Deep Learning for Vision & Language

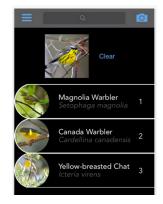
Computer Vision I: The Convolutional Operator, Image Filtering and Convolutional Neural Networks

Assignment 1

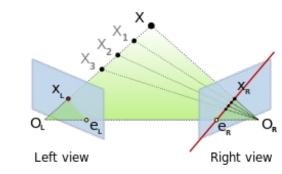
 Assignment 1 is released and is available on the class website and to be submitted via Canvas.

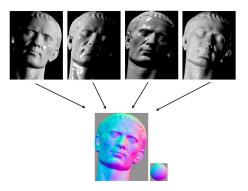
• Due: Monday January 29th, midnight (you can and should submit early but not late – do not wait until finishing the whole assignment to have a version uploaded on canvas)

Create an algorithm to distinguish dogs from cats



Face Detection in Cameras





Human Vision / Human Brain

Machine Learning

Deep Learning

Computer Vision

Optics / Cameras

Geometry

Robotics

Who is using Computer Vision?

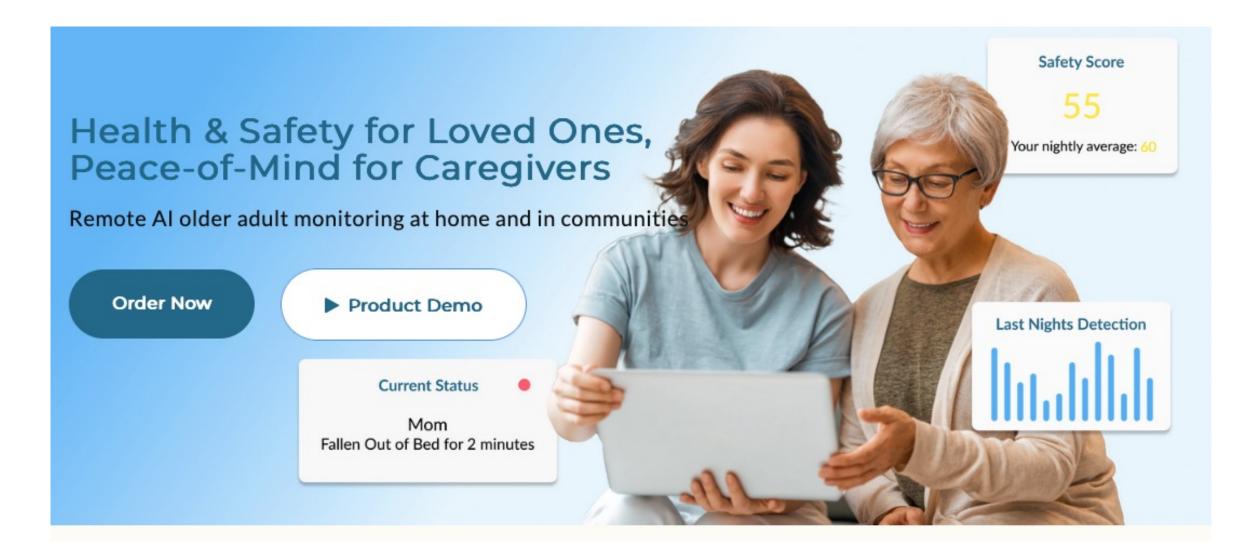
- Facebook Oculus VR, Image Search, Image tagging, Content filtering, Instagram, etc.
- Google/Alphabet Waymo, DeepMind, Image Search, Google Earth/Maps, Street View, Google Photos, etc.
- Adobe Photoshop, Premiere, Lightroom, etc.
- Snap Inc Snapchat, Smart Goggles, Filters, Face Detection,
 Style Transfer, etc.
- eBay Inc Product Search, Product Matching, Content Filtering, Duplicate Removal, etc.
- Amazon Warehouse robotics, Smart Stores, Product Search.
- IBM Image Retrieval, Medical Applications, Product Quality.
- Microsoft Hololens, Optical Character Recognition (OCR),
 Face Detection, Cloud Services.
- Apple Face Verification, Enhanced cameras and chips for image processing.

https://bristles.ai/



https://bristles.ai/

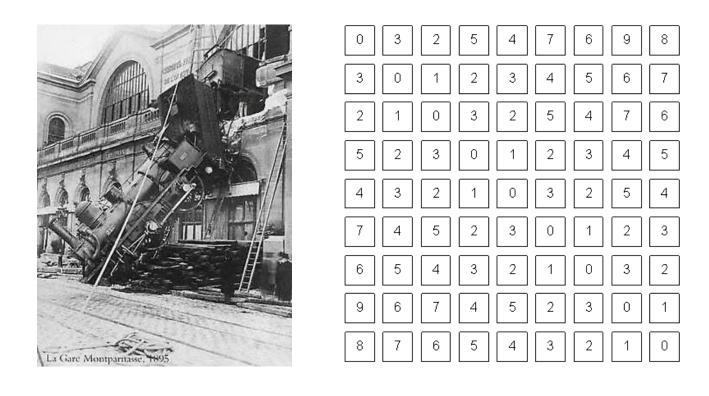
MercuryAlert



Phiar.ai (now part of Google)

Images

• Can be viewed as a matrix with pixel values

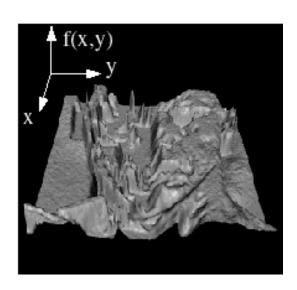


Images

• Or as a function in a 2D domain

$$z = f(x, y)$$





Color Images

Can be viewed as tensors (3-dimensional arrays)

0 3 2 5 4 7 6 9 8
3 0 1 2 3 4 5 6 7
2 1 0 3 2 5 4 7 6
2 5 2 3 0 1 2 3 4 5
4 3 2 1 0 3 2 5 4
7 4 5 2 3 0 1 2 3
6 5 4 3 2 1 0 3 2
9 6 7 4 5 2 3 0 1
8 7 6 5 4 3 2 1 0

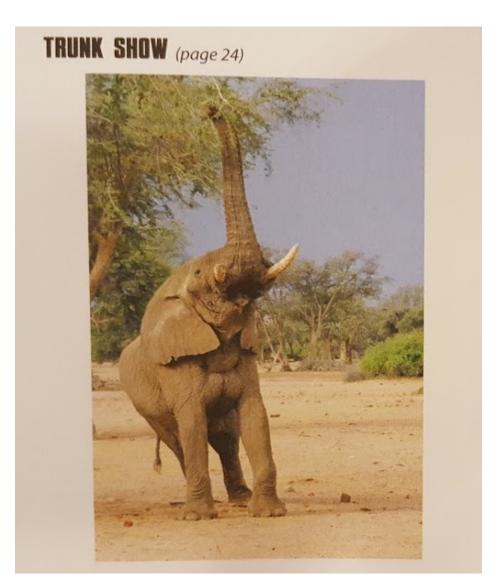
sizeof(T) = 3 x height x width

T =

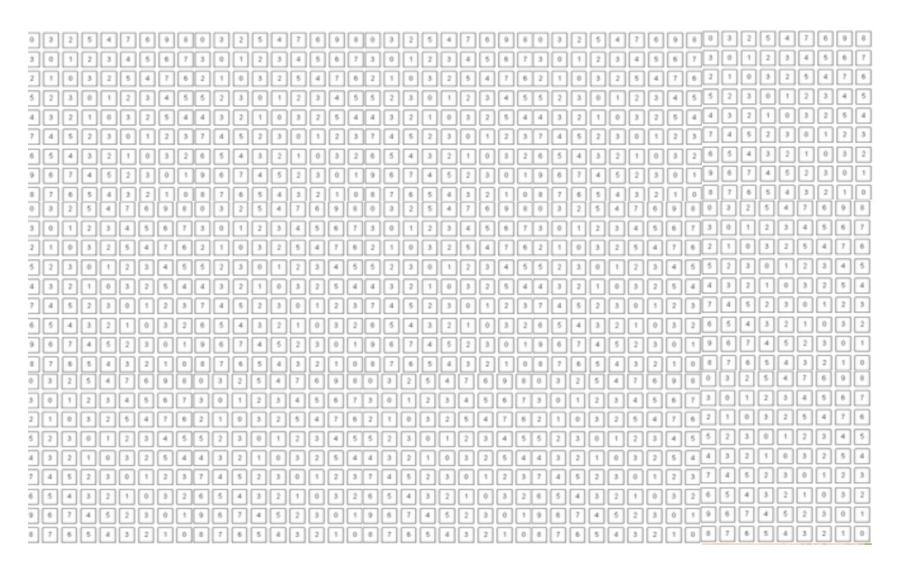
Channels are usually RGB: Red, Green, and Blue

Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

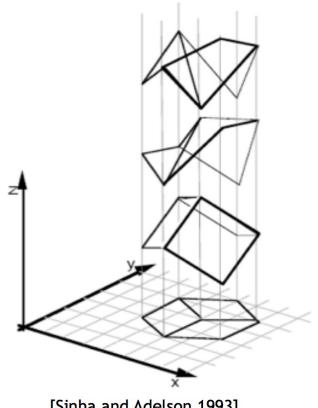
Why is it hard?



