
Deep Learning for Vision & 
Language

Stochastic Gradient Descent / Generalization / Overfitting / Underfitting
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Linear Regression

ො𝑦 = 𝑊𝑇𝑥

ො𝑦 = ෍

𝑖

𝑤𝑖𝑥𝑖

𝐷 = {(𝑥 𝑑 , 𝑦 𝑑 )}

𝑊∗ = argmin 𝐿(𝑊)

𝐿 𝑊 = ෍

𝑑=1

|𝐷|

𝑙( ො𝑦(𝑑), 𝑦(𝑑))

Prediction,
Inference,
Testing

Training,
Learning,
Parameter 
estimation
Objective 
minimization



Linear Regression
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Linear Regression – Least Squares

ො𝑦 = 𝑊𝑇𝑥

ො𝑦𝑗 = ෍
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Linear Regression – Least Squares

𝐿 𝑊 = ෍
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Linear Regression – Least Squares

𝑊∗ = argmin 𝐿(𝑊)

𝐿 𝑊 = ෍

𝑑=1

|𝐷|
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How to find the minimum of a function L(W)?

𝐿 𝑤

𝑤

𝜕𝐿 𝑤

𝜕𝑤
= 0



Linear Regression – Least Squares

𝜕𝐿(𝑊)

𝜕𝑤𝑗𝑖
=

𝜕

𝜕𝑤𝑗𝑖
(σ𝑑=1

|𝐷| σ𝑗 σ𝑖 𝑤𝑗𝑖𝑥𝑖
(𝑑)

− 𝑦 𝑑
2

)

𝜕𝐿(𝑊)

𝜕𝑤𝑗𝑖
= 0

𝑊 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌

…



ML Classifier / Regression models
• K-nearest neighbors

• Linear classifier / Linear regression

• Naïve Bayes classifiers

• Decision Trees

• Random Forests

• Boosted Decision Trees

• Neural Networks

11



𝑎1

𝑎2

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

Neural Network with One Layer

𝑥5

𝑎𝑗 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(σ𝑖 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗)

𝑊 = [𝑤𝑗𝑖]

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑧 =
1

1 + 𝑒−𝑧



Neural Network with One Layer

𝐿 𝑊, 𝑏 = ෍

𝑑=1

|𝐷|

𝑎 𝑑 − 𝑦 𝑑 2

𝑎𝑗
(𝑑)

= 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(෍

𝑖

𝑤𝑗𝑖𝑥𝑖
𝑑 + 𝑏𝑗)

𝐿 𝑊, 𝑏 = ෍

𝑗,𝑑

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(෍

𝑖

𝑤𝑗𝑖𝑥𝑖
𝑑 + 𝑏𝑗) − 𝑦𝑗

𝑑

2

Bias parameters



Neural Network with One Layer

𝐿 𝑊, 𝑏 = ෍

𝑗,𝑑

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(෍

𝑖

𝑤𝑗𝑖𝑥𝑖
𝑑 + 𝑏𝑗) − 𝑦𝑗

𝑑

2

𝜕𝐿

𝜕𝑤𝑢𝑣
= 0

(1) We can compute this derivative but often there will be no
 closed-form solution for W when dL/dw = 0 

(2) Also, even for linear regression where the solution was 𝑊 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌, computing this 
expression might be expensive or infeasible. e. g. think of computing (𝑋𝑇𝑋)−1 for a very large 
dataset with a million 𝑥𝑖
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Gradient Descent

𝐿 𝑤

𝑤

1. Start with a random value 
     of w (e.g. w = 12)

w=12

2. Compute the gradient 
    (derivative) of L(w) at point
     w = 12. (e.g. dL/dw = 6)

3. Recompute w as:

w = w – lambda * (dL / dw)
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Gradient Descent

𝐿 𝑤

𝑤
w=10

2. Compute the gradient 
    (derivative) of L(w) at point
     w = 10. (e.g. dL/dw = 6)

3. Recompute w as:

w = w – lambda * (dL / dw)
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Gradient Descent

𝐿 𝑤

𝑤
w=8

2. Compute the gradient 
    (derivative) of L(w) at point
     w = 12. (e.g. dL/dw = 6)

3. Recompute w as:

w = w – lambda * (dL / dw)



Gradient Descent

𝐿(𝑤, 𝑏) = ෍

𝑖=1

𝑛

𝑙(𝑤, 𝑏)

𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝐿(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

expensive



Stochastic Gradient Descent (mini-batch) 

𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝐿𝐵(𝑤, 𝑏)/𝑑𝑤 𝑑𝐿𝐵(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝐿𝐵(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

𝐿𝐵(𝑤, 𝑏) = ෍

𝑖=1

𝐵

𝑙(𝑤, 𝑏)

for b = 0, num_batches do

end



In this class we will mostly rely on…
• K-nearest neighbors

• Linear classifiers

• Naïve Bayes classifiers

• Decision Trees

• Random Forests

• Boosted Decision Trees

• Neural Networks

20



Why?
• Decisions Trees

21

https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906


Why?
• Decisions Trees 

are great because 
they are often 
interpretable.

