
Deep Learning for Vision &
Language

SGD and Regularization, Softmax, MLPs

Overfitting

𝐿𝑜𝑠𝑠 𝑤 is high 𝐿𝑜𝑠𝑠 𝑤 is low 𝐿𝑜𝑠𝑠 𝑤 is zero!

OverfittingUnderfitting

𝑓 is linear 𝑓 is cubic
𝑓 is a polynomial of

degree 9

Christopher M. Bishop – Pattern Recognition and Machine Learning

2

(mini-batch) Stochastic Gradient Descent (SGD)

𝑙(𝑤, 𝑏) = ෍

𝑖∈𝐵

𝐶𝑜𝑠𝑡 𝑤, 𝑏
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

end

for b = 0, num_batches do

Regularization

• Large weights lead to large variance. i.e. model fits to the training
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize 𝐿 𝑤, 𝑏 + 𝛼 ෍

𝑖

|𝑤𝑖|2

Regularization

• Large weights lead to large variance. i.e. model fits to the training
data too strongly.

• Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize 𝐿 𝑤, 𝑏 + 𝛼 ෍

𝑖

|𝑤𝑖|2
Regularizer term
e.g. L2- regularizer

5

SGD with Regularization (L-2)

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

end

for b = 0, num_batches do

6

Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

end

for b = 0, num_batches do
These are only
approximations to the
true gradient with
respect to 𝐿(𝑤, 𝑏)

7

Revisiting Another Problem with SGD

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

end

for b = 0, num_batches do
This could lead to “un-
learning” what has
been learned in some
previous steps of
training.

8

Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 − 𝜆𝛼𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏 − 𝜆𝛼𝑤

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

end

for b = 0, num_batches do
Keep track of previous
gradients in an
accumulator variable!
and use a weighted
average with current
gradient.

9

Solution: Momentum Updates

𝑙 𝑤, 𝑏 = 𝑙 𝑤, 𝑏 + 𝛼 σ𝑖 |𝑤𝑖|2

𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤Compute:

Update w: 𝑤 = 𝑤 − 𝜆 𝑣

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

end

for b = 0, num_batches do Keep track of previous
gradients in an
accumulator variable!
and use a weighted
average with current
gradient.

𝜏 = 0.9

global 𝑣

Compute: 𝑣 = 𝜏𝑣 + 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 + 𝛼𝑤

https://distill.pub/2017/momentum/

More on Momentum

https://distill.pub/2017/momentum/

11

Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.

12

Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦𝑛 = []

𝑦3 = []

𝑦2 = []

𝑦1 = []𝑥1 = []

𝑥2 = []

𝑥3 = []

𝑥𝑛 = []

.

.

.

13

Supervised Learning - Classification
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

ෝ𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

෍

𝑖=1

𝑛

𝐶𝑜𝑠𝑡(ෝ𝑦𝑖 , 𝑦𝑖)

inputs

targets /
labels /
ground truth

1

2

2

1ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions

14

Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.

15

Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦𝑛 = []

𝑦3 = []

𝑦2 = []

𝑦1 = []𝑥1 = []

𝑥2 = []

𝑥3 = []

𝑥𝑛 = []

.

.

.

16

Supervised Learning - Classification
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

ෝ𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

෍

𝑖=1

𝑛

𝐶𝑜𝑠𝑡(ෝ𝑦𝑖 , 𝑦𝑖)

inputs

targets /
labels /
ground truth

1

2

2

1ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions

17

Supervised Learning – Linear Softmax
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

inputs

targets /
labels /
ground truth

18

Supervised Learning – Linear Softmax
Training Data

[1 0 0]

[1 0 0]

[0 1 0]

[0 0 1]𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

inputs

targets /
labels /
ground truth

[0.85 0.10 0.05]

[0.40 0.45 0.15]

[0.20 0.70 0.10]

[0.40 0.25 0.35]ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions

19

Supervised Learning – Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥𝑖1 + 𝑤12𝑥𝑖2 + 𝑤13𝑥𝑖3 + 𝑤14𝑥𝑖4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥𝑖1 + 𝑤22𝑥𝑖2 + 𝑤23𝑥𝑖3 + 𝑤24𝑥𝑖4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥𝑖1 + 𝑤32𝑥𝑖2 + 𝑤33𝑥𝑖3 + 𝑤34𝑥𝑖4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

20

How do we find a good w and b?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓1(𝑤, 𝑏) 𝑓2(𝑤, 𝑏) 𝑓3(𝑤, 𝑏)]

We need to find w, and b that minimize the following:

𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑛

෍

𝑗=1

3

−𝑦𝑖,𝑗log(ො𝑦𝑖,𝑗)

Why?