This is just as hard for computers



Ambiguities due to viewpoints



[Sinha and Adelson 1993]

Ambiguities due to viewpoints

Issues with Illumination

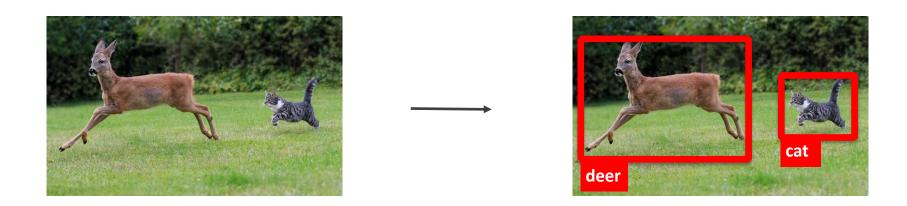
slide credit: S. Ullman

Background clutter

Intra-class variation

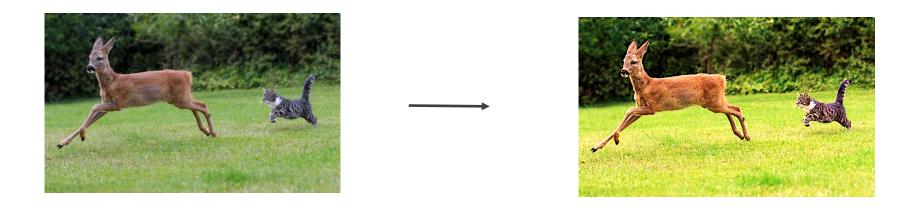
Computer Vision vs Image Processing

Computer Vision: Image — Knowledge

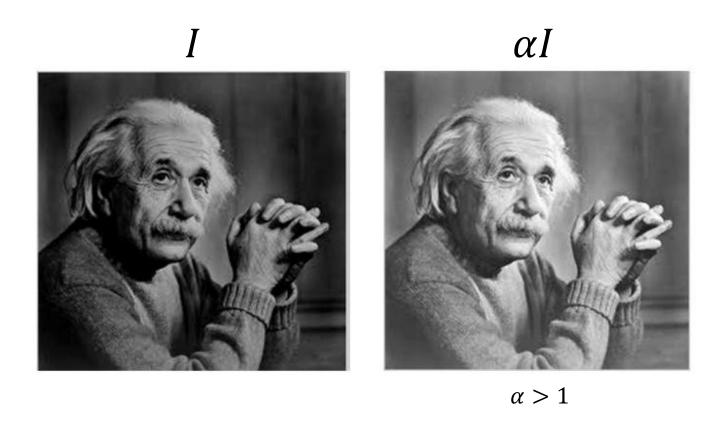


Computer Vision vs Image Processing

• Image Processing: Image — Image



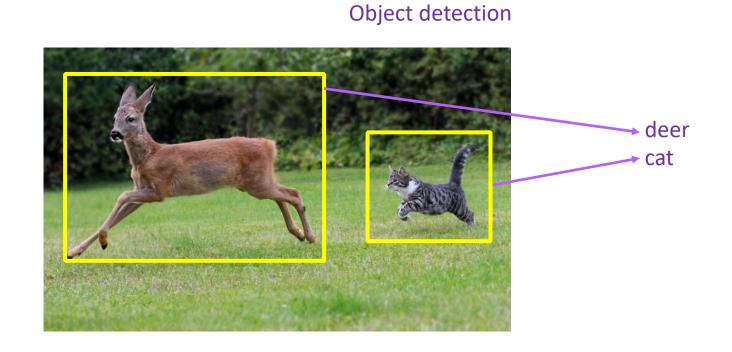
Basic Image Processing



Primer on Image Processing: https://bit.ly/3lGEdwv

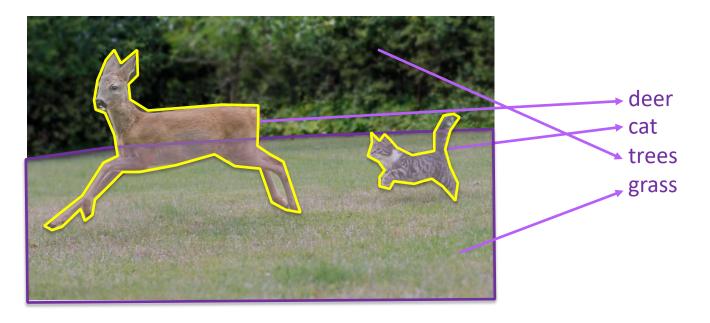
Common tasks in Computer Vision

Common tasks in Computer Vision

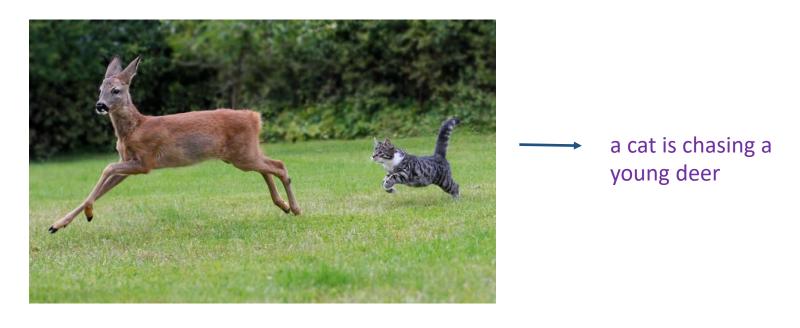


Common tasks in Computer Vision

Semantic segmentation

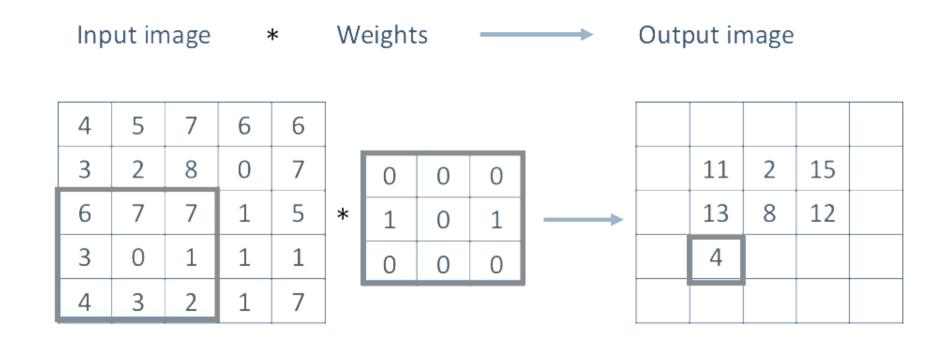


This class -> Vision and Language Tasks!



Most important operation for Computer Vision (*)

The Convolution Operation

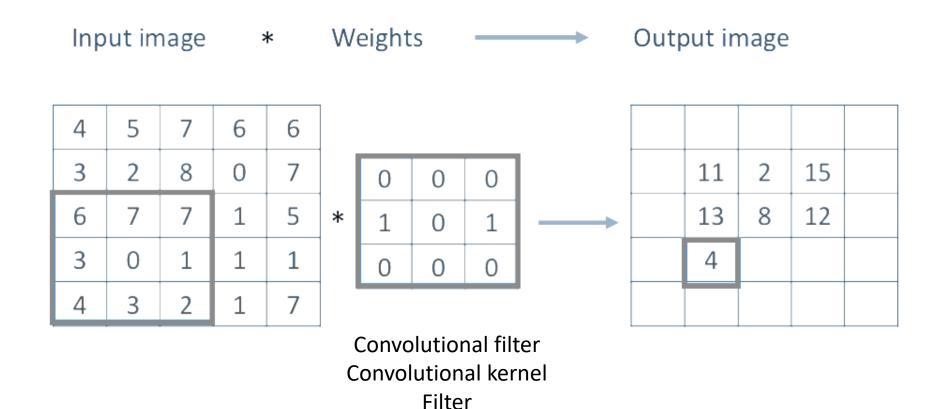


http://www.cs.virginia.edu/~vicente/recognition/animation.gif

(*) Maybe

Most important operation for Computer Vision (*)

The Convolution Operation

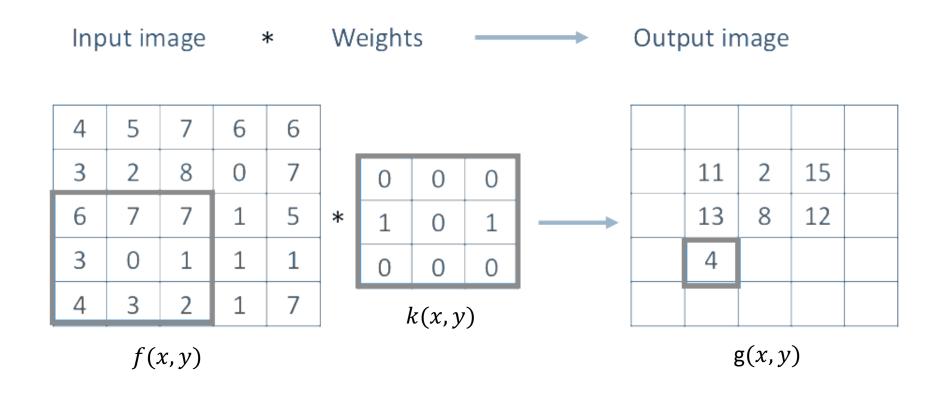


Kernel

(*) Maybe

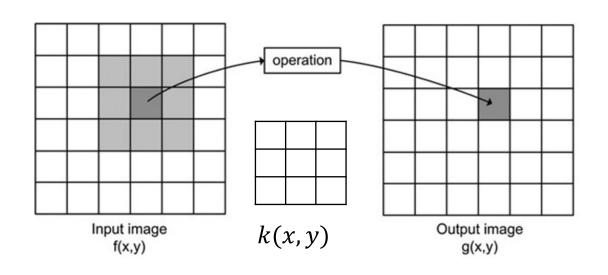
Most important operation for Computer Vision (*)

