
Deep Learning for Vision &
Language

Computer Vision: Introduction and CNNs

1

Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.

2

Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦𝑛 = []

𝑦3 = []

𝑦2 = []

𝑦1 = []𝑥1 = []

𝑥2 = []

𝑥3 = []

𝑥𝑛 = []

.

.

.

3

Supervised Learning - Classification
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

ෝ𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

෍

𝑖=1

𝑛

𝐶𝑜𝑠𝑡(ෝ𝑦𝑖 , 𝑦𝑖)

inputs

targets /
labels /
ground truth

1

2

2

1ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions

4

Supervised Learning - Classification

cat

cat

dog

bear

Training Data Test Data

.

.

.

.

.

.

5

Supervised Learning - Classification

cat

cat

dog

bear

Training Data

𝑦𝑛 = []

𝑦3 = []

𝑦2 = []

𝑦1 = []𝑥1 = []

𝑥2 = []

𝑥3 = []

𝑥𝑛 = []

.

.

.

6

Supervised Learning - Classification
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

ෝ𝑦𝑖 = 𝑓(𝑥𝑖; 𝜃)

We need to find a function that
maps x and y for any of them.

How do we ”learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

෍

𝑖=1

𝑛

𝐶𝑜𝑠𝑡(ෝ𝑦𝑖 , 𝑦𝑖)

inputs

targets /
labels /
ground truth

1

2

2

1ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions

7

Supervised Learning – Linear Softmax
Training Data

1

1

2

3𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

inputs

targets /
labels /
ground truth

8

Supervised Learning – Linear Softmax
Training Data

[1 0 0]

[1 0 0]

[0 1 0]

[0 0 1]𝑦𝑛 =

𝑦3 =

𝑦2 =

𝑦1 =𝑥1 = [𝑥11 𝑥12 𝑥13 𝑥14]

𝑥2 = [𝑥21 𝑥22 𝑥23 𝑥24]

𝑥3 = [𝑥31 𝑥32 𝑥33 𝑥34]

𝑥𝑛 = [𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 𝑥𝑛4]

.

.

.

inputs

targets /
labels /
ground truth

[0.85 0.10 0.05]

[0.40 0.45 0.15]

[0.20 0.70 0.10]

[0.40 0.25 0.35]ො𝑦𝑛 =

ො𝑦3 =

ො𝑦2 =

ො𝑦1 =

predictions

9

Supervised Learning – Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥𝑖1 + 𝑤12𝑥𝑖2 + 𝑤13𝑥𝑖3 + 𝑤14𝑥𝑖4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥𝑖1 + 𝑤22𝑥𝑖2 + 𝑤23𝑥𝑖3 + 𝑤24𝑥𝑖4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥𝑖1 + 𝑤32𝑥𝑖2 + 𝑤33𝑥𝑖3 + 𝑤34𝑥𝑖4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

10

How do we find a good w and b?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓1(𝑤, 𝑏) 𝑓2(𝑤, 𝑏) 𝑓3(𝑤, 𝑏)]

We need to find w, and b that minimize the following:

𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑛

෍

𝑗=1

3

−𝑦𝑖,𝑗log(ො𝑦𝑖,𝑗)

Why?

= ෍

𝑖=1

𝑛

−log(ො𝑦𝑖,𝑙𝑎𝑏𝑒𝑙) = ෍

𝑖=1

𝑛

−log 𝑓𝑖,𝑙𝑎𝑏𝑒𝑙(𝑤, 𝑏)

11

(mini-batch) Stochastic Gradient Descent (SGD)

𝑙(𝑤, 𝑏) = ෍

𝑖∈𝐵

𝐶𝑜𝑠𝑡 𝑤, 𝑏
𝜆 = 0.01

for e = 0, num_epochs do

end

Initialize w and b randomly

𝑑𝑙(𝑤, 𝑏)/𝑑𝑤 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏Compute: and

Update w:

Update b:

𝑤 = 𝑤 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑤

𝑏 = 𝑏 − 𝜆 𝑑𝑙(𝑤, 𝑏)/𝑑𝑏

Print: 𝑙(𝑤, 𝑏) // Useful to see if this is becoming smaller or not.

end

for b = 0, num_batches do

Computing Analytic Gradients

This is what we have:

