— B e R
P —

i e e e e e

N A i . i B I B . 5 A . s 0
B e e
L i 8T i g R il S B P ek e Wi
L A e o i e WL N, P Bl o e

B NI I . ¢ & . T el AP By e . Wi A e -

»
B

Deep Learning for Vision &
Language

SGD and Regularization, Softmax, MLPs

ot
- .\\M—- o B it i S
g S N -

Overfitting

f is linear

f is a polynomial of

0

Loss(w) is high
Underfitting

f is cubic degree 9
of T
Loss(w) is low Loss(w) is zero!
Overfitting

Christopher M. Bishop — Pattern Recognition and Machine Learning

(mini-batch) Stochastic Gradient Descent (SGD)

1=001
[(w,b) = 2 Cost(w, b)

Initialize w and b randomly icB

for e =0, num_epochs do
for b =0, num_batches do

Compute: dl(w,b)/dw and dl(w,b)/db
Updatew: w=w —Adl(w,b)/dw

Updateb: b =bh —Adl(w,b)/db

Print: I(w,b) // Useful tosee if this is becoming smaller or not.

end
end

Regularization

Large weights lead to large variance. i.e. model fits to the training
data too strongly.

Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize L(w,b) + az lw; | %
i

Regularization

Large weights lead to large variance. i.e. model fits to the training
data too strongly.

Solution: Minimize the loss but also try to keep the weight values
small by doing the following:

minimize L(w,b) +|a Z |Wi|2 Regularizer term
i e.g. L2- regularizer

SGD with Regularization (L-2)

A =10.01 I(w,b) = I(w,b) + a 3, |w;|?
Initialize w and b randomly

for e =0, num_epochs do
for b =0, num_batches do

Compute: dl(w,b)/dw and dl(w,b)/db
Updatew: w=w —Adl(w,b)/dw}|- Aaw

Updateb: b =b —Adl(w,b)/db- Aaw

Print: I(w,b) // Useful tosee if this is becoming smaller or not.

end
end

Revisiting Another Problem with SGD

A=0.01 I(w,b) = l(w,b) +a ¥, |w;|?

Initialize w and b randomly

for e =0, num_epochs do
for b =0, num_batches do . .
approximations to the
Compute: |dl(w,b)/dw | and |dl(w,b)/db true gradient with
Updatew: w=w —Adl(w,b)/dw — Alaw respectto L(w, b)

Updateb: b =b —Adl(w,b)/db— Aaw

These are only

Print: I(w,b) // Useful tosee if this is becoming smaller or not.
end
end

Revisiting Another Problem with SGD

A=0.01 I(w,b) = l(w,b) +a ¥, |w;|?

Initialize w and b randomly

for e =0, num_epochs do

for b =0, num_batches do This C.OUE,d ead to “un-
learning” what has
Compute: |dl(w,b)/dw | and |dl(w,b)/db been learned in some
Updatew: w=w —Adl(w,b)/dw — Alaw previous steps of
training.
Updateb: b =b —Adl(w,b)/db— Aaw

Print: I(w,b) // Useful tosee if this is becoming smaller or not.
end
end

Solution: Momentum Updates

A=0.01 I(w,b) = l(w,b) +a ¥, |w;|?

Initialize w and b randomly

for e =0, num_epochs do
for b =0, num_batches do

Compute: |dl(w,b)/dw | and |dl(w,b)/db

Updatew: w=w —AdIl(w,b)/dw — Aaw
Updateb: b =b —Adl(w,b)/db— Aaw

Keep track of previous
gradients in an
accumulator variable!
and use a weighted
average with current
gradient.

Print: I(w,b) // Useful tosee if this is becoming smaller or not.

end
end

Solution: Momentum Updates
A=0.01 T=009

Initialize w and b randomly [((w,b) = l(w,b) + a; |w;|?
global v
for e =0, num_epochs do
for b =0, num_batches do KeedP traclf of previous
Compute: dl(w,b)/dw gradients in an ,
accumulator variable!
Compute: v =1tv+dl(w,b)/dw + aw and use a weighted
average with current
Updatew: w=w —Av gradient.