The Convolution Operation



$$g(x,y) = \sum_{v} \sum_{u} k(u,v) f(x - u, y - v)$$

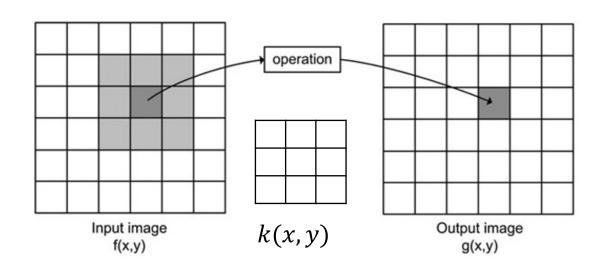
Image filtering: Convolution operator e.g. mean filter



$$k(x,y) =$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Image filtering: Convolution operator e.g. mean filter



$$k(x,y) =$$

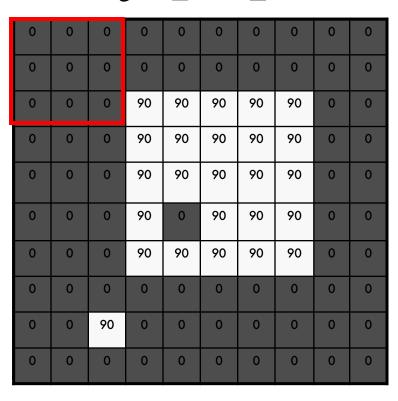
1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

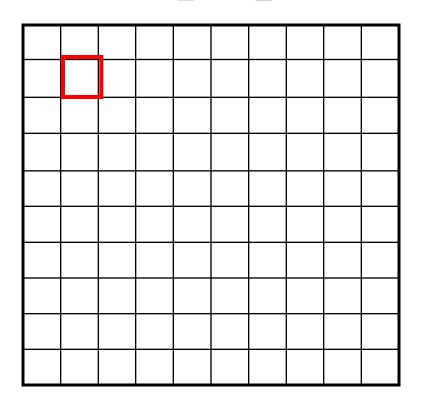
Example: box filter

$$g[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

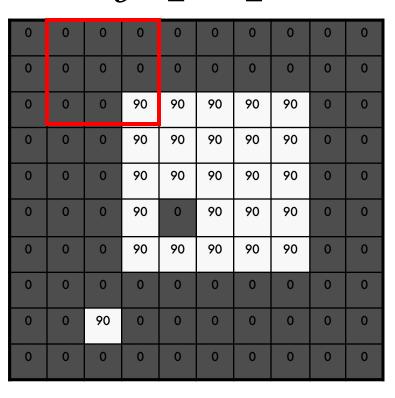
$$g[\cdot,\cdot]^{\frac{1}{9}}$$

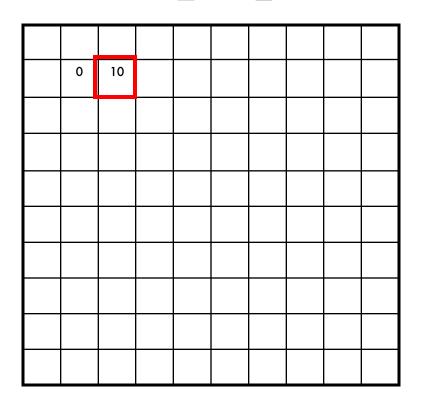




$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

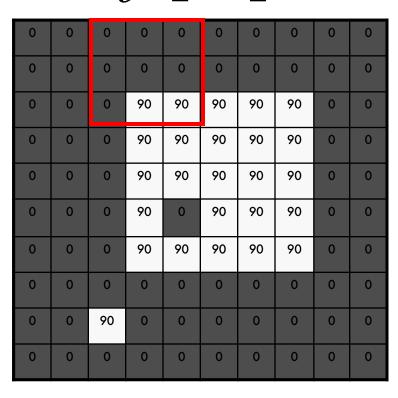
$$g[\cdot,\cdot]^{\frac{1}{9}}$$

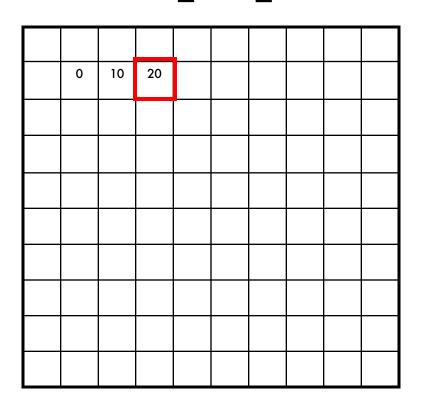




$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

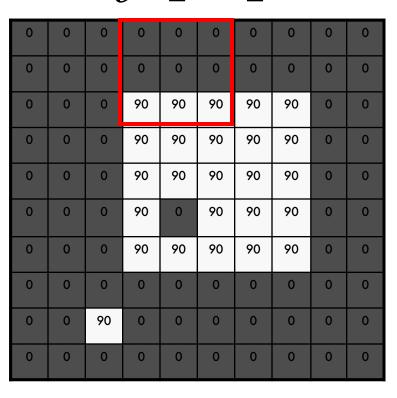
$$g[\cdot,\cdot]^{\frac{1}{9}}$$

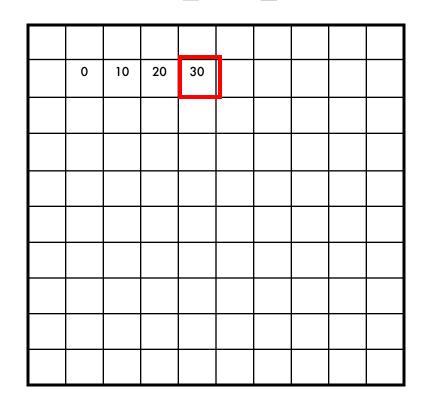




$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

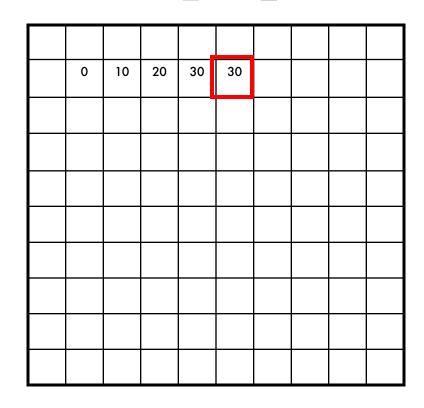




$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

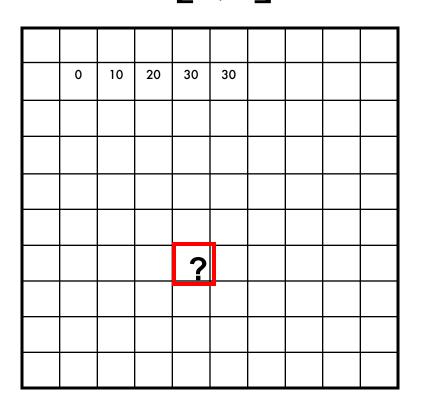
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

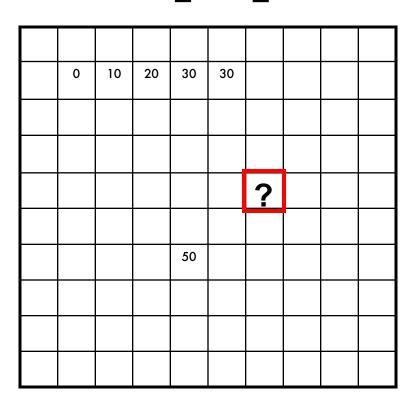


$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

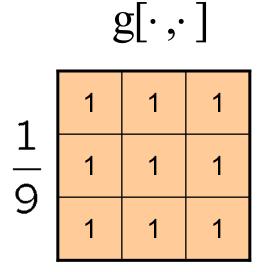


Image filtering: e.g. Mean Filter

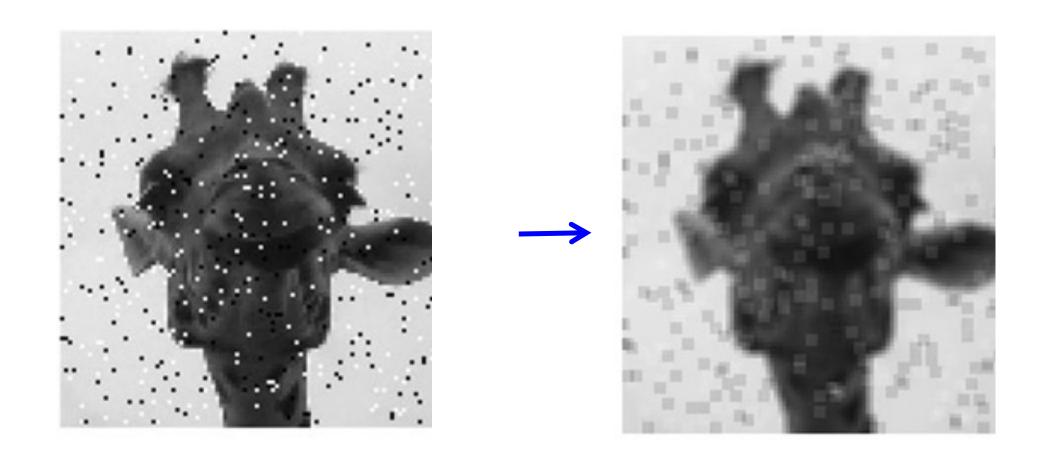
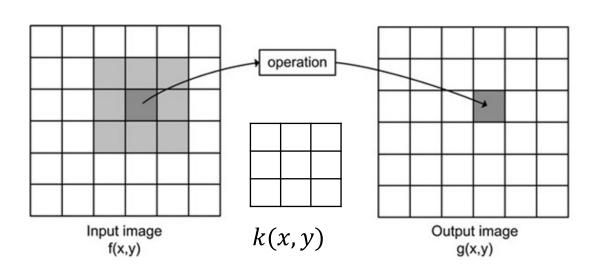
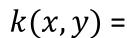
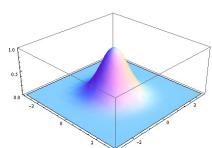


