{a_1}/(e^{a_1} + e^{a_2} + e^{a_3})$$

$$f_2 = e^{a_2}/(e^{a_1} + e^{a_2} + e^{a_3})$$

$$f_3 = e^{a_3}/(e^{a_1} + e^{a_2} + e^{a_3})$$

This is what we have:

$$\ell(W, b) = -\log(\hat{y}_{label}(W, b)) = -\log\left(\frac{\exp(a_{label}(W, b))}{\sum_{k=1}^{3} \exp(a_k(W, b))}\right)$$

This is what we have:

$$\ell(W,b) = -\log(\hat{y}_{label}(W,b)) = -\log\left(\frac{\exp(a_{label}(W,b))}{\sum_{k=1}^{3} \exp(a_k(W,b))}\right)$$

$$\ell = -\log\left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)}\right)$$

Reminder: $a_i = (w_{i,1}x_1 + w_{i,2}x_2 + w_{i,3}x_3 + w_{i,4}x_4) + b_i$

This is what we have:

$$\ell = -\log\left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)}\right)$$

This is what we have:

$$\ell = -\log\left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)}\right)$$

This is what we need:

$$rac{\partial \ell}{\partial w_{ij}}$$
 for each w_{ij} $rac{\partial \ell}{\partial b_i}$ for each b_i

This is what we have:

$$\ell = -\log\left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)}\right)$$

Step 1: Chain Rule of Calculus

$$\frac{\partial \ell}{\partial w_{ij}} = \frac{\partial \ell}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} \qquad \qquad \frac{\partial \ell}{\partial b_i} = \frac{\partial \ell}{\partial a_i} \frac{\partial a_i}{\partial b_i}$$

This is what we have:

$$\ell = -\log\left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)}\right)$$

Step 1: Chain Rule of Calculus

Let's do these first

$$\frac{\partial \ell}{\partial w_{ij}} = \frac{\partial \ell}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} \qquad \frac{\partial \ell}{\partial b_i} = \frac{\partial \ell}{\partial a_i} \frac{\partial a_i}{\partial b_i}$$

$$\frac{\partial a_i}{\partial w_{ij}}$$

$$\frac{\partial a_i}{\partial b_i}$$

$$a_i = (w_{i,1}x_1 + w_{i,2}x_2 + w_{i,3}x_3 + w_{i,4}x_4) + b_i$$

$$\frac{\partial a_i}{\partial w_{i,3}} = \frac{\partial}{\partial w_{i,3}} (w_{i,1} x_1 + w_{i,2} x_2 + w_{i,3} x_3 + w_{i,4} x_4) + b_i$$

$$\frac{\partial a_i}{\partial w_{i,3}} = x_3$$

$$\frac{\partial a_i}{\partial w_{i,j}} = x_j$$

$$\frac{\partial a_i}{\partial w_{i,j}} = x_j$$

$$\frac{\partial a_i}{\partial b_i}$$

$$a_i = (w_{i,1}x_1 + w_{i,2}x_2 + w_{i,3}x_3 + w_{i,4}x_4) + b_i$$

$$\frac{\partial a_i}{\partial b_i} = \frac{\partial}{\partial b_i} (w_{i,1} x_1 + w_{i,2} x_2 + w_{i,3} x_3 + w_{i,4} x_4) + b_i$$

$$\frac{\partial a_i}{\partial b_i} = 1$$

$$\frac{\partial a_i}{\partial w_{i,j}} = x_j$$

$$\frac{\partial a_i}{\partial b_i} = 1$$

This is what we have:

$$\ell = -\log\left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)}\right)$$

Step 1: Chain Rule of Calculus

Now let's do this one (same for both!)