Print: I(w,b) // Useful tosee if this is becoming smaller or not.

end
end

More on Momentum

Starting Point

Optimum

Solution

Step-size a = 0.0050 Momentum B = 0.77 We often think of Momentum as a means of dampening oscillations
and speeding up the iterations, leading to faster convergence. But it
has other interesting behavior. It allows a larger range of step-sizes
to be used, and creates its own oscillations. What is going on?

https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Supervised Learning - Classification

Training Data Test Data
S
- dog
cat

bear

Supervised Learning - Classification

Training Data

x1 — yl — [Cat]
Xy = Yy, = [dog
X3 = y3 = [cat

s '] Yn = [bear]

Supervised Learning - Classification

Training Data

inputs

X1 = [x11 X1

| X21 X22

1X31 X32

Xn = [xnl Xn?2

targets /

predictions
ground truth

We need to find a function that
maps x and y for any of them.

Vi =f(x;;0)

How do we “learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

n
> Cost(9i,y1)
=1

Supervised Learning - Classification

Training Data Test Data
S
- dog
cat

bear

Supervised Learning - Classification

Training Data

x1 — yl — [Cat]
Xy = Yy, = [dog
X3 = y3 = [cat

s '] Yn = [bear]

Supervised Learning - Classification

Training Data

inputs

X1 = [x11 X1

| X21 X22

1X31 X32

Xn = [xnl Xn?2

targets /

predictions
ground truth

We need to find a function that
maps x and y for any of them.

Vi =f(x;;0)

How do we “learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

n
> Cost(9i,y1)
=1

Supervised Learning — Linear Softmax

Training Data

targets /
inputs labels /
ground truth
X1 = [X11 X1p X13 Xq4 yi = 1
Xy = | X1 X2 X3 X4 Yo = 2
X3 = [X31 X32 X33 X34] y; = 1

Xn = [xnl Xn2 Xn3 xn4] Yn = 3

Supervised Learning — Linear Softmax

Training Data

targets /
inputs labels / predictions
ground truth
X1 = [x11 X12 X13 x14: V1 = [1 0 0] yl = [085 0.10 005]
Xy = [Xy1 Xpp X9z Xou] Yo = [0 1 0] y, = [0.20 0.70 0.10]
X3 = :X31 X372 X33 x34: Y3 = [1 0 0] 5;3 = [040 0.45 015]

X, = [Xp1 Xpy Xps Xps] Yo= [0 0 1] 9, = [0.40 0.25 0.35]

Supervised Learning — Linear Softmax

Xi = X1 Xip Xiz Xia] y;= [1 0 0] yi= 1 f2 f3l
A1 = Wy1Xj1 + WipXip + WisXiz + WigXis + D
Ay = Wy1Xj1 + WoXip + WosXiz + WosXig + by

(3 = W31Xj1 + W3yXip + W33Xj3 + W3sXi4 + by

f1 =e%“/(e"r1+e“2 + e“3)
fo =e%2/(e“14+e?2 + e93)
fz =e"/(e"1+e“2 + e%3)

How do we find a good w and b?

Xi = [Xi1 Xiz X3 Xia] yi= [1 0 0] yi= [filw,b) fo(w,b) f35(w,b)]

We need to find w, and b that minimize the following:

n 3

Lw,b) =) > ~yijlog®i;) =

=1 j=1 [

—log(Viiaper) = —log fiiaper(w, b)

E

Il
[y

s

Il
e

l

Why?

Computing Analytic Gradients

This is what we have:

E

Il
[y

U

Il
[

3
Z yljlog(yl] =

j=1 L

M:

L(w,b) =

—log(Viiaver) =) —l0g f;aper(W,b)

I
=

[l

To simplify let’'s assumen=1

exp(aiaper(W, b)))

FW 1) = ~10g(Giap (W, 5)) = —log 5 oo)
k=1 a(vw,

Supervised Learning — Linear Softmax

x=[x1 x5 X3 x4] y= [1 0 0] y= i fo Sl

a; = W1 X1 —+ Wi2X9 + W13X3 —+ W14X4 + bC
az — W21x1 + W22X2 + W23X3 + W24x4 + bd

a3 — W31x1 + W32x2 + W33x3 + W34x4 + bb

f1 =e%“/(e"r1+e“2 + e“3)
fo =e%2/(e“14+e?2 + e93)
[z =e"/(e“14+e?2 + e93)

