
Deep Learning for Vision & 
Language

SGD and Regularization, Softmax, MLPs



Overfitting 

𝐿𝑜𝑠𝑠 𝑤  is high 𝐿𝑜𝑠𝑠 𝑤  is low 𝐿𝑜𝑠𝑠 𝑤  is zero!

OverfittingUnderfitting

𝑓 is linear 𝑓 is cubic
𝑓 is a polynomial of 

degree 9

Christopher M. Bishop – Pattern Recognition and Machine Learning
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(mini-batch) Stochastic Gradient Descent (SGD)

𝑙(𝑤, 𝑏) = ෍

𝑖∈𝐵

𝐶𝑜𝑠𝑡 𝑤, 𝑏
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

end

for b = 0, num_batches do



Regularization

• Large weights lead to large variance. i.e. model fits to the training 
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values 
small by doing the following: 

minimize 𝐿 𝑤, 𝑏 + 𝛼 ෍

𝑖

|𝑤𝑖|2



Regularization

• Large weights lead to large variance. i.e. model fits to the training 
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values 
small by doing the following: 

minimize 𝐿 𝑤, 𝑏 + 𝛼 ෍

𝑖

|𝑤𝑖|2
Regularizer term 
e.g. L2- regularizer
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SGD with Regularization (L-2)

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

end

for b = 0, num_batches do
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Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

end

for b = 0, num_batches do
These are only 
approximations to the 
true gradient with 
respect to 𝐿(𝑤, 𝑏)
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Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

end

for b = 0, num_batches do
This could lead to “un-
learning” what has 
been learned in some 
previous steps of 
training.
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Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

end

for b = 0, num_batches do
Keep track of previous 
gradients in an 
accumulator variable! 
and use a weighted 
average with current 
gradient.
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Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2

𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤Compute: 

Update w: 𝑤 = 𝑤 − 𝜆 𝑣

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not. 

end

for b = 0, num_batches do Keep track of previous 
gradients in an 
accumulator variable! 
and use a weighted 
average with current 
gradient.

𝜏 = 0.9

global 𝑣

Compute: 𝑣 = 𝜏𝑣 + 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 + 𝛼𝑤



https://distill.pub/2017/momentum/

More on Momentum

https://distill.pub/2017/momentum/
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Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.



12

Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦𝑛 = [ ]

𝑦3 = [ ]

𝑦2 = [ ]

𝑦1 = [ ]𝑥1 = [ ]

𝑥2 = [ ]

𝑥3 = [ ]

𝑥𝑛 = [ ]

.

.

.
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Supervised Learning - Classification
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

ෝ𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the 
following quantity small: 

෍

𝑖=1

𝑛

𝐶𝑜𝑠𝑡( ෝ𝑦𝑖 , 𝑦𝑖)

inputs

targets /
labels /
ground truth

1

2

2

1ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions
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Supervised Learning - Classification
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.
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Supervised Learning - Classification

cat
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.
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Supervised Learning - Classification
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

ෝ𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the 
following quantity small: 

෍

𝑖=1

𝑛

𝐶𝑜𝑠𝑡( ෝ𝑦𝑖 , 𝑦𝑖)

inputs

targets /
labels /
ground truth

1

2

2

1ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions
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Supervised Learning – Linear Softmax
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

inputs

targets /
labels /
ground truth
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Supervised Learning – Linear Softmax
Training Data

[1    0    0]

[1    0    0]

[0    1    0]

[0    0    1]𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

inputs

targets /
labels /
ground truth

[0.85    0.10    0.05]

[0.40    0.45    0.15]

[0.20    0.70    0.10]

[0.40    0.25    0.35]ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions
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Supervised Learning – Linear Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥𝑖1 + 𝑤12𝑥𝑖2 + 𝑤13𝑥𝑖3 + 𝑤14𝑥𝑖4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥𝑖1 + 𝑤22𝑥𝑖2 + 𝑤23𝑥𝑖3 + 𝑤24𝑥𝑖4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥𝑖1 + 𝑤32𝑥𝑖2 + 𝑤33𝑥𝑖3 + 𝑤34𝑥𝑖4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)
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How do we find a good w and b?

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓1(𝑤, 𝑏) 𝑓2(𝑤, 𝑏) 𝑓3(𝑤, 𝑏)]

We need to find w, and b that minimize the following:

𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑛

෍

𝑗=1

3

−𝑦𝑖,𝑗log( ො𝑦𝑖,𝑗)

Why?