$$\frac{\partial \ell}{\partial w_{ij}} = \begin{bmatrix} \frac{\partial \ell}{\partial a_i} & \frac{\partial a_i}{\partial w_{ij}} & \frac{\partial \ell}{\partial b_i} & \frac{\partial \ell}{\partial b_i} \end{bmatrix} = \begin{bmatrix} \frac{\partial \ell}{\partial a_i} & \frac{\partial a_i}{\partial b_i} & \frac{\partial a_i}{\partial b_i} & \frac{\partial e_i}{\partial a_i} & \frac{\partial e_i}$$

$$\frac{\partial \ell}{\partial a_i} = \frac{\partial}{\partial a_i} \left[-\log \left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)} \right) \right]$$
$$= \frac{\partial}{\partial a_i} \left[\log \left(\sum_{k=1}^{3} \exp(a_k) \right) - a_{label} \right]$$

In our cat, dog, bear classification example: $i = \{1, 2, 3\}$

$$\frac{\partial \ell}{\partial a_i} = \frac{\partial}{\partial a_i} \left[-\log \left(\frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)} \right) \right]$$
$$= \frac{\partial}{\partial a_i} \left[\log \left(\sum_{k=1}^{3} \exp(a_k) \right) - a_{label} \right]$$

In our cat, dog, bear classification example: $i = \{1, 2, 3\}$

Let's say: label = 2

We need:

 $\frac{\partial \ell}{\partial a_1} \qquad \frac{\partial \ell}{\partial a_2} \qquad \frac{\partial \ell}{\partial a_3}$

$$= \frac{\partial}{\partial a_i} \left[\log(\sum_{k=1}^{3} \exp(a_k)) - a_{label} \right]$$

$$\frac{\partial \ell}{\partial a_1} \quad \frac{\partial \ell}{\partial a_3} \quad \text{when } i \neq label:$$

$$\frac{\partial \mathcal{E}}{\partial a_i} = \frac{\partial}{\partial a_i} \left[\log(\sum_{k=1}^{3} \exp(a_k)) - a_{label} \right]$$

$$\frac{\partial \ell}{\partial a_i} = \frac{\partial}{\partial a_i} \log(\sum_{k=1}^{3} \exp(a_k))$$

$$\frac{\partial \ell}{\partial a_i} = \left(\frac{1}{\sum_{k=1}^3 \exp(a_k)}\right) \left(\frac{\partial}{\partial a_i} \sum_{k=1}^3 \exp(a_k)\right)$$

$$\frac{\partial \ell}{\partial a_i} = \frac{\exp(a_i)}{\sum_{k=1}^3 \exp(a_k)} = \hat{y}_i$$

$$x_{i} = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}] \qquad y_{i} = [1 \ 0 \ 0] \qquad \hat{y}_{i} = [f_{1} \ f_{2} \ f_{3}]$$

$$a_{1} = w_{11}x_{i1} + w_{12}x_{i2} + w_{13}x_{i3} + w_{14}x_{i4} + b_{c}$$

$$a_{2} = w_{21}x_{i1} + w_{22}x_{i2} + w_{23}x_{i3} + w_{24}x_{i4} + b_{d}$$

$$a_{3} = w_{31}x_{i1} + w_{32}x_{i2} + w_{33}x_{i3} + w_{34}x_{i4} + b_{b}$$

$$f_{1} = e^{a_{1}}/(e^{a_{1}} + e^{a_{2}} + e^{a_{3}})$$

$$f_{2} = e^{a_{2}}/(e^{a_{1}} + e^{a_{2}} + e^{a_{3}})$$

$$f_{3} = e^{a_{3}}/(e^{a_{1}} + e^{a_{2}} + e^{a_{3}})$$

$$= \frac{\partial}{\partial a_i} \left[\log(\sum_{k=1}^{3} \exp(a_k)) - a_{label} \right]$$

$$\frac{\partial \ell}{\partial a_1} \quad \frac{\partial \ell}{\partial a_3} \quad \text{when } i \neq label:$$

$$\frac{\partial \ell}{\partial a_i} = \frac{\partial}{\partial a_i} \left[\log(\sum_{k=1}^{3} \exp(a_k)) - a_{label} \right]$$

$$\frac{\partial \ell}{\partial a_i} = \frac{\partial}{\partial a_i} \log(\sum_{k=1}^{3} \exp(a_k))$$