= ෍

𝑖=1

𝑛

−log(ො𝑦𝑖,𝑙𝑎𝑏𝑒𝑙) = ෍

𝑖=1

𝑛

−log 𝑓𝑖,𝑙𝑎𝑏𝑒𝑙(𝑤, 𝑏)

Computing Analytic Gradients

This is what we have:

3

𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑛

෍

𝑗=1

3

−𝑦𝑖,𝑗log(ො𝑦𝑖,𝑗) = ෍

𝑖=1

𝑛

−log(ො𝑦𝑖,𝑙𝑎𝑏𝑒𝑙) = ෍

𝑖=1

𝑛

−log 𝑓𝑖,𝑙𝑎𝑏𝑒𝑙(𝑤, 𝑏)

To simplify let’s assume n = 1

22

Supervised Learning – Linear Softmax

[1 0 0]𝑦 =𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4] ො𝑦 = [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥1 + 𝑤12𝑥2 + 𝑤13𝑥3 + 𝑤14𝑥4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑤23𝑥3 + 𝑤24𝑥4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥1 + 𝑤32𝑥2 + 𝑤33𝑥3 + 𝑤34𝑥4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

Computing Analytic Gradients

This is what we have:

3

Computing Analytic Gradients

This is what we have:

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖Reminder:

3

3

Computing Analytic Gradients

This is what we have:

3

Computing Analytic Gradients

This is what we have:

This is what we need:

for each for each

3

Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

3

Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

Let’s do these first

3

Computing Analytic Gradients

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,3
=

𝜕

𝜕𝑤𝑖,3
(𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,3
= 𝑥3

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

Computing Analytic Gradients

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
=

𝜕

𝜕𝑏𝑖
(𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1

Computing Analytic Gradients

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1

Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

Now let’s do this one (same for both!)

3

Computing Analytic Gradients

In our cat, dog, bear classification example: i = {1, 2, 3}

3

3

Computing Analytic Gradients

In our cat, dog, bear classification example: i = {1, 2, 3}

Let’s say: label = 2 We need:
𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎2

𝜕ℓ

𝜕𝑎3

3

3

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎3

= ො𝑦𝑖

3

3

3

3

3

3

= ො𝑦𝑖

36

Supervised Learning – Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥𝑖1 + 𝑤12𝑥𝑖2 + 𝑤13𝑥𝑖3 + 𝑤14𝑥𝑖4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥𝑖1 + 𝑤22𝑥𝑖2 + 𝑤23𝑥𝑖3 + 𝑤24𝑥𝑖4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥𝑖1 + 𝑤32𝑥𝑖2 + 𝑤33𝑥𝑖3 + 𝑤34𝑥𝑖4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎3

= ො𝑦𝑖

3

3

3

3

3

3

= ො𝑦𝑖

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎2

= ො𝑦𝑖 − 1

3

3

3

3

3

3

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1
= ො𝑦1

𝜕ℓ

𝜕𝑎2
= ො𝑦2 − 1

𝜕ℓ

𝜕𝑎3
= ො𝑦3

label = 2

𝜕ℓ

𝜕𝑎
=

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎2

𝜕ℓ

𝜕𝑎3

=

ො𝑦1

ො𝑦2 − 1
ො𝑦3

=

ො𝑦1

ො𝑦2

ො𝑦3

−
0
1
0

= ො𝑦 − 𝑦

𝜕ℓ

𝜕𝑎𝑖
= ො𝑦𝑖 − 𝑦𝑖

𝜕ℓ

𝜕𝑎𝑖
= ො𝑦𝑖 − 𝑦𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1

Computing Analytic Gradients

𝜕ℓ

𝜕𝑤𝑖,𝑗
= ො𝑦𝑖 − 𝑦𝑖 𝑥𝑗

𝜕ℓ

𝜕𝑏𝑖
= ො𝑦𝑖 − 𝑦𝑖

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

Activation
function

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

!?

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

Activation
function

Activation Functions

ReLU(x) = max(0, x)Tanh(x)

Sigmoid(x)Step(x)

Two-layer Multi-layer Perceptron (MLP)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1

”hidden" layer

𝑦1

Loss / Criterion

46

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔𝑐 = 𝑤𝑐1𝑥𝑖1 + 𝑤𝑐2𝑥𝑖2 + 𝑤𝑐3𝑥𝑖3 + 𝑤𝑐4𝑥𝑖4 + 𝑏𝑐