Computing Analytic Gradients

This is what we have:

exp(@iapet (W, b)))

£OW ,b) = —108() (W, b)) = —log —
2 =1 €xplax(W, b))

Computing Analytic Gradients

This is what we have:

exp(@iapet (W, b)))

£OW ,b) = —108() (W, b)) = —log —
2 =1 €xplax(W, b))

exp(afabel))

= —log(;
2 =1 €xpla)

Reminder: a; = (W;1X1 + WioXp + Wi3X3 + Wi 4X,) + b;

Computing Analytic Gradients

This is what we have:

exp(afabel)
r = —log(;)
Zk=l exp(ax)

Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log(;)
D o explag)

This is what we need:

ot or

foreach wj;

ow;; ob,

for each bi

Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log(;)
Zk,:l exp(ax)

Step 1: Chain Rule of Calculus

of 0f 0a; or or 0a,;

aLU“ B 5615 awu 01)1 - aai ab;

LJ

Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log(;)
Zk,:l exp(ax)

Step 1: Chain Rule of Calculus

Let’s do these first

ot (3{11- or ot aa,;

56.!5 awu ab; aai abi

Computing Analytic Gradients

da; da;
db,

ow;;;

a; = (Wy1x1 + WX + Wisxs + W;4x4) + by

oa; d
l
= (Wi 11 +Wiox, + Wi3x3 + W 4x,) + by
aWi,3 aWi,3

aai
= X3
aWi,3
aai
— xj

aWi,j

Computing Analytic Gradients

aai aaf

aWi,j - xj abl

a; = (W 1X1 + WXy + Wi3Xs + Wiaxy) + b;

aai _ 0
db; b,

(W11 + WXy + Wi3X3 + Wi 4Xy) + by

aai

ab;

Computing Analytic Gradients

aai aa,;

= X;j — =
awi,]- J abl 1

ot

OW: :

LJ

Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log(;)
2. r=1€xp(ax)

Step 1: Chain Rule of Calculus

Now let’s do this one (same for both!)

o7 | da, o¢ [of Pa,

56.!5 awu ab; aai 'abi

Computing Analytic Gradients

ot 0 [—log(eXp(Qapet))]

da, aa; E;:l exp(ax)
0
= o {log(z exp(ax)) — aiabel]

k=1

In our cat, dog, bear classification example: i ={1, 2, 3}

Computing Analytic Gradients

ot 0 [—log(eXp(Qapet))]

da; 0a, E;:l exp(ax)

0
aa,,

[log(z exp(ax)) — aiabef]

k_

In our cat, dog, bear classification example: i ={1, 2, 3}

o0t 0t ¢

Let’s say: label = 2 We need: P P F.
1 2 3

0t

0¢

da,

das

Computing Analytic Gradients

0

aa,;

[log(i exp(ax)) — a!abel]

k=1

when [# label:
3

log()’ explay)) — alabel]
k

=1

o _ 0
0{:1,- aa,;

ot 0

3
= lo exp(a
e = % g(; p(a))

3
2_:- = ;)(aii Y exp(ay))

it exp(a) =i

ot . exp(a,;)
Oa Zn'?=1 exp(a;)

|
~

Supervised Learning — Linear Softmax

Xi = X1 Xip Xiz Xia] y;= [1 0 0] yi= 1 f2 f3l
A1 = Wy1Xj1 + WipXip + WisXiz + WigXis + D
Ay = Wy1Xj1 + WoXip + WosXiz + WosXig + by

(3 = W31Xj1 + W3yXip + W33Xj3 + W3sXi4 + by

f1 =e%“/(e"r1+e“2 + e“3)
fo =e%2/(e“14+e?2 + e93)
fz =e"/(e"1+e“2 + e%3)

0t

0¢

da,

das

Computing Analytic Gradients

0

aa,;