3

𝐿 𝑤, 𝑏 = ෍

𝑖=1

𝑛

෍

𝑗=1

3

−𝑦𝑖,𝑗log(ො𝑦𝑖,𝑗) = ෍

𝑖=1

𝑛

−log(ො𝑦𝑖,𝑙𝑎𝑏𝑒𝑙) = ෍

𝑖=1

𝑛

−log 𝑓𝑖,𝑙𝑎𝑏𝑒𝑙(𝑤, 𝑏)

To simplify let’s assume n = 1

13

Supervised Learning – Linear Softmax

[1 0 0]𝑦 =𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4] ො𝑦 = [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥1 + 𝑤12𝑥2 + 𝑤13𝑥3 + 𝑤14𝑥4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥1 + 𝑤22𝑥2 + 𝑤23𝑥3 + 𝑤24𝑥4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥1 + 𝑤32𝑥2 + 𝑤33𝑥3 + 𝑤34𝑥4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

Computing Analytic Gradients

This is what we have:

3

Computing Analytic Gradients

This is what we have:

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖Reminder:

3

3

Computing Analytic Gradients

This is what we have:

3

Computing Analytic Gradients

This is what we have:

This is what we need:

for each for each

3

Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

3

Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

Let’s do these first

3

Computing Analytic Gradients

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,3
=

𝜕

𝜕𝑤𝑖,3
(𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,3
= 𝑥3

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

Computing Analytic Gradients

𝑎𝑖 = (𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
=

𝜕

𝜕𝑏𝑖
(𝑤𝑖,1𝑥1 + 𝑤𝑖,2𝑥2 + 𝑤𝑖,3𝑥3 + 𝑤𝑖,4𝑥4) + 𝑏𝑖

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1

Computing Analytic Gradients

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1

Computing Analytic Gradients

This is what we have:

Step 1: Chain Rule of Calculus

Now let’s do this one (same for both!)

3

Computing Analytic Gradients

In our cat, dog, bear classification example: i = {1, 2, 3}

3

3

Computing Analytic Gradients

In our cat, dog, bear classification example: i = {1, 2, 3}

Let’s say: label = 2 We need:
𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎2

𝜕ℓ

𝜕𝑎3

3

3

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎3

= ො𝑦𝑖

3

3

3

3

3

3

= ො𝑦𝑖

27

Supervised Learning – Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓1 𝑓2 𝑓3]

𝑎1 = 𝑤11𝑥𝑖1 + 𝑤12𝑥𝑖2 + 𝑤13𝑥𝑖3 + 𝑤14𝑥𝑖4 + 𝑏𝑐

𝑎2 = 𝑤21𝑥𝑖1 + 𝑤22𝑥𝑖2 + 𝑤23𝑥𝑖3 + 𝑤24𝑥𝑖4 + 𝑏𝑑

𝑎3 = 𝑤31𝑥𝑖1 + 𝑤32𝑥𝑖2 + 𝑤33𝑥𝑖3 + 𝑤34𝑥𝑖4 + 𝑏𝑏

𝑓1 = 𝑒𝑎1/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓2 = 𝑒𝑎2/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

𝑓3 = 𝑒𝑎3/(𝑒𝑎1+𝑒𝑎2 + 𝑒𝑎3)

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎3

= ො𝑦𝑖

3

3

3

3

3

3

= ො𝑦𝑖

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎2

= ො𝑦𝑖 − 1

3

3

3

3

3

3

Computing Analytic Gradients

𝜕ℓ

𝜕𝑎1
= ො𝑦1

𝜕ℓ

𝜕𝑎2
= ො𝑦2 − 1

𝜕ℓ

𝜕𝑎3
= ො𝑦3

label = 2

𝜕ℓ

𝜕𝑎
=

𝜕ℓ

𝜕𝑎1

𝜕ℓ

𝜕𝑎2

𝜕ℓ

𝜕𝑎3

=

ො𝑦1

ො𝑦2 − 1
ො𝑦3

=

ො𝑦1

ො𝑦2

ො𝑦3

−
0
1
0

= ො𝑦 − 𝑦

𝜕ℓ

𝜕𝑎𝑖
= ො𝑦𝑖 − 𝑦𝑖

𝜕ℓ

𝜕𝑎𝑖
= ො𝑦𝑖 − 𝑦𝑖

𝜕𝑎𝑖

𝜕𝑤𝑖,𝑗
= 𝑥𝑗

𝜕𝑎𝑖

𝜕𝑏𝑖
= 1

Computing Analytic Gradients

𝜕ℓ

𝜕𝑤𝑖,𝑗
= ො𝑦𝑖 − 𝑦𝑖 𝑥𝑗

𝜕ℓ

𝜕𝑏𝑖
= ො𝑦𝑖 − 𝑦𝑖

Automatic Differentiation

You only need to write code for the operations in the prediction step,
Gradient computation can be computed “automatically”.