𝑔𝑑 = 𝑤𝑑1𝑥𝑖1 + 𝑤𝑑2𝑥𝑖2 + 𝑤𝑑3𝑥𝑖3 + 𝑤𝑑4𝑥𝑖4 + 𝑏𝑑

𝑔𝑏 = 𝑤𝑏1𝑥𝑖1 + 𝑤𝑏2𝑥𝑖2 + 𝑤𝑏3𝑥𝑖3 + 𝑤𝑏4𝑥𝑖4 + 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

47

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔𝑐 = 𝑤𝑐1𝑥𝑖1 + 𝑤𝑐2𝑥𝑖2 + 𝑤𝑐3𝑥𝑖3 + 𝑤𝑐4𝑥𝑖4 + 𝑏𝑐

𝑔𝑑 = 𝑤𝑑1𝑥𝑖1 + 𝑤𝑑2𝑥𝑖2 + 𝑤𝑑3𝑥𝑖3 + 𝑤𝑑4𝑥𝑖4 + 𝑏𝑑

𝑔𝑏 = 𝑤𝑏1𝑥𝑖1 + 𝑤𝑏2𝑥𝑖2 + 𝑤𝑏3𝑥𝑖3 + 𝑤𝑏4𝑥𝑖4 + 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏

48

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔 = 𝑤𝑥𝑇 + 𝑏𝑇
𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

49

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔 = 𝑤𝑥𝑇 + 𝑏𝑇

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔)

𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏

50

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑥𝑇 + 𝑏𝑇)

51

Two-layer MLP + Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

52

N-layer MLP + Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

…

53

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

…

Forward pass (Forward-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦2 𝑦1

෍ ො𝑦1

Forward pass (Forward-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1 𝑦1

𝑧𝑖 = ෍
𝑖=0

𝑛

𝑤1𝑖𝑗𝑥𝑖 + 𝑏1
𝑎𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖)

𝑝1 = ෍
𝑖=0

𝑛

𝑤2𝑖𝑎𝑖 + 𝑏2

𝑦1 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑖)

𝐿𝑜𝑠𝑠 = 𝐿(𝑦1, ො𝑦1)

56

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑖]

𝑇)

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

57

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)
…

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

58

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)
…

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

59

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)
…

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗
=

𝜕𝑙

𝜕𝑎𝑛−1

𝜕𝑎𝑛−1

𝜕𝑎𝑛−2
…

𝜕𝑎𝑘−2

𝜕𝑎𝑘−1

𝜕𝑎𝑘−1

𝜕𝑤 𝑘 𝑖𝑗

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

Backward pass (Back-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1 𝑦1

𝜕𝐿

𝜕𝑧𝑖
=

𝜕

𝜕𝑧𝑖
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖)

𝜕𝐿

𝜕𝑎𝑘

𝜕𝐿

𝜕𝑝1
=

𝜕

𝜕𝑝1
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑖)

𝜕𝐿

𝜕 ො𝑦1

𝜕𝐿

𝜕 ො𝑦1
=

𝜕

𝜕 ො𝑦1
𝐿(𝑦1, ො𝑦1)

𝜕𝐿

𝜕𝑥𝑘
= (

𝜕

𝜕𝑥𝑘
෍

𝑖=0

𝑛

𝑤1𝑖𝑗𝑥𝑖 + 𝑏1)
𝜕𝐿

𝜕𝑧𝑖

𝜕𝐿

𝜕𝑤1𝑖𝑗
=

𝜕𝑧𝑖

𝜕𝑤1𝑖𝑗

𝜕𝐿

𝜕𝑧
𝑖

𝜕𝐿

𝜕𝑎𝑘
= (

𝜕

𝜕𝑎𝑘
෍

𝑖=0

𝑛

𝑤2𝑖𝑎𝑖 + 𝑏2)
𝜕𝐿

𝜕𝑝1

𝜕𝐿

𝜕𝑤2𝑖
=

𝜕𝑝1

𝜕𝑤2𝑖

𝜕𝐿

𝜕𝑝
1

61

Questions?

	Slide 0: Deep Learning for Vision & Language
	Slide 1: Overfitting
	Slide 2
	Slide 3: Regularization
	Slide 4: Regularization
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Computing Analytic Gradients
	Slide 22
	Slide 23: Computing Analytic Gradients
	Slide 24: Computing Analytic Gradients
	Slide 25: Computing Analytic Gradients
	Slide 26: Computing Analytic Gradients
	Slide 27: Computing Analytic Gradients
	Slide 28: Computing Analytic Gradients
	Slide 29: Computing Analytic Gradients
	Slide 30: Computing Analytic Gradients
	Slide 31: Computing Analytic Gradients
	Slide 32: Computing Analytic Gradients
	Slide 33: Computing Analytic Gradients
	Slide 34: Computing Analytic Gradients
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Questions?