Image filtering: Convolution operator Important filter: gaussian filter (gaussian blur)



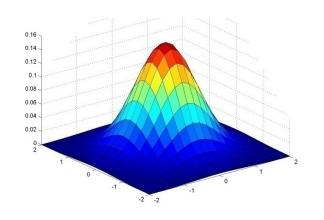


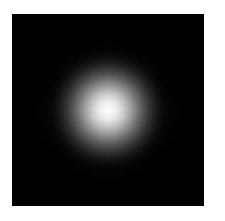


1/16	1/8	1/16
1/8	1/4	1/8
1/16	1/8	1/16

Important filter: Gaussian

• Weight contributions of neighboring pixels by nearness





0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)^2}{2\sigma^2}}$$

Image filtering: Convolution operator e.g. gaussian filter (gaussian blur)

Practical matters

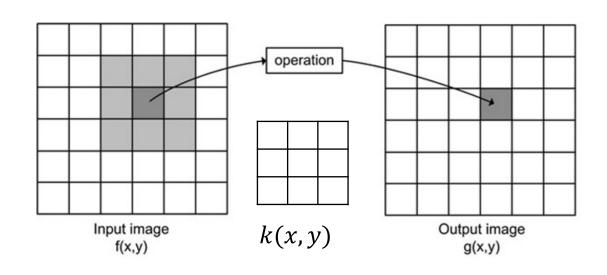
- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

Source: S. Marschner

Convolution: Useful Operator for Image Processing

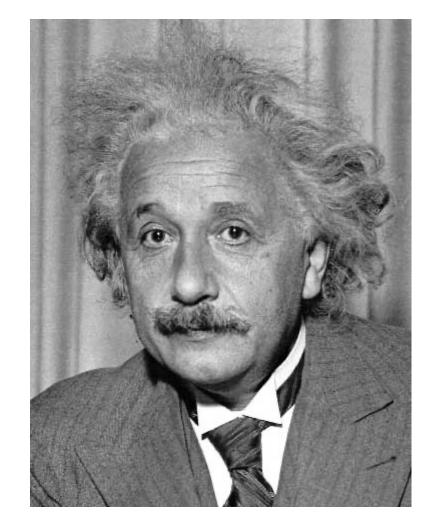
- Not all image filtering region neighborhood operators can be expressed as convolutions.
- They also can be used to extract information about edges and shapes
 .e.g. for image recognition
- Convolutional operations are at the basis of convolutional neural networks.

Image filtering: Convolution operator Important Filter: Sobel operator



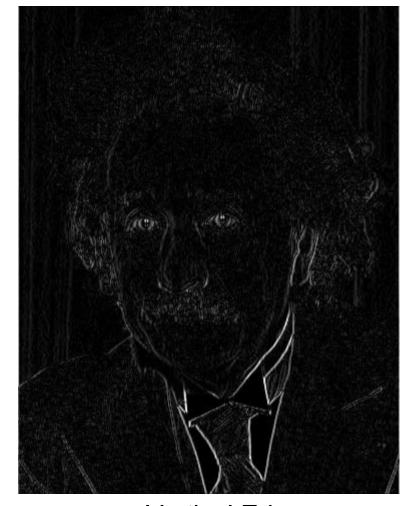
$$k(x,y) = \begin{array}{c|cccc} & 1 & 0 & -1 \\ & 2 & 0 & -2 \\ & 1 & 0 & -1 \end{array}$$

Other filters



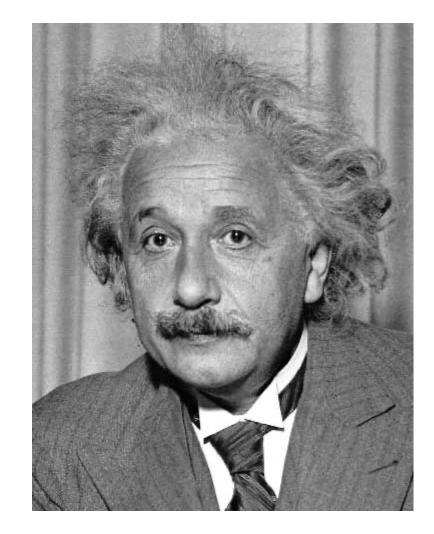
1	0	-1
2	0	-2
1	0	-1

Sobel



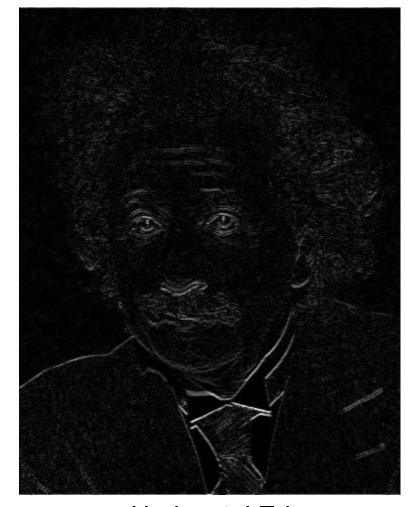
Vertical Edge (absolute value)

Other filters



1	2	1
0	0	0
-1	-2	-1

Sobel



Horizontal Edge (absolute value)

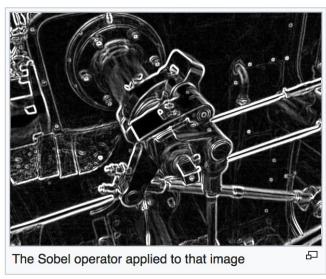
Sobel operators are equivalent to 2D partial derivatives of the image

- Vertical sobel operator Partial derivative in X (width)
- Horizontal sobel operator Partial derivative in Y (height)

Can compute magnitude and phase at each location.

Useful for detecting edges

https://en.wikipedia.org/wiki/Sobel_operator



Sobel filters are (approximate) partial derivatives of the image

Let f(x,y) be your input image, then the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

Also:
$$\frac{\partial f(x,y)}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x-h,y)}{2h}$$

But digital images are not continuous, they are discrete

Let f[x, y] be your input image, then the partial derivative is:

$$\Delta_{x} f[x, y] = f[x + 1, y] - f[x, y]$$

Also:
$$\Delta_x f[x, y] = f[x + 1, y] - f[x - 1, y]$$

But digital images are not continuous, they are discrete

Let f[x, y] be your input image, then the partial derivative is:

Also:
$$\Delta_x f[x, y] = f[x + 1, y] - f[x - 1, y]$$
 $k(x, y) = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$

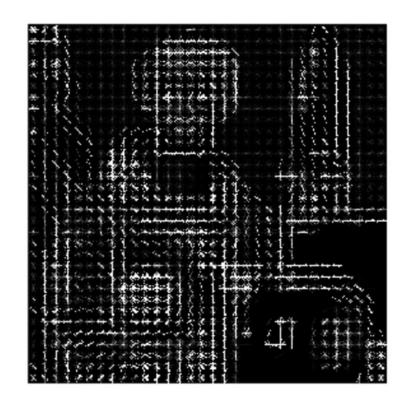
Sobel Operators Smooth in Y and then Differentiate in X

Similarly to differentiate in Y

Image Features: HoG

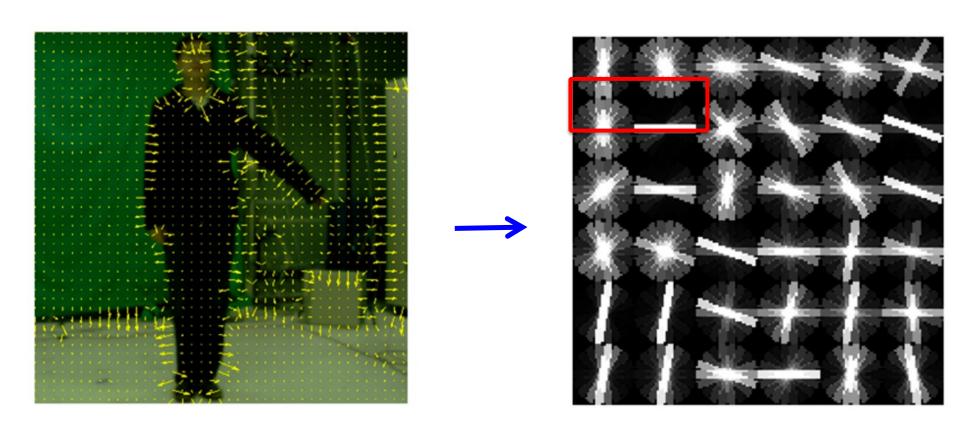
Input image

Histogram of Oriented Gradients



Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.

Image Features: HoG



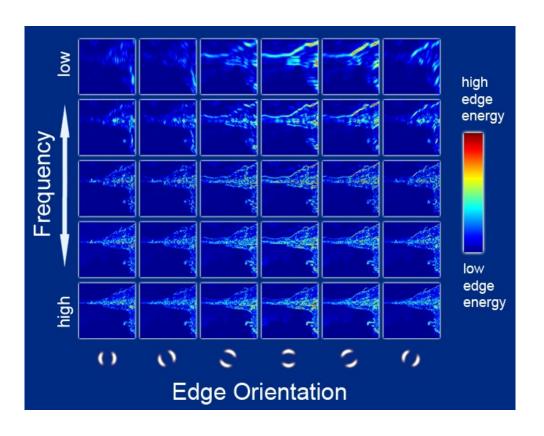
+ Block Normalization

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people. Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.