$$\frac{\partial \ell}{\partial a_i} = \left(\frac{1}{\sum_{k=1}^3 \exp(a_k)}\right) \left(\frac{\partial}{\partial a_i} \sum_{k=1}^3 \exp(a_k)\right)$$

$$\frac{\partial \ell}{\partial a_i} = \frac{\exp(a_i)}{\sum_{k=1}^3 \exp(a_k)} = \hat{y}_i$$

$$= \frac{\partial}{\partial a_i} \left[\log(\sum_{k=1}^{3} \exp(a_k)) - a_{label} \right]$$

$$\frac{\partial \ell}{\partial a_2}$$

when i = label:

$$\frac{\partial \ell}{\partial a_{label}} = \frac{\partial}{\partial a_{label}} \left[\log(\sum_{k=1}^{3} \exp(a_k) - a_{label}) \right]$$
$$\frac{\partial \ell}{\partial a_{label}} = \frac{\partial}{\partial a_{label}} \log(\sum_{k=1}^{3} \exp(a_k)) - 1$$

$$\frac{\partial \mathcal{E}}{\partial a_{label}} = \left(\frac{1}{\sum_{k=1}^{3} \exp(a_k)}\right) \left(\frac{\partial}{\partial a_{label}} \sum_{k=1}^{3} \exp(a_k)\right) - 1$$

$$\frac{\partial \ell}{\partial a_{label}} = \frac{\exp(a_{label})}{\sum_{k=1}^{3} \exp(a_k)} - 1$$
 $\hat{y}_i - 1$

$$label = 2$$

$$\frac{\partial \ell}{\partial a_1} = \hat{y}_1 \qquad \qquad \frac{\partial \ell}{\partial a_2} = \hat{y}_2 - 1 \qquad \qquad \frac{\partial \ell}{\partial a_3} = \hat{y}_3$$

$$\frac{\partial \ell}{\partial a} = \begin{bmatrix} \frac{\partial \ell}{\partial a_1} \\ \frac{\partial \ell}{\partial a_2} \\ \frac{\partial \ell}{\partial a_3} \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 - 1 \\ \hat{y}_3 \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \hat{y}_3 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \hat{y} - y$$

$$\frac{\partial \ell}{\partial a_i} = \hat{y}_i - y_i$$

$$\frac{\partial \ell}{\partial w_{ij}} = \frac{\partial \ell}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}}$$

$$\frac{\partial \ell}{\partial b_i} = \frac{\partial \ell}{\partial a_i} \frac{\partial a_i}{\partial b_i}$$

$$\frac{\partial a_i}{\partial w_{i,j}} = x_j$$

$$\frac{\partial a_i}{\partial b_i} = 1$$

$$\frac{\partial a_i}{\partial w_{i,j}} = x_j \qquad \frac{\partial a_i}{\partial b_i} = 1 \qquad \frac{\partial \ell}{\partial a_i} = \hat{y}_i - y_i$$

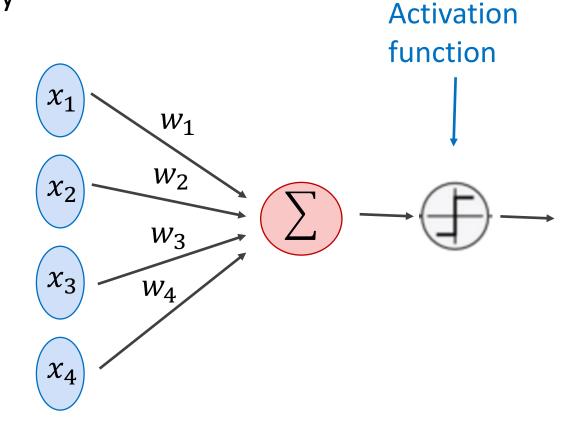
$$\frac{\partial \ell}{\partial w_{i,j}} = (\hat{y}_i - y_i) x_j$$

$$\frac{\partial \ell}{\partial b_i} = (\hat{y}_i - y_i)$$

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

$$f(x) = \begin{cases} 1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\ 0, & \text{otherwise} \end{cases}$$