= ෍

𝑖=1

𝑛

−log( ො𝑦𝑖,𝑙𝑎𝑏𝑒𝑙) = ෍

𝑖=1

𝑛

−log 𝑓𝑖,𝑙𝑎𝑏𝑒𝑙(𝑤, 𝑏)



Computing Analytic Gradients

This is what we have:

3

𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑛

෍

𝑗=1

3

−𝑦𝑖,𝑗log( ො𝑦𝑖,𝑗) = ෍

𝑖=1

𝑛

−log( ො𝑦𝑖,𝑙𝑎𝑏𝑒𝑙) = ෍

𝑖=1

𝑛

−log 𝑓𝑖,𝑙𝑎𝑏𝑒𝑙(𝑤, 𝑏)

To simplify let’s assume n = 1
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Supervised Learning – Linear Softmax

[1    0    0]𝑦 =𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4] ො𝑦 =  [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥1 + 𝑤12𝑥2 + 𝑤13𝑥3 + 𝑤14𝑥4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑤23𝑥3 + 𝑤24𝑥4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥1 + 𝑤32𝑥2 + 𝑤33𝑥3 + 𝑤34𝑥4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)



Computing Analytic Gradients

This is what we have:

3



Computing Analytic Gradients

This is what we have:

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖Reminder:

3

3



Computing Analytic Gradients

This is what we have:

3



Computing Analytic Gradients

This is what we have:

This is what we need:

for each for each 

3



Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

3



Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

Let’s do these first

3



Computing Analytic Gradients

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,3
=

𝜕

𝜕𝑤𝑖,3
(𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,3
= 𝑥3

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗



Computing Analytic Gradients

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
=

𝜕

𝜕𝑏𝑖
(𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1



Computing Analytic Gradients

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1



Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

Now let’s do this one (same for both!)

3



Computing Analytic Gradients

In our cat, dog, bear classification example: i = {1, 2, 3}

3

3



Computing Analytic Gradients

In our cat, dog, bear classification example: i = {1, 2, 3}

Let’s say:  label = 2 We need: 
𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎2

𝜕ℓ

𝜕𝑎3

3

3



Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎3

= ො𝑦𝑖

3

3

3

3

3

3

= ො𝑦𝑖
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Supervised Learning – Linear Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥𝑖1 + 𝑤12𝑥𝑖2 + 𝑤13𝑥𝑖3 + 𝑤14𝑥𝑖4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥𝑖1 + 𝑤22𝑥𝑖2 + 𝑤23𝑥𝑖3 + 𝑤24𝑥𝑖4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥𝑖1 + 𝑤32𝑥𝑖2 + 𝑤33𝑥𝑖3 + 𝑤34𝑥𝑖4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)



Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎3

= ො𝑦𝑖

3

3

3

3

3

3

= ො𝑦𝑖



Computing Analytic Gradients

𝜕ℓ

𝜕𝑎2

= ො𝑦𝑖 − 1

3

3

3

3

3

3



Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1
= ො𝑦1

𝜕ℓ

𝜕𝑎2
= ො𝑦2 − 1

𝜕ℓ

𝜕𝑎3
= ො𝑦3

label = 2

𝜕ℓ

𝜕𝑎
=

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎2

𝜕ℓ

𝜕𝑎3

= 

ො𝑦1

ො𝑦2 − 1
ො𝑦3

=

ො𝑦1

ො𝑦2

ො𝑦3

−
0
1
0

= ො𝑦 − 𝑦

𝜕ℓ

𝜕𝑎𝑖
= ො𝑦𝑖 − 𝑦𝑖



𝜕ℓ

𝜕𝑎𝑖
= ො𝑦𝑖 − 𝑦𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1

Computing Analytic Gradients

𝜕ℓ

𝜕𝑤𝑖,𝑗
= ො𝑦𝑖 − 𝑦𝑖 𝑥𝑗

𝜕ℓ

𝜕𝑏𝑖
= ො𝑦𝑖 − 𝑦𝑖



Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

Activation
function



Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

!?



Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

Activation
function



Activation Functions

ReLU(x) = max(0, x)Tanh(x)

Sigmoid(x)Step(x) 



Two-layer Multi-layer Perceptron (MLP)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1

”hidden" layer

𝑦1

Loss / Criterion
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Linear Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑔𝑐 = 𝑤𝑐1𝑥𝑖1 + 𝑤𝑐2𝑥𝑖2 + 𝑤𝑐3𝑥𝑖3 + 𝑤𝑐4𝑥𝑖4 + 𝑏𝑐

𝑔𝑑 = 𝑤𝑑1𝑥𝑖1 + 𝑤𝑑2𝑥𝑖2 + 𝑤𝑑3𝑥𝑖3 + 𝑤𝑑4𝑥𝑖4 + 𝑏𝑑

𝑔𝑏 = 𝑤𝑏1𝑥𝑖1 + 𝑤𝑏2𝑥𝑖2 + 𝑤𝑏3𝑥𝑖3 + 𝑤𝑏4𝑥𝑖4 + 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)
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Linear Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑔𝑐 = 𝑤𝑐1𝑥𝑖1 + 𝑤𝑐2𝑥𝑖2 + 𝑤𝑐3𝑥𝑖3 + 𝑤𝑐4𝑥𝑖4 + 𝑏𝑐

𝑔𝑑 = 𝑤𝑑1𝑥𝑖1 + 𝑤𝑑2𝑥𝑖2 + 𝑤𝑑3𝑥𝑖3 + 𝑤𝑑4𝑥𝑖4 + 𝑏𝑑

𝑔𝑏 = 𝑤𝑏1𝑥𝑖1 + 𝑤𝑏2𝑥𝑖2 + 𝑤𝑏3𝑥𝑖3 + 𝑤𝑏4𝑥𝑖4 + 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏
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Linear Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑔 = 𝑤𝑥𝑇 + 𝑏𝑇
𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)
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Linear Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑔 = 𝑤𝑥𝑇 + 𝑏𝑇

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔)

𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏
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Linear Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑥𝑇 + 𝑏𝑇)
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Two-layer MLP + Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇 )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇 )
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N-layer MLP + Softmax

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇 )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇 )

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇 )

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇 )

…
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How to train the parameters?

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇 )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇 )

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇 )

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇 )

…



Forward pass (Forward-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦2 𝑦1

෍ ො𝑦1



Forward pass (Forward-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1 𝑦1

𝑧𝑖 = ෍
𝑖=0

𝑛

𝑤1𝑖𝑗𝑥𝑖 + 𝑏1
𝑎𝑖 =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖)

𝑝1 = ෍
𝑖=0

𝑛

𝑤2𝑖𝑎𝑖 + 𝑏2

𝑦1 =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑖)

𝐿𝑜𝑠𝑠 = 𝐿(𝑦1, ො𝑦1)
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How to train the parameters?

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇 )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇 )

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇 )

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑖]

𝑇 )

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD
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How to train the parameters?

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇 )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇 )

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇 )
…

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇 )
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How to train the parameters?

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇 )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇 )

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇 )
…

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇 )
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How to train the parameters?

[1    0    0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1  𝑥𝑖2  𝑥𝑖3  𝑥𝑖4] ො𝑦𝑖 =  [𝑓𝑐  𝑓𝑑  𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇 )

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇 )

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇 )
…

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇 )

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗
=

𝜕𝑙

𝜕𝑎𝑛−1

𝜕𝑎𝑛−1

𝜕𝑎𝑛−2
…

𝜕𝑎𝑘−2

𝜕𝑎𝑘−1

𝜕𝑎𝑘−1

𝜕𝑤 𝑘 𝑖𝑗

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)



Backward pass (Back-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1 𝑦1

𝜕𝐿

𝜕𝑧𝑖
=

𝜕

𝜕𝑧𝑖
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖)

𝜕𝐿

𝜕𝑎𝑘

𝜕𝐿

𝜕𝑝1
=

𝜕

𝜕𝑝1
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑖)

𝜕𝐿

𝜕 ො𝑦1

𝜕𝐿

𝜕 ො𝑦1
=

𝜕

𝜕 ො𝑦1
𝐿(𝑦1, ො𝑦1)

𝜕𝐿

𝜕𝑥𝑘
= (

𝜕

𝜕𝑥𝑘
෍

𝑖=0

𝑛

𝑤1𝑖𝑗𝑥𝑖 + 𝑏1)
𝜕𝐿

𝜕𝑧𝑖

𝜕𝐿

𝜕𝑤1𝑖𝑗
=

𝜕𝑧𝑖

𝜕𝑤1𝑖𝑗

𝜕𝐿

𝜕𝑧
𝑖

𝜕𝐿

𝜕𝑎𝑘
= (

𝜕

𝜕𝑎𝑘
෍

𝑖=0

𝑛

𝑤2𝑖𝑎𝑖 + 𝑏2)
𝜕𝐿

𝜕𝑝1

𝜕𝐿

𝜕𝑤2𝑖
=

𝜕𝑝1

𝜕𝑤2𝑖

𝜕𝐿

𝜕𝑝
1
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Questions?
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