Image Features: GIST

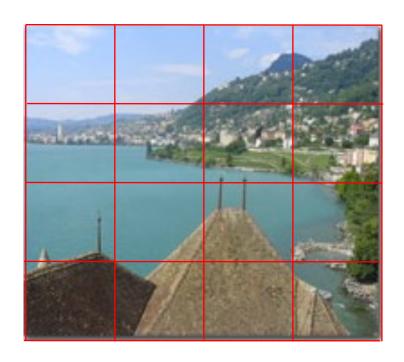
The "gist" of a scene: Oliva & Torralba, 2001

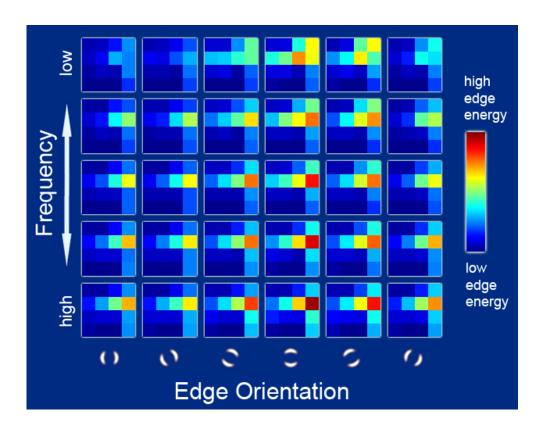
Image Features: GIST



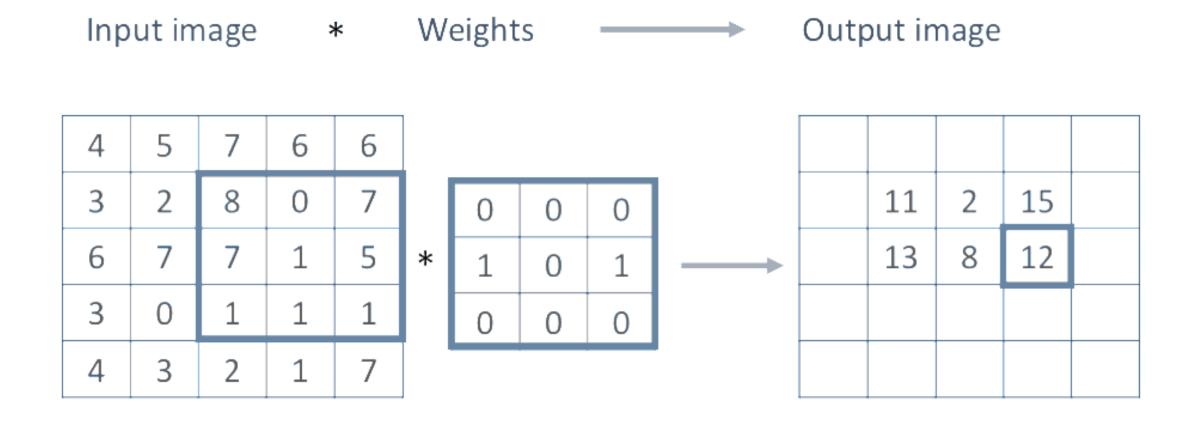
Oriented edge response at multiple scales (5 spatial scales, 6 edge orientations)

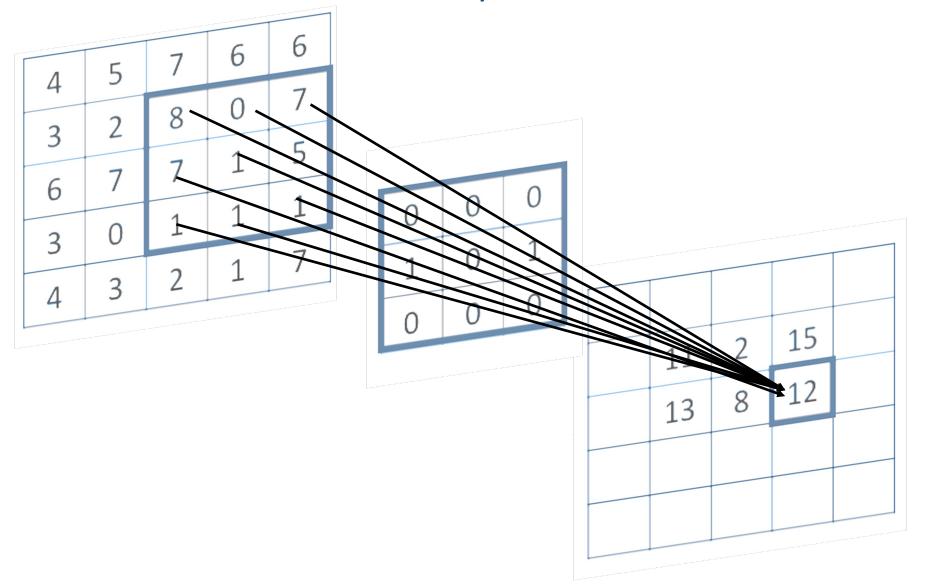
Image Features: GIST

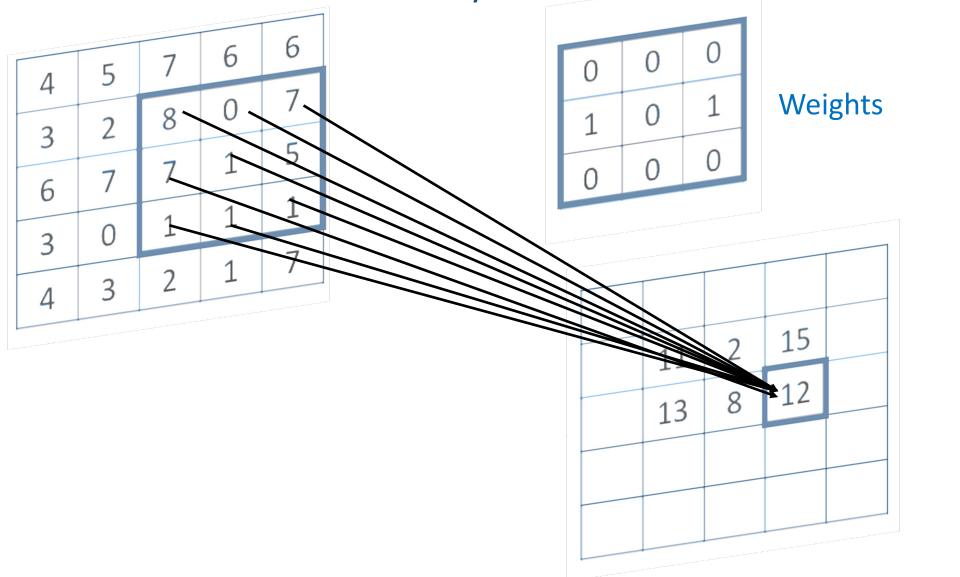


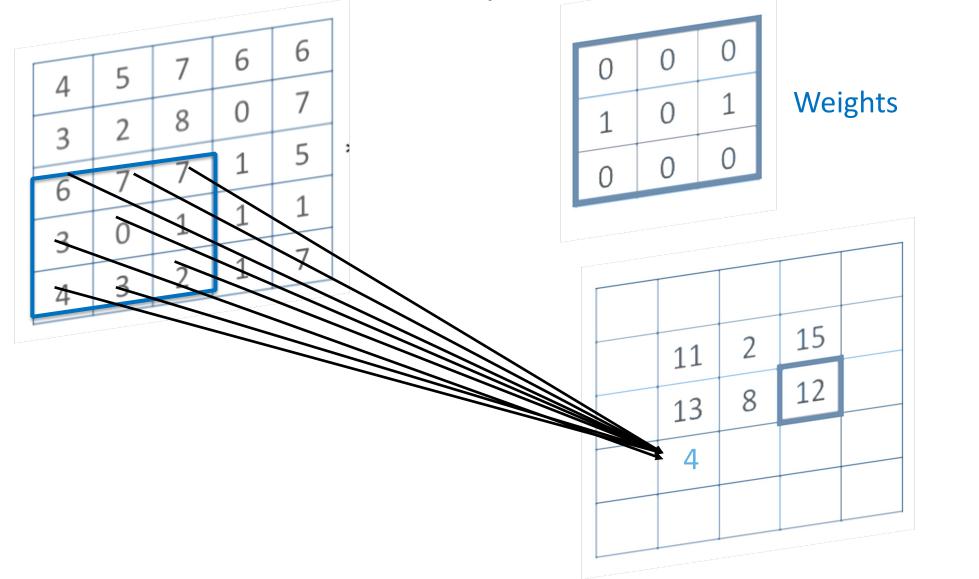


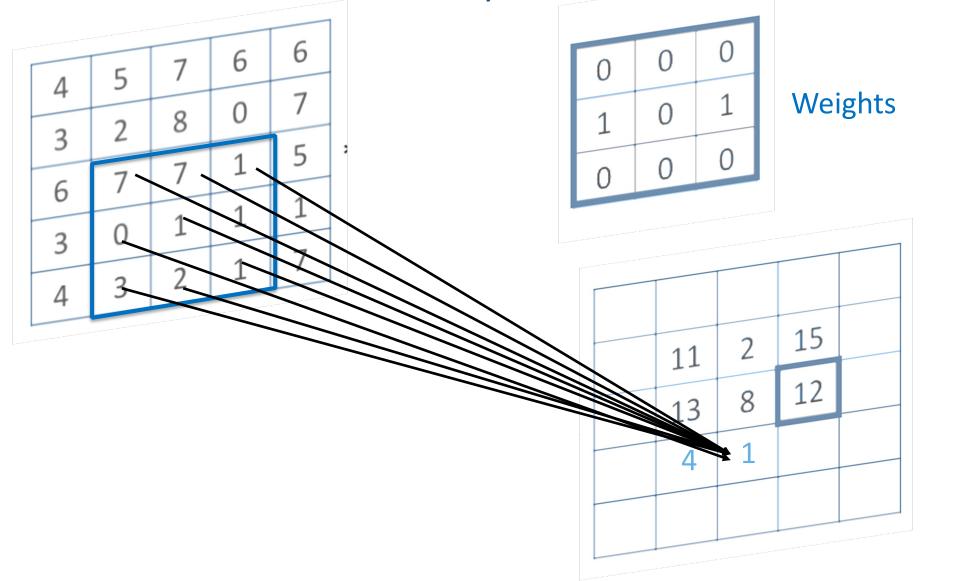
Aggregated edge responses over 4x4 windows