Pytorch (Facebook -- mostly):

Tensorflow (Google -- mostly):

MXNet (Amazon -- mostly):

https://pytorch.org/

https://www.tensorflow.org/

https://mxnet.apache.org/versions/1.9.0/

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

Activation
function

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

!?

Perceptron Model

Frank Rosenblatt (1957) - Cornell University

More: https://en.wikipedia.org/wiki/Perceptron

𝑓 𝑥 = ቐ
1, if ෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 + 𝑏 > 0

0, otherwise

𝑥1

𝑥2

𝑥3

𝑥4

෍

𝑤1

𝑤2

𝑤3

𝑤4

Activation
function

Activation Functions

ReLU(x) = max(0, x)Tanh(x)

Sigmoid(x)Step(x)

Two-layer Multi-layer Perceptron (MLP)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1

”hidden" layer

𝑦1

Loss / Criterion

38

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔𝑐 = 𝑤𝑐1𝑥𝑖1 + 𝑤𝑐2𝑥𝑖2 + 𝑤𝑐3𝑥𝑖3 + 𝑤𝑐4𝑥𝑖4 + 𝑏𝑐

𝑔𝑑 = 𝑤𝑑1𝑥𝑖1 + 𝑤𝑑2𝑥𝑖2 + 𝑤𝑑3𝑥𝑖3 + 𝑤𝑑4𝑥𝑖4 + 𝑏𝑑

𝑔𝑏 = 𝑤𝑏1𝑥𝑖1 + 𝑤𝑏2𝑥𝑖2 + 𝑤𝑏3𝑥𝑖3 + 𝑤𝑏4𝑥𝑖4 + 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

39

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔𝑐 = 𝑤𝑐1𝑥𝑖1 + 𝑤𝑐2𝑥𝑖2 + 𝑤𝑐3𝑥𝑖3 + 𝑤𝑐4𝑥𝑖4 + 𝑏𝑐

𝑔𝑑 = 𝑤𝑑1𝑥𝑖1 + 𝑤𝑑2𝑥𝑖2 + 𝑤𝑑3𝑥𝑖3 + 𝑤𝑑4𝑥𝑖4 + 𝑏𝑑

𝑔𝑏 = 𝑤𝑏1𝑥𝑖1 + 𝑤𝑏2𝑥𝑖2 + 𝑤𝑏3𝑥𝑖3 + 𝑤𝑏4𝑥𝑖4 + 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏

40

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔 = 𝑤𝑥𝑇 + 𝑏𝑇
𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏

𝑓𝑐 = 𝑒𝑔𝑐/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑑 = 𝑒𝑔𝑑/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

𝑓𝑏 = 𝑒𝑔𝑏/(𝑒𝑔𝑐+𝑒𝑔𝑑 + 𝑒𝑔𝑏)

41

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑔 = 𝑤𝑥𝑇 + 𝑏𝑇

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔)

𝑤 =

𝑤𝑐1 𝑤𝑐2 𝑤𝑐3 𝑤𝑐4

𝑤𝑑1 𝑤𝑑2 𝑤𝑑3 𝑤𝑑4

𝑤𝑏1 𝑤𝑏2 𝑤𝑏3 𝑤𝑏4

𝑏 = 𝑏𝑐 𝑏𝑑 𝑏𝑏

42

Linear Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑥𝑇 + 𝑏𝑇)

43

Two-layer MLP + Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

44

N-layer MLP + Softmax

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

…

45

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

…

Forward pass (Forward-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦2 𝑦1

෍ ො𝑦1

Forward pass (Forward-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1 𝑦1

𝑧𝑖 = ෍
𝑖=0

𝑛

𝑤1𝑖𝑗𝑥𝑖 + 𝑏1
𝑎𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖)

𝑝1 = ෍
𝑖=0

𝑛

𝑤2𝑖𝑎𝑖 + 𝑏2

𝑦1 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑖)

𝐿𝑜𝑠𝑠 = 𝐿(𝑦1, ො𝑦1)

48

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)

…

𝑎𝑘 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑖]

𝑇)

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

49

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)
…

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

50

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)
…

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗

𝜕𝑙

𝜕𝑏 𝑘 𝑖

We need!