[log(i exp(ax)) — a!abel]

k=1

when [# label:
3

log()’ explay)) — alabel]
k

=1

o _ 0
0{:1,- aa,;

ot 0

3
= lo exp(a
e = % g(; p(a))

3
2_:- = ;)(aii Y exp(ay))

it exp(a) =i

ot . exp(a,;)
Oa Zn'?=1 exp(a;)

|
~

R4
da,

Computing Analytic Gradients

0

aa,;

[log(zgl exp(ax)) — alabel]

k=1

when i = label:

ot 0

0Q;apel aalabel

[lo g(z exp(ax) — alabel)]

3

or 0
= log() exp(ax)) — 1
aalabel aalabel ;
or 1 0 :
(b) S -
0Qgpel Yo exp(ay) / \ Oiavel (=]

of _ _explawe) |

0a4pe; y k3= L explay)

Yyi—1

Computing Analytic Gradients

label = 2
83_/\ af_A 1 03_,\
aal_yl aaz_yz aa3_y3
¢ -
dul [9] [%] o
2 T I P B S _ s
9a |aa 7 |72 = |72 —|11=y-Yy
ot | L Y3 | V3 0
aag

Computing Analytic Gradients

of of da, o o da,
awfj B aa,; awu abl aaf ab;
aai — . 6ai_ 85_/\ B
an"j_ J a_bl_l a_al_yl Vi
0¢ 0¢
oW @i — yix o5, = Ti =)

Perceptron Model

Frank Rosenblatt (1957) - Cornell University Activation

function

@k }
f(.X') _ {1, if wix; + b>0 @

Wy
i=0 Tb @ %@ —
0, otherwise /3'

More: https://en.wikipedia.org/wiki/Perceptron

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

dendrites nucleus I ; NEURON
/\ o

n
)1, if wix;+b>0 | axon
flx) = { t=0 / axon ending

0, otherwise \
\ myelin sheath

cell body

More: https://en.wikipedia.org/wiki/Perceptron

Perceptron Model

Frank Rosenblatt (1957) - Cornell University Activation

function

@k }
f(.X') _ {1, if wix; + b>0 @

Wy
i=0 Tb @ %@ —
0, otherwise /3'

More: https://en.wikipedia.org/wiki/Perceptron

Activation Functions

Step(x) Sigmoid(x)

1.0}
08
06|
0.4

0.2]

-1.0 -0.5 0.5 1.0

-1.0 -0.5

Two-layer Multi-layer Perceptron (MLP)

Do
®-6—§

"hi dde "layer

Loss/C iterion

/@@@@

®-0— ¢
- /"

Linear Softmax

X = [x;1 Xip Xz Xig) y;= [1 0 0]

Jc = WeiXjp + WeaXin + WesXijz + WeaXig + D
Ja = Wq1Xi1 T WgaXip + WazXiz + WaaXis + by

Jp = Wp1Xi1 + WpaXip + Wp3Xiz + WpaXig + Dy

fC — egc/(egc+egd _|_ egb)
fd — egd/(egc+egd _|_ egb)

fb — egb/(egc+egd - egb)

Linear Softmax

X = [x;1 Xip Xz Xig) y;= [1 0 0] Vi

We1

e = WeiXip + WepXip + WesXiz + WegXiy + b — |lwy,
Ja = Wa1Xin T WaaXiz + Wa3Xiz + WaaXis + by Wp1
Ip = Wp1Xi1 T WpaXjz + Wp3Xj3 + WpaXig + Dy b —

fC — egc/(egc+egd _|_ egb)
fd — egd/(egc+egd _|_ egb)

fb — egb/(egc+egd - egb)

Linear Softmax

X = [x;1 Xip Xz Xig) Yi

g=wx! + bl

fC — egc/(egc+egd -+ egb)
fd — egd/(egc+egd -+ egb)

[, = e9b [(eIc+e9d + eIb)

[1 0 O]

W =

Wa1 Wa2 Wgaz Wgs

X; = [xXi1 X2 X3 X]

g=wx! + bl

f =softmax(g)

Linear Softmax

y; = [1 0 O]

W =

yl — [fc
Weq Weo
Wa1 Wao
Wp1 Wh2
b= [bc bd

Linear Softmax

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] Vi /e fa Jbl

f = softmax(wx? + bT)

Two-layer MLP + Softmax

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] Vi /e fa Jbl

a, = sigmoid(wpx" + byyy)

f = softmax(wpp;a," + b))

X; = [xXi1 X2 X3 X]

N-layer MLP + Softmax

y; = [1 0 O]

a, = sigmoid(wpx" + byyy)

a, = sigmoid(wpai + bjy)

ay = sigmoid(Wyag—q + byjg)

f = softmax(Wpyah_1 + bjyy)

How to train the parameters?