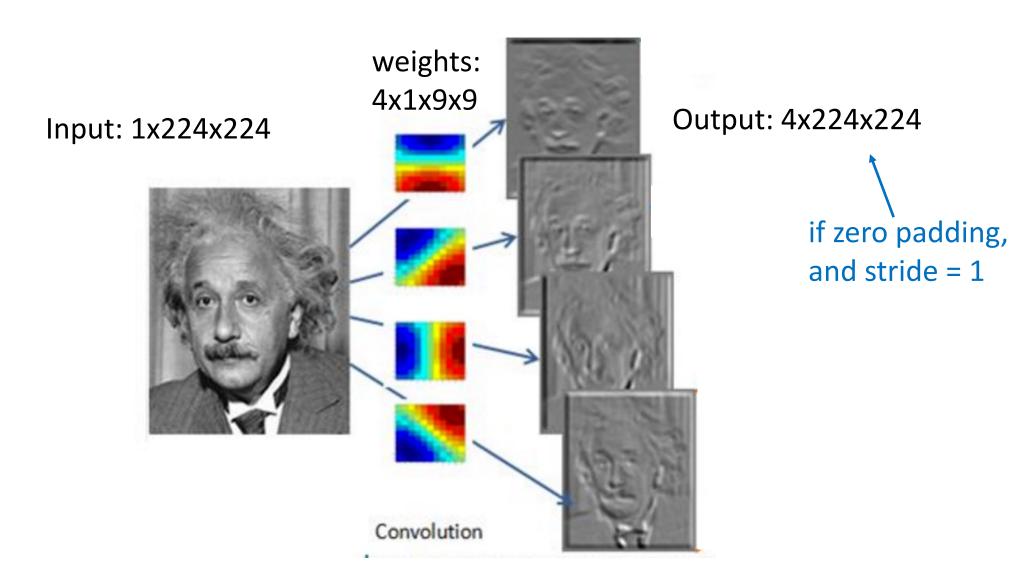




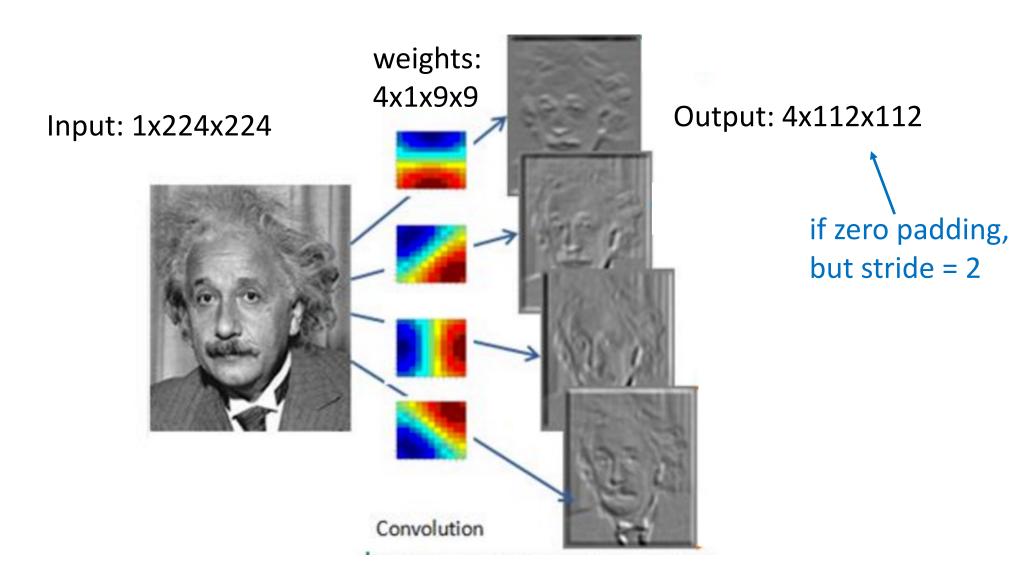




Convolutional Layer (with 4 filters)

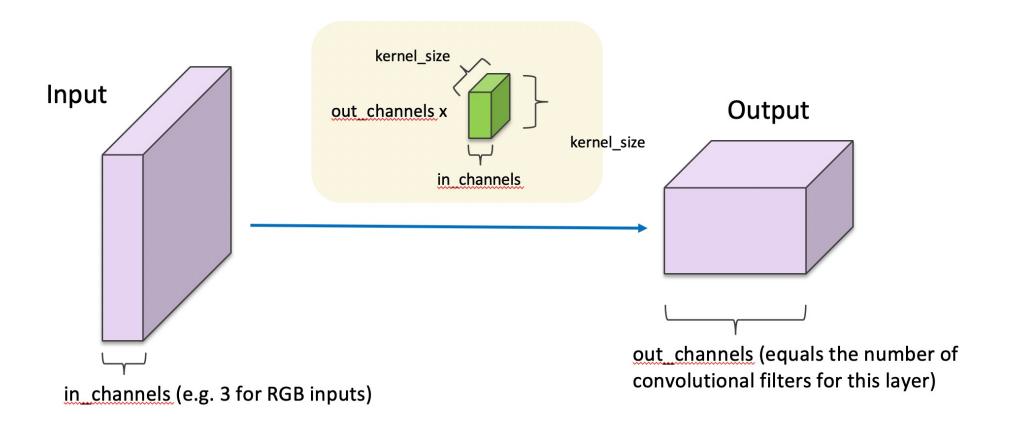


Convolutional Layer (with 4 filters)

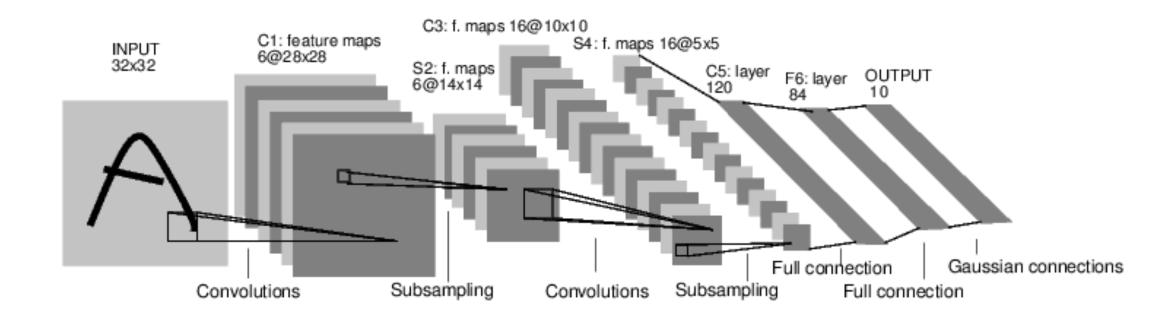


Convolutional Layer in pytorch

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) [source]



Convolutional Network: LeNet



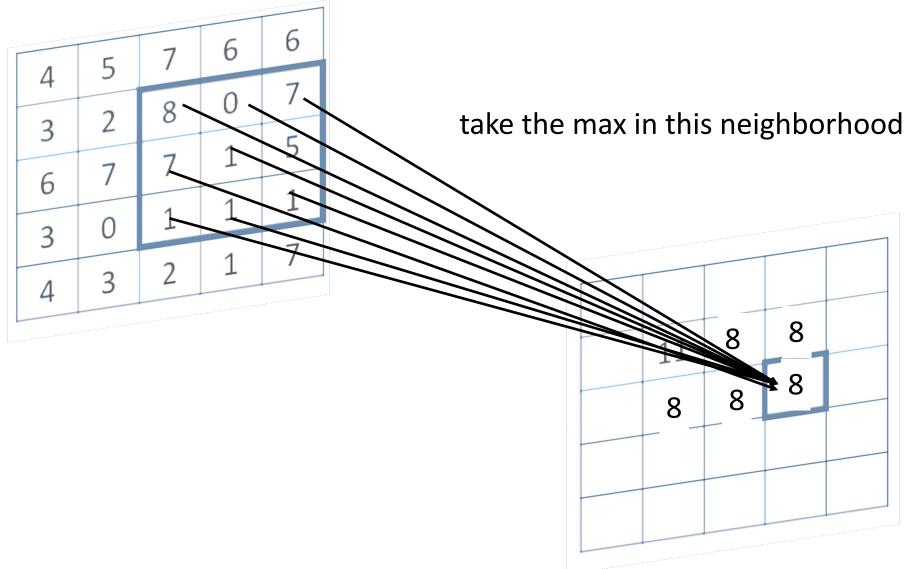
Proceedings of the IEEE 86 (11), 2278-2324

TITLE	CITED BY	YEAR
Gradient-based learning applied to document recognition Y LeCun, L Bottou, Y Bengio, P Haffner	61889	1998