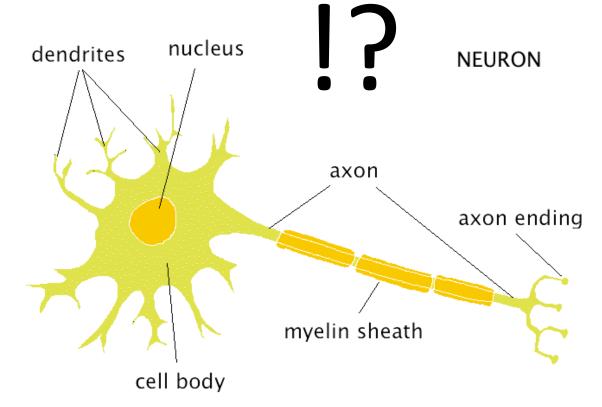


More: https://en.wikipedia.org/wiki/Perceptron

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

$$f(x) = \begin{cases} 1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\ 0, & \text{otherwise} \end{cases}$$

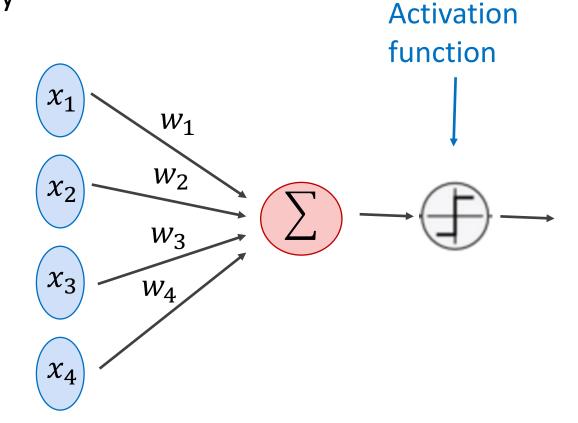


More: https://en.wikipedia.org/wiki/Perceptron

Perceptron Model

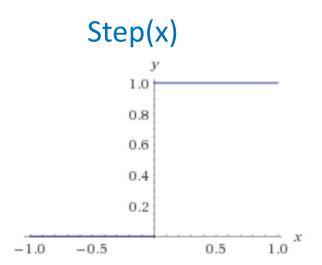
Frank Rosenblatt (1957) - Cornell University

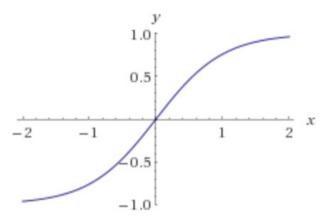
$$f(x) = \begin{cases} 1, & \text{if } \sum_{i=0}^{n} w_i x_i + b > 0 \\ 0, & \text{otherwise} \end{cases}$$