• However, they 
usually deal 
better with 
categorical data – 
not input pixel 
data.
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https://heartbeat.fritz.ai/understanding-the-mathematics-
behind-decision-trees-22d86d55906 by Nikita Sharma

https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906
https://heartbeat.fritz.ai/understanding-the-mathematics-behind-decision-trees-22d86d55906


Regression vs Classification

Regression
• Labels are continuous 

variables – e.g. distance.
• Losses: Distance-based losses, 

e.g. sum of distances to true 
values.

• Evaluation: Mean distances, 
correlation coefficients, etc.

 

Classification
• Labels are discrete variables (1 

out of K categories)
• Losses: Cross-entropy loss, 

margin losses, logistic regression 
(binary cross entropy)

• Evaluation: Classification 
accuracy, etc.

 



24

Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.
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Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦𝑛 = [ ]

𝑦3 = [ ]

𝑦2 = [ ]

𝑦1 = [ ]𝑥1 = [ ]

𝑥2 = [ ]

𝑥3 = [ ]

𝑥𝑛 = [ ]

.

.

.
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Supervised Learning - Classification
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

ෝ𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the 
following quantity small: 

෍

𝑖=1

𝑛

𝐶𝑜𝑠𝑡( ෝ𝑦𝑖 , 𝑦𝑖)

inputs

targets /
labels /
ground truth

1

2

2

1ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions



Stochastic Gradient Descent

• How to choose the right batch size B?

• How to choose the right learning rate lambda?

• How to choose the right loss function, e.g. is least squares good 
enough?

• How to choose the right function/classifier, e.g. linear, quadratic, 
neural network with 1 layer, 2 layers, etc?



Linear Regression
Example: Hollywood movie data
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Training, Validation (Dev), Test Sets

Training Set
Validation 

Set
Testing Set



Training, Validation (Dev), Test Sets

Used during development

Training Set
Validation 

Set
Testing Set



Training, Validation (Dev), Test Sets

Only to be used for evaluating the model at the very end of development and any 
changes to the model after running it on the test set, could be influenced by what you 
saw happened on the test set, which would invalidate any future evaluation.

Training Set
Validation 

Set
Testing Set



How to pick the right model?

32



Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)

(𝑥5, 𝑦5)

(𝑥6, 𝑦6) (𝑥7, 𝑦7)

(𝑥8, 𝑦8)



Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)

(𝑥5, 𝑦5)

(𝑥6, 𝑦6) (𝑥7, 𝑦7)

(𝑥8, 𝑦8)

Model: ො𝑦 = 𝑤𝑥 + 𝑏



Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)

(𝑥5, 𝑦5)

(𝑥6, 𝑦6) (𝑥7, 𝑦7)

(𝑥8, 𝑦8)

Model: ො𝑦 = 𝑤𝑥 + 𝑏



Linear Regression – 1 output, 1 input

𝑦

𝑥
(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)

(𝑥5, 𝑦5)

(𝑥6, 𝑦6) (𝑥7, 𝑦7)

(𝑥8, 𝑦8)

Model: ො𝑦 = 𝑤𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑖=8

ො𝑦𝑖 − 𝑦𝑖
2



Quadratic Regression 

𝑦

𝑥
(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)

(𝑥5, 𝑦5)

(𝑥6, 𝑦6) (𝑥7, 𝑦7)

(𝑥8, 𝑦8)

Model: ො𝑦 = 𝑤1𝑥2 + 𝑤2𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑖=8

ො𝑦𝑖 − 𝑦𝑖
2



n-polynomial Regression 

𝑦

𝑥
(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥3, 𝑦3)

(𝑥4, 𝑦4)

(𝑥5, 𝑦5)

(𝑥6, 𝑦6) (𝑥7, 𝑦7)

(𝑥8, 𝑦8)

Model: ො𝑦 = 𝑤𝑛𝑥𝑛 + ⋯ + 𝑤1𝑥 + 𝑏 Loss: 𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑖=8

ො𝑦𝑖 − 𝑦𝑖
2



Overfitting 

𝐿𝑜𝑠𝑠 𝑤  is high 𝐿𝑜𝑠𝑠 𝑤  is low 𝐿𝑜𝑠𝑠 𝑤  is zero!

OverfittingUnderfitting

𝑓 is linear 𝑓 is cubic
𝑓 is a polynomial of 

degree 9

Christopher M. Bishop – Pattern Recognition and Machine Learning
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Questions?
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