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] Vi /e fa Jbl

a, = sigmoid(wyx" + byyp)

a, = sigmoid(wpy;ai + biy)

ay = sigmoid(Wpag—q + i)

f = softmax(Wpyah_1 + bjyy)

Forward pass (Forward-propagation)

DO @08
@@\ @@@@

T @/
- /"

=
=

=
N

=
w

R
NN

~— — T— S~

A\

A

AN A

Forward pass (Forward-propagation)

n . .
z : a; = Sigmoid(z;
1=

How to train the parameters?

X; = [Xj1 Xip Xz X4 yi= [1 0 0] yi= e fa

Q
[N
|

sigmoid(wyx" + byyy)

Q
N
|

sigmoid(wpp;ai + b))
We can still use SGD

ay = sigmoid(Wpqag—q + bj)
We need!

ol ol
OW (ki 0Dk

f = softmax(Wpyah_1 + bjyy)

How to train the parameters?

X; = [xXi1 X2 X3 X] Yi

a, = sigmoid(wyx" + byyp)

a, = sigmoid(wpy;ai + biy)

a; = Sigmoid(w[k]a£_1 + bf;{])

f = softmax(Wpyas_1 + biyy)

[= loss(f,y)

[1 0 O]

We can still use SGD

We need!
dl 0l
OW[k)ij 0Dy

How to train the parameters?

X; = [xXi1 X2 X3 X] Yi

a, = sigmoid(wyx" + byyp)

a, = sigmoid(wpy;ai + biy)

a; = Sigmoid(w[k]a£_1 + bf;{])

f = softmax(Wpyas_1 + biyy)

[= loss(f,y)

[1 0 O]

We can still use SGD

We need!
dl 0l
OW[k)ij 0Dy

How to train the parameters?

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] yi= Uc fa Jb]

a, = sigmoid(wyx" + byyp)
a, = sigmoid(wpy;ai + biy)

al dl day,, Odag_p dap_4
OWkjij 0an_1 0an_p dag_1 OW[K);;

a; = Sigmoid(w[k]a£_1 + bf;{])

f = softmax(Wpyas_1 + biyy)

[= loss(f,y)

Backward pass (Back-propagation)

oL 9 " oL dL d < d)aL
R — = (—— LY b R — = —Siogmoi 7.) ——
dxy (axkzizowllfle“ 1) 0z; 0z; 0z; 7 Y oag
dL B 0 Z” b oL
@ q@ \ da N (aak i:oWZiai 2) op,
oL a .. . oL
\ dp1 0py Stgmoid(p:) 0y1

s
Sz P exelele 6
T @-0— 2
dL dp, OL
/! ow,; 0wy, dp, 2L = aiylL(yl, V1)
TN @0/
oWy, B oWy, azi

91

Questions?

61

	Slide 0: Deep Learning for Vision & Language
	Slide 1: Overfitting
	Slide 2
	Slide 3: Regularization
	Slide 4: Regularization
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Computing Analytic Gradients
	Slide 22
	Slide 23: Computing Analytic Gradients
	Slide 24: Computing Analytic Gradients
	Slide 25: Computing Analytic Gradients
	Slide 26: Computing Analytic Gradients
	Slide 27: Computing Analytic Gradients
	Slide 28: Computing Analytic Gradients
	Slide 29: Computing Analytic Gradients
	Slide 30: Computing Analytic Gradients
	Slide 31: Computing Analytic Gradients
	Slide 32: Computing Analytic Gradients
	Slide 33: Computing Analytic Gradients
	Slide 34: Computing Analytic Gradients
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Questions?