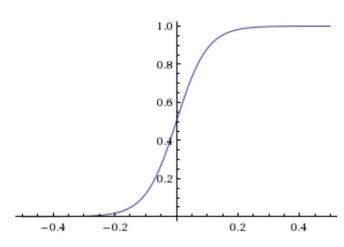


More: https://en.wikipedia.org/wiki/Perceptron

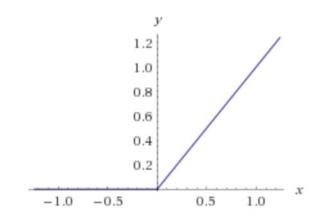
Activation Functions



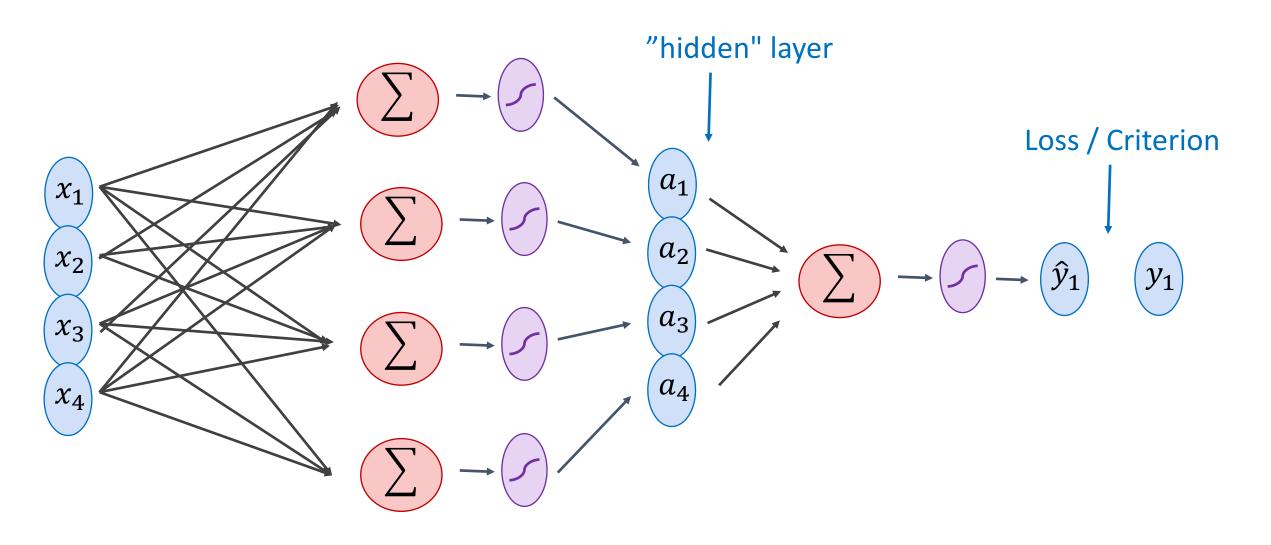




ReLU(x) = max(0, x)



Two-layer Multi-layer Perceptron (MLP)



$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = [f_c \quad f_d \quad f_b]$$

$$g_c = w_{c1}x_{i1} + w_{c2}x_{i2} + w_{c3}x_{i3} + w_{c4}x_{i4} + b_c$$

$$g_d = w_{d1}x_{i1} + w_{d2}x_{i2} + w_{d3}x_{i3} + w_{d4}x_{i4} + b_d$$

$$g_b = w_{b1}x_{i1} + w_{b2}x_{i2} + w_{b3}x_{i3} + w_{b4}x_{i4} + b_b$$

$$f_c = e^{g_c}/(e^{g_c} + e^{g_d} + e^{g_b})$$
 $f_d = e^{g_d}/(e^{g_c} + e^{g_d} + e^{g_b})$
 $f_b = e^{g_b}/(e^{g_c} + e^{g_d} + e^{g_b})$

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$$

$$g_c = w_{c1}x_{i1} + w_{c2}x_{i2} + w_{c3}x_{i3} + w_{c4}x_{i4} + b_c$$

$$g_d = w_{d1}x_{i1} + w_{d2}x_{i2} + w_{d3}x_{i3} + w_{d4}x_{i4} + b_d$$

$$g_b = w_{b1}x_{i1} + w_{b2}x_{i2} + w_{b3}x_{i3} + w_{b4}x_{i4} + b_b$$

$$w = \begin{bmatrix} w_{c1} & w_{c2} & w_{c3} & w_{c4} \\ w_{d1} & w_{d2} & w_{d3} & w_{d4} \\ w_{b1} & w_{b2} & w_{b3} & w_{b4} \end{bmatrix}$$

$$b = [b_c \quad b_d \quad b_b]$$

$$f_c = e^{g_c}/(e^{g_c} + e^{g_d} + e^{g_b})$$
 $f_d = e^{g_d}/(e^{g_c} + e^{g_d} + e^{g_b})$
 $f_b = e^{g_b}/(e^{g_c} + e^{g_d} + e^{g_b})$

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$$

$$g = wx^T + b^T$$

$$w = \begin{bmatrix} w_{c1} & w_{c2} & w_{c3} & w_{c4} \\ w_{d1} & w_{d2} & w_{d3} & w_{d4} \\ w_{b1} & w_{b2} & w_{b3} & w_{b4} \end{bmatrix}$$

$$b = [b_c \quad b_d \quad b_b]$$

$$f_c = e^{g_c}/(e^{g_c} + e^{g_d} + e^{g_b})$$
 $f_d = e^{g_d}/(e^{g_c} + e^{g_d} + e^{g_b})$
 $f_b = e^{g_b}/(e^{g_c} + e^{g_d} + e^{g_b})$