LeNet in Pytorch

```
# LeNet is French for The Network, and is taken from Yann Lecun's 98 paper
# on digit classification http://yann.lecun.com/exdb/lenet/
# This was also a network with just two convolutional layers.
class LeNet(nn.Module):
   def init (self):
        super(LeNet, self). init ()
        # Convolutional layers.
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.conv2 = nn.Conv2d(6, 16, 5)
       # Linear layers.
        self.fc1 = nn.Linear(16*5*5, 120)
       self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
   def forward(self, x):
       out = F.relu(self.conv1(x))
       out = F.max pool2d(out, 2)
       out = F.relu(self.conv2(out))
       out = F.max pool2d(out, 2)
        # This flattens the output of the previous layer into a vector.
       out = out.view(out.size(0), -1)
       out = F.relu(self.fcl(out))
       out = F.relu(self.fc2(out))
       out = self.fc3(out)
        return out
```

SpatialMaxPooling Layer



LeNet Summary

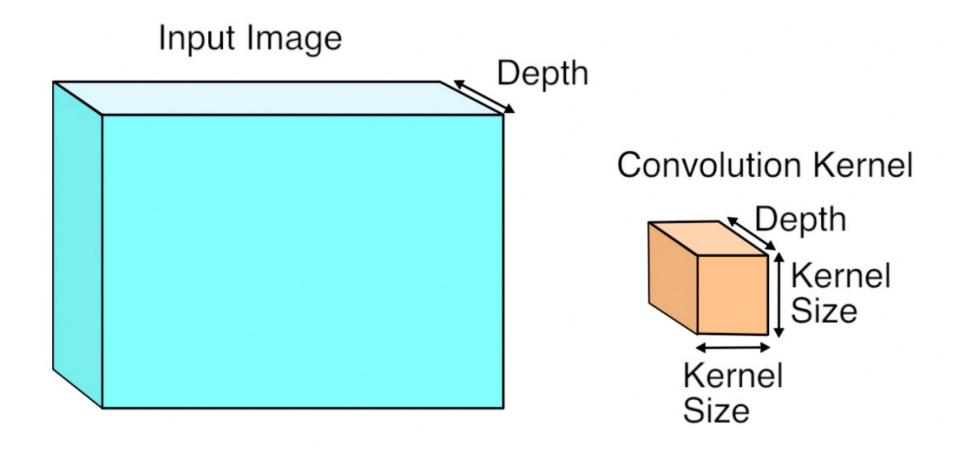
• 2 Convolutional Layers + 3 Linear Layers

- + Non-linear functions: ReLUs or Sigmoids
 - + Max-pooling operations

New Architectures Proposed

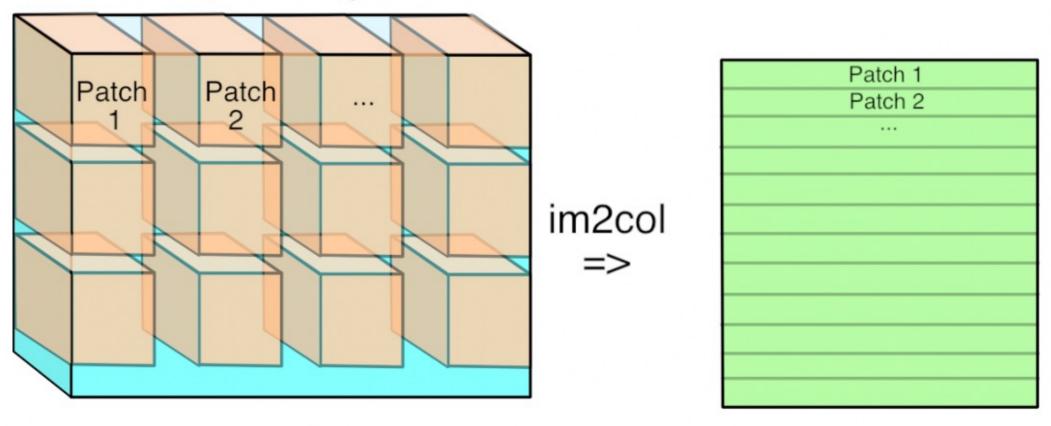
- Alexnet (Kriszhevsky et al NIPS 2012) [Required Reading]
- VGG (Simonyan and Zisserman 2014)
- GoogLeNet (Szegedy et al CVPR 2015)
- ResNet (He et al CVPR 2016)
- DenseNet (Huang et al CVPR 2017)

Convolutional Layers as Matrix Multiplication

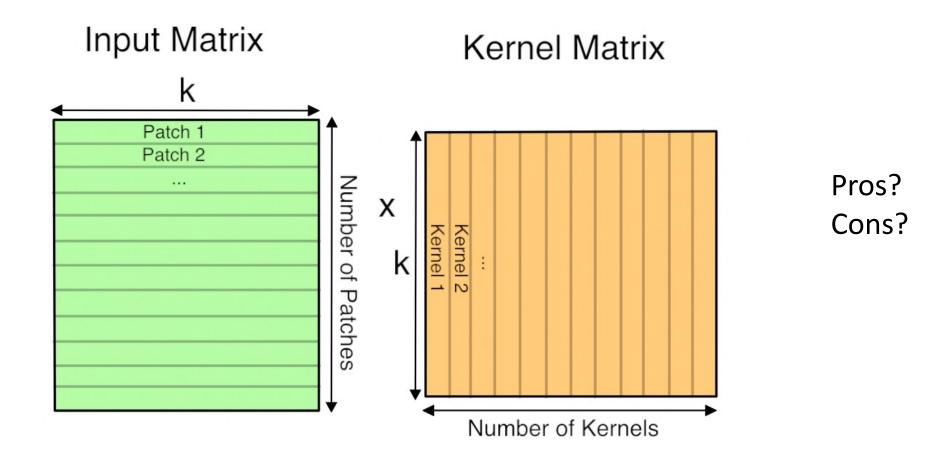


Convolutional Layers as Matrix Multiplication

Input Image



Convolutional Layers as Matrix Multiplication



CNN Computations are Computationally Expensive

- However highly parallelizable
- GPU Computing is used in practice
- CPU Computing in fact is prohibitive for training these models

The Alexnet network (Krizhevsky et al NIPS 2012)

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky

University of Toronto kriz@cs.utoronto.ca

University of Toronto

ilya@cs.utoronto.ca

Geoffrey E. Hinton

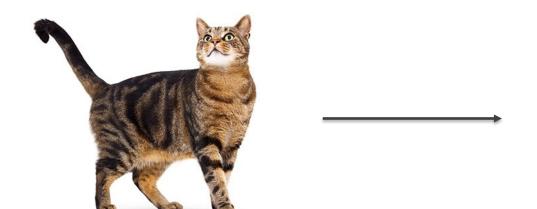
University of Toronto

hinton@cs.utoronto.ca

The Problem: Classification

Classify an image into 1000 possible classes:

e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee, red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.



cat, tabby cat (0.71) Egyptian cat (0.22) red fox (0.11)

• • • • •

The Data: ILSVRC

Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations, evaluation is performed centrally by the organizers (max 2 per week)

The Evaluation Metric: Top K-error

True label: Abyssinian cat

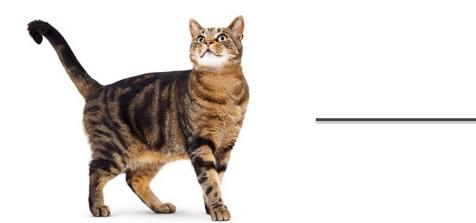
Top-1 error: 1.0 Top-1 accuracy: 0.0

Top-2 error: 1.0 Top-2 accuracy: 0.0

Top-3 error: 1.0 Top-3 accuracy: 0.0

Top-4 error: 0.0 Top-4 accuracy: 1.0

Top-5 error: 0.0 Top-5 accuracy: 1.0



cat, tabby cat (0.61)

Egyptian cat (0.22)

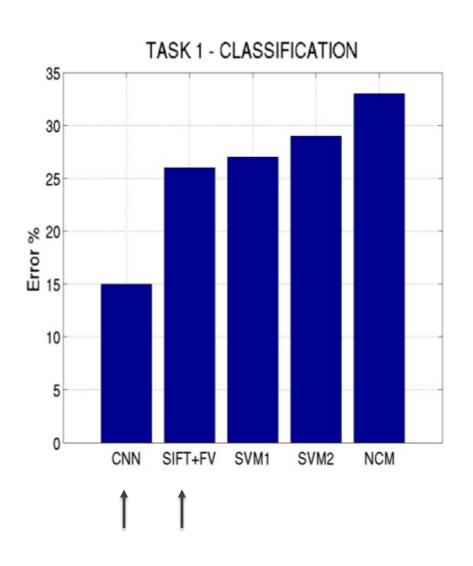
red fox (0.11)

Abyssinian cat (0.10)