We can still use SGD

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

51

How to train the parameters?

[1 0 0]𝑦𝑖 =𝑥𝑖 = [𝑥𝑖1 𝑥𝑖2 𝑥𝑖3 𝑥𝑖4] ො𝑦𝑖 = [𝑓𝑐 𝑓𝑑 𝑓𝑏]

𝑎1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[1]𝑥
𝑇 + 𝑏[1]

𝑇)

𝑓 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤[𝑛]𝑎𝑛−1
𝑇 + 𝑏[𝑛]

𝑇)

𝑎2 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[2]𝑎1
𝑇 + 𝑏[2]

𝑇)
…

𝑎𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑤[𝑘]𝑎𝑘−1
𝑇 + 𝑏[𝑘]

𝑇)

…

𝜕𝑙

𝜕𝑤[𝑘]𝑖𝑗
=

𝜕𝑙

𝜕𝑎𝑛−1

𝜕𝑎𝑛−1

𝜕𝑎𝑛−2
…

𝜕𝑎𝑘−2

𝜕𝑎𝑘−1

𝜕𝑎𝑘−1

𝜕𝑤 𝑘 𝑖𝑗

𝑙 = 𝑙𝑜𝑠𝑠(𝑓, 𝑦)

Backward pass (Back-propagation)

𝑎1

𝑎2

𝑎3

𝑎4

෍

𝑥1

𝑥2

𝑥3

𝑥4

෍

෍

෍

෍

ො𝑦1 𝑦1

𝜕𝐿

𝜕𝑧𝑖
=

𝜕

𝜕𝑧𝑖
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖)

𝜕𝐿

𝜕𝑎𝑘

𝜕𝐿

𝜕𝑝1
=

𝜕

𝜕𝑝1
𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑝𝑖)

𝜕𝐿

𝜕 ො𝑦1

𝜕𝐿

𝜕 ො𝑦1
=

𝜕

𝜕 ො𝑦1
𝐿(𝑦1, ො𝑦1)

𝜕𝐿

𝜕𝑥𝑘
= (

𝜕

𝜕𝑥𝑘
෍

𝑖=0

𝑛

𝑤1𝑖𝑗𝑥𝑖 + 𝑏1)
𝜕𝐿

𝜕𝑧𝑖

𝜕𝐿

𝜕𝑤1𝑖𝑗
=

𝜕𝑧𝑖

𝜕𝑤1𝑖𝑗

𝜕𝐿

𝜕𝑧
𝑖

𝜕𝐿

𝜕𝑎𝑘
= (

𝜕

𝜕𝑎𝑘
෍

𝑖=0

𝑛

𝑤2𝑖𝑎𝑖 + 𝑏2)
𝜕𝐿

𝜕𝑝1

𝜕𝐿

𝜕𝑤2𝑖
=

𝜕𝑝1

𝜕𝑤2𝑖

𝜕𝐿

𝜕𝑝
1

Automatic Differentiation

You only need to write code for the forward pass,
backward pass is computed automatically.

Pytorch (Facebook -- mostly):

Tensorflow (Google -- mostly):

MXNet (Amazon -- mostly):

https://pytorch.org/

https://www.tensorflow.org/

https://mxnet.apache.org/versions/1.9.0/

Defining a Model in Pytorch (Two Layer NN)

1. Creating Model, Loss, Optimizer

2. Running forward and backward on a batch

Computer Vision

Birdsnap

Face Detection in
Cameras

Human Vision / Human Brain

Machine Learning

Computer Vision

Robotics

Optics /
Cameras

Geometry

Deep Learning

Who is using
Computer
Vision?

• Facebook – Oculus VR, Image Search, Image tagging, Content
filtering, Instagram, etc.

• Google/Alphabet – Waymo, DeepMind, Image Search, Google
Earth/Maps, Street View, Google Photos, etc.

• Adobe – Photoshop, Premiere, Lightroom, etc.

• Snap Inc – Snapchat, Smart Goggles, Filters, Face Detection,
Style Transfer, etc.

• eBay Inc – Product Search, Product Matching, Content
Filtering, Duplicate Removal, etc.

• Amazon – Warehouse robotics, Smart Stores, Product Search.

• IBM – Image Retrieval, Medical Applications, Product Quality.

• Microsoft – Hololens, Optical Character Recognition (OCR),
Face Detection, Cloud Services.

• Apple – Face Verification, Enhanced cameras and chips for
image processing.