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$$

$$g = wx^T + b^T$$

$$w = \begin{bmatrix} w_{c1} & w_{c2} & w_{c3} & w_{c4} \\ w_{d1} & w_{d2} & w_{d3} & w_{d4} \\ w_{b1} & w_{b2} & w_{b3} & w_{b4} \end{bmatrix}$$

$$b = [b_c \quad b_d \quad b_b]$$

$$f = softmax(g)$$

Linear Softmax

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = [f_c \quad f_d \quad f_b]$$

$$f = softmax(wx^T + b^T)$$

Two-layer MLP + Softmax

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = [f_c \quad f_d \quad f_b]$$

$$a_1 = sigmoid(w_{[1]}x^T + b_{[1]}^T)$$

 $f = softmax(w_{[2]}a_1^T + b_{[2]}^T)$

N-layer MLP + Softmax

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = [f_c \quad f_d \quad f_b]$$

$$a_1 = sigmoid(w_{[1]}x^T + b_{[1]}^T)$$

$$a_2 = sigmoid(w_{[2]}a_1^T + b_{[2]}^T)$$

...

$$a_k = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

...

$$f = softmax(w_{[n]}a_{n-1}^T + b_{[n]}^T)$$

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = [f_c \quad f_d \quad f_b]$$

$$a_1 = sigmoid(w_{[1]}x^T + b_{[1]}^T)$$

$$a_2 = sigmoid(w_{[2]}a_1^T + b_{[2]}^T)$$

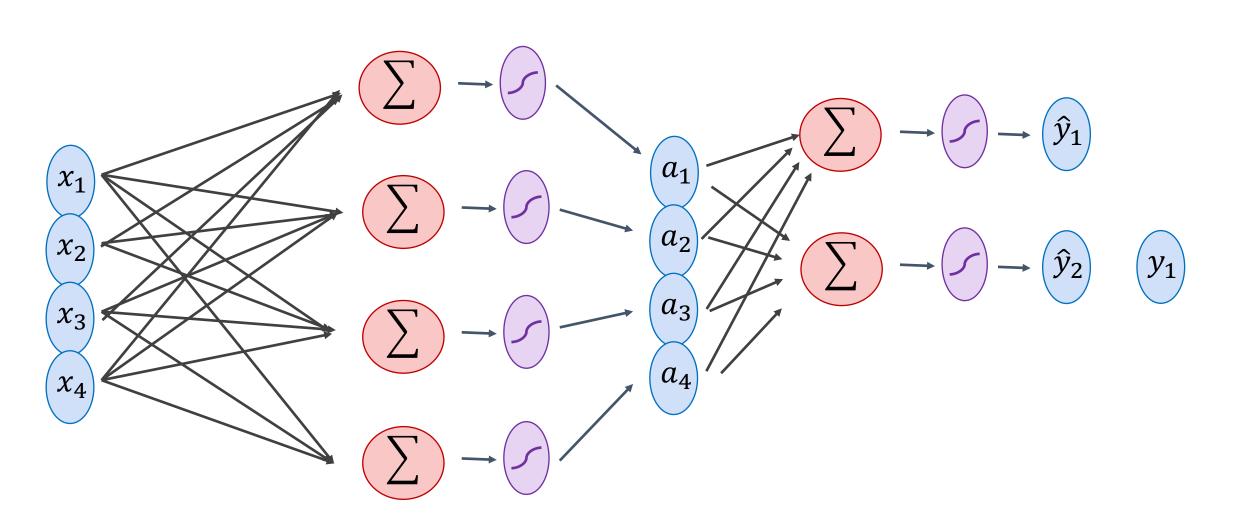
...