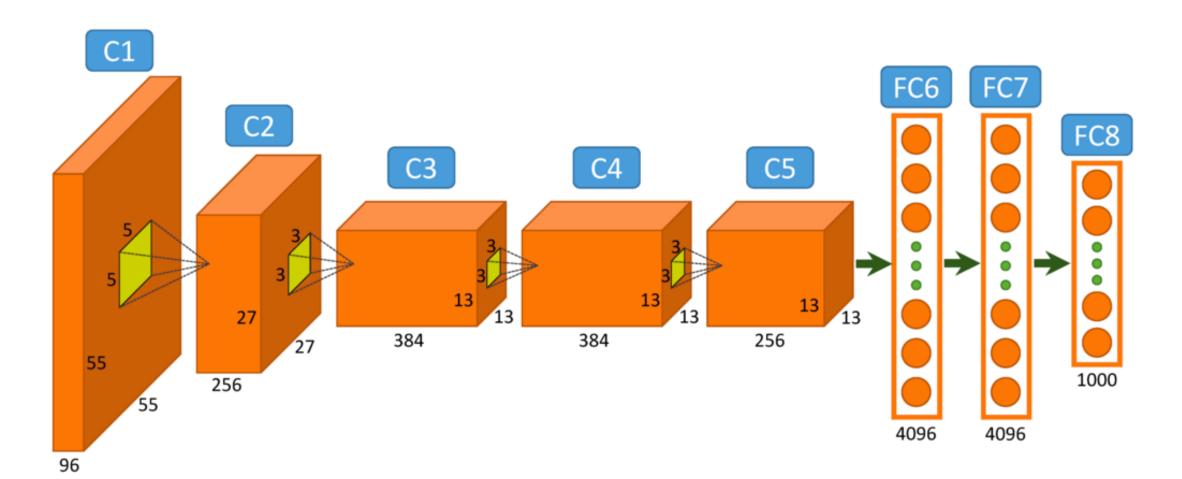
French terrier (0.03)

••••

Top-5 error on this competition (2012)



Alexnet

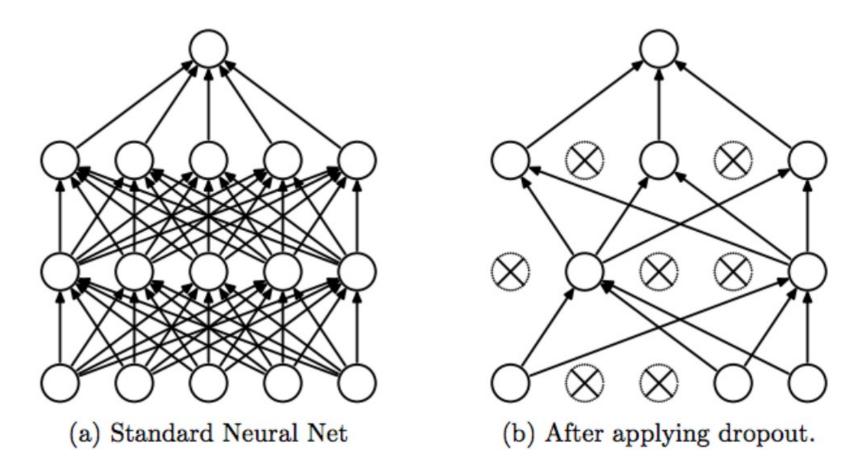


Pytorch Code for Alexnet

In-class analysis

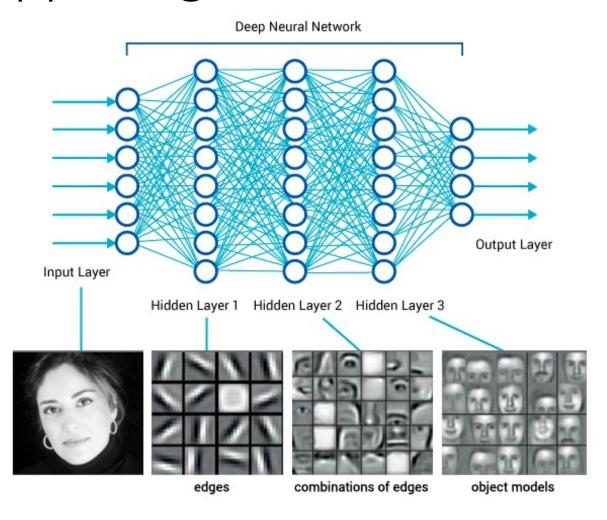
https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Dropout Layer

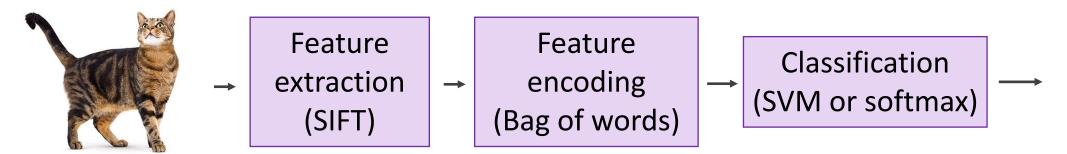


Srivastava et al 2014

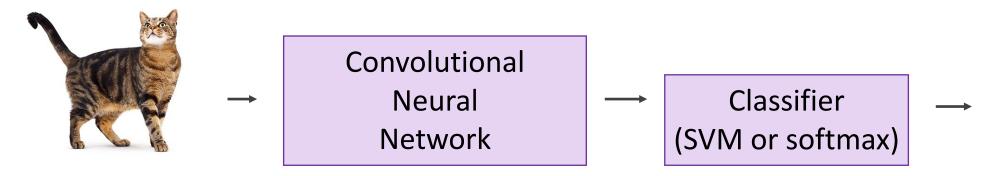
What is happening?



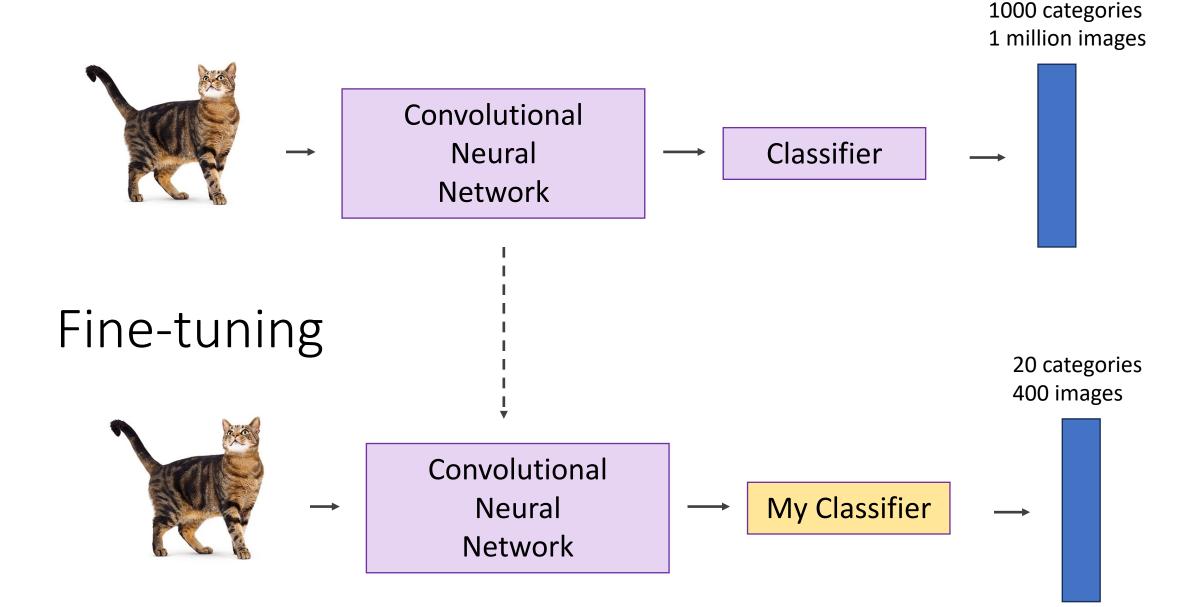
SIFT + FV + SVM (or softmax)

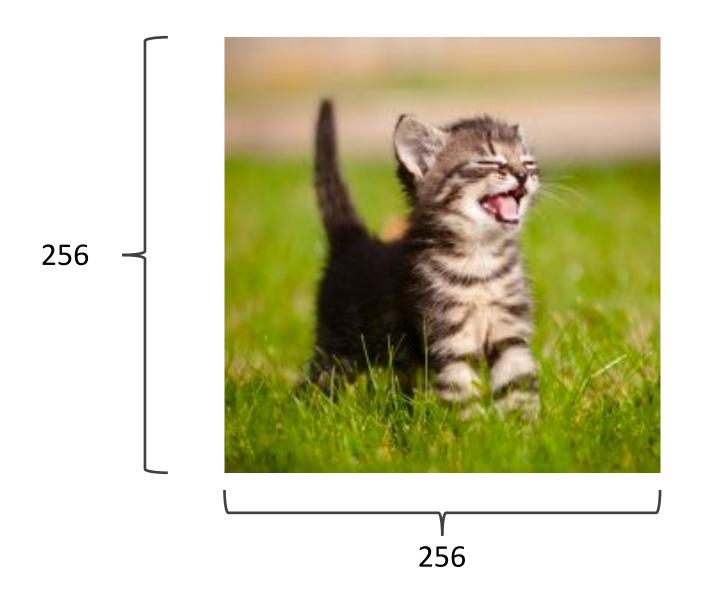


Deep Learning

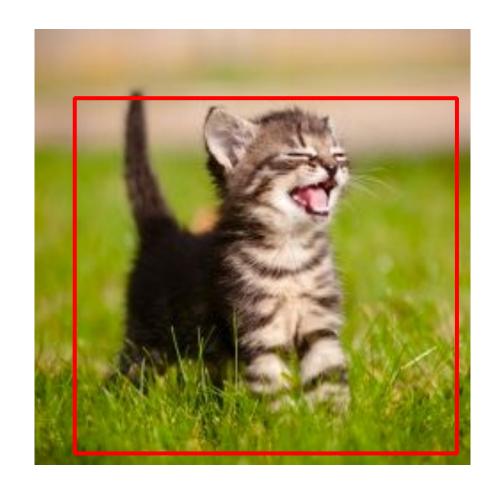


Pre-training





224x224



224x224

True label: Abyssinian cat

Other Important Aspects

- Using ReLUs instead of Sigmoid or Tanh
- Momentum + Weight Decay
- Dropout (Randomly sets Unit outputs to zero during training)
- GPU Computation!

Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Questions?