59

60

https://bristles.ai/

https://bristles.ai/

https://bristles.ai/
https://bristles.ai/

61

https://bristles.ai/

https://bristles.ai/

https://bristles.ai/
https://bristles.ai/

62https://www.mercuryalert.ai/

https://www.mercuryalert.ai/

Phiar.ai (now part of Google)
63

Images
• Can be viewed as a matrix with pixel values

64

Images
• Or as a function in a 2D domain

65

z = 𝑓(𝑥, 𝑦)

Color Images
• Can be viewed as tensors (3-dimensional arrays)

66

Channels are usually RGB: Red, Green, and Blue

Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

sizeof(T) = 3 x height x width

T =

Why is it hard?

67

This is just as hard for computers

68

Why is Computer Vision hard?

69

Ambiguities due to
viewpoints

Why is Computer Vision hard?

70

Ambiguities due to
viewpoints

Why is Computer Vision hard?

71

Issues with
Illumination

Why is Computer Vision hard?

72

Background
clutter

Why is Computer Vision hard?

73

Intra-class
variation

Computer Vision vs Image Processing

74

• Computer Vision: Image Knowledge

deer

cat

Computer Vision vs Image Processing

75

• Image Processing: Image Image

Basic Image Processing

76

𝐼 𝛼𝐼

𝛼 > 1

Primer on Image Processing: https://bit.ly/3lGEdwv

https://bit.ly/3lGEdwv

Most important operation for Computer Vision (*)

• The Convolution Operation

77

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

(*) Maybe

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

Most important operation for Computer Vision (*)

• The Convolution Operation

78

Convolutional filter
Convolutional kernel

Filter
Kernel

(*) Maybe

Most important operation for Computer Vision (*)

• The Convolution Operation

79

𝑔 𝑥, 𝑦 = ෍

𝑣

෍

𝑢

𝑘 𝑢, 𝑣 𝑓(𝑥 − 𝑢, 𝑦 − 𝑣)

𝑓(𝑥, 𝑦) g(𝑥, 𝑦)

𝑘(𝑥, 𝑦)

(*) Maybe

Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Example: box filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

What does it do?

• Replaces each pixel with

an average of its

neighborhood

• Achieve smoothing effect

(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Box Filter

Image filtering: e.g. Mean Filter

Image filtering: Convolution operator
Important filter: gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

• Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022

0.013 0.059 0.097 0.059 0.013

0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian

Image filtering: Convolution operator
e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

Practical matters
• What about near the edge?

• the filter window falls off the edge of the image

• need to extrapolate

• methods:
• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner

97

Questions?

	Slide 0: Deep Learning for Vision & Language
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Computing Analytic Gradients
	Slide 13
	Slide 14: Computing Analytic Gradients
	Slide 15: Computing Analytic Gradients
	Slide 16: Computing Analytic Gradients
	Slide 17: Computing Analytic Gradients
	Slide 18: Computing Analytic Gradients
	Slide 19: Computing Analytic Gradients
	Slide 20: Computing Analytic Gradients
	Slide 21: Computing Analytic Gradients
	Slide 22: Computing Analytic Gradients
	Slide 23: Computing Analytic Gradients
	Slide 24: Computing Analytic Gradients
	Slide 25: Computing Analytic Gradients
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Automatic Differentiation
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Automatic Differentiation
	Slide 54: Defining a Model in Pytorch (Two Layer NN)
	Slide 55: 1. Creating Model, Loss, Optimizer
	Slide 56: 2. Running forward and backward on a batch
	Slide 57
	Slide 58
	Slide 59: Who is using Computer Vision?
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Phiar.ai (now part of Google)
	Slide 64: Images
	Slide 65: Images
	Slide 66: Color Images
	Slide 67: Why is it hard?
	Slide 68: This is just as hard for computers
	Slide 69: Why is Computer Vision hard?
	Slide 70: Why is Computer Vision hard?
	Slide 71: Why is Computer Vision hard?
	Slide 72: Why is Computer Vision hard?
	Slide 73: Why is Computer Vision hard?
	Slide 74: Computer Vision vs Image Processing
	Slide 75: Computer Vision vs Image Processing
	Slide 76: Basic Image Processing
	Slide 77: Most important operation for Computer Vision (*)
	Slide 78: Most important operation for Computer Vision (*)
	Slide 79: Most important operation for Computer Vision (*)
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96: Practical matters
	Slide 97: Questions?