$$a_k = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

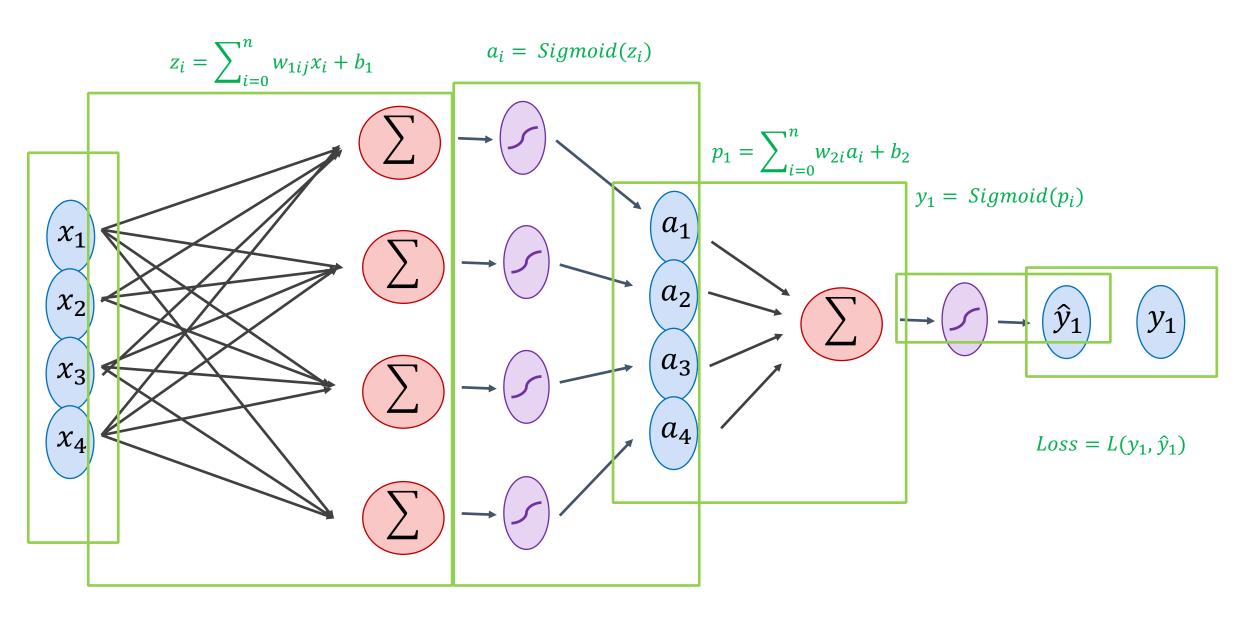
...

$$f = softmax(w_{[n]}a_{n-1}^T + b_{[n]}^T)$$

Forward pass (Forward-propagation)



Forward pass (Forward-propagation)



$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$$

$$a_1 = sigmoid(w_{[1]}x^T + b_{[1]}^T)$$

$$a_2 = sigmoid(w_{[2]}a_1^T + b_{[2]}^T)$$

...

$$a_k = sigmoid(w_{\lceil k \rceil} a_{k-1}^T + b_{\lceil i \rceil}^T)$$

...

$$f = softmax(w_{[n]}a_{n-1}^T + b_{[n]}^T)$$

We can still use SGD

We need!

$$\frac{\partial l}{\partial w_{[k]ij}} \qquad \frac{\partial l}{\partial b_{[k]i}}$$

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = [f_c \quad f_d \quad f_b]$$

$$a_1 = sigmoid(w_{[1]}x^T + b_{[1]}^T)$$

$$a_2 = sigmoid(w_{[2]}a_1^T + b_{[2]}^T)$$

• • •

$$a_i = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

...

$$f = softmax(w_{[n]}a_{n-1}^T + b_{[n]}^T)$$

$$l = loss(f, y)$$

We can still use SGD

We need!

$$\frac{\partial l}{\partial w_{[k]ij}} \qquad \frac{\partial l}{\partial b_{[k]i}}$$

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = \begin{bmatrix} f_c & f_d & f_b \end{bmatrix}$$

$$a_1 = sigmoid(w_{[1]}x^T + b_{[1]}^T)$$

$$a_2 = sigmoid(w_{[2]}a_1^T + b_{[2]}^T)$$

• • •

$$a_i = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

...

$$f = softmax(w_{[n]}a_{n-1}^T + b_{[n]}^T)$$

$$l = loss(f, y)$$

We can still use SGD

We need!

$$\frac{\partial l}{\partial w_{[k]ij}}$$

$$rac{\partial l}{\partial b_{[k]i}}$$

$$x_i = [x_{i1} \ x_{i2} \ x_{i3} \ x_{i4}]$$

$$y_i = [1 \ 0 \ 0]$$

$$\hat{y}_i = [f_c \quad f_d \quad f_b]$$

$$a_1 = sigmoid(w_{[1]}x^T + b_{[1]}^T)$$

$$a_2 = sigmoid(w_{[2]}a_1^T + b_{[2]}^T)$$

•••

$$a_i = sigmoid(w_{[k]}a_{k-1}^T + b_{[k]}^T)$$

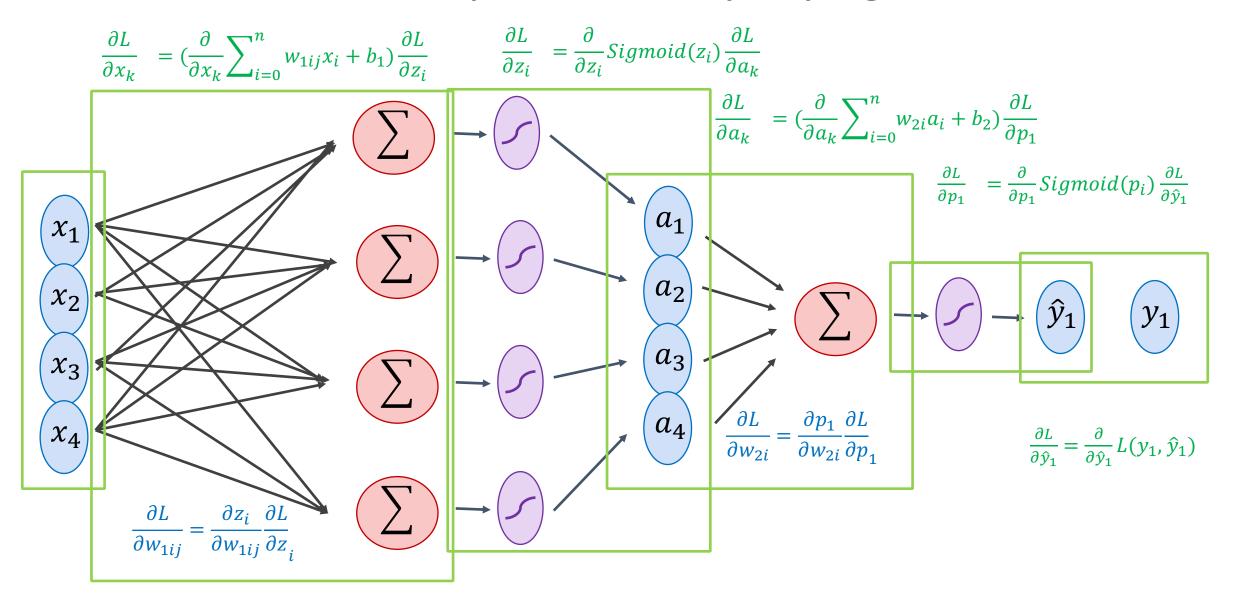
$$\frac{\partial l}{\partial w_{[k]ij}} = \frac{\partial l}{\partial a_{n-1}} \frac{\partial a_{n-1}}{\partial a_{n-2}} \dots \frac{\partial a_{k-2}}{\partial a_{k-1}} \frac{\partial a_{k-1}}{\partial w_{[k]ij}}$$

...

$$f = softmax(w_{[n]}a_{n-1}^T + b_{[n]}^T)$$

$$l = loss(f, y)$$

Backward pass (Back-propagation)



Questions?