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Deep Learning for Vision &
Language

Computer Vision: Introduction and CNNs
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Supervised Learning - Classification

Training Data Test Data
S
- dog
cat

bear




Supervised Learning - Classification

Training Data

x1 — yl — [Cat ]
Xy = Yy, = [dog
X3 = y3 = [cat

s ' ] Yn = [bear ]



Supervised Learning - Classification

Training Data

inputs

X1 = [x11 X1

| X21 X22

1X31 X32

Xn = [xnl Xn?2

targets /

predictions
ground truth

We need to find a function that
maps x and y for any of them.

Vi =f(x;;0)

How do we “learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

n
> Cost(9i,y1)
=1
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Supervised Learning - Classification

Training Data

inputs

X1 = [x11 X1

| X21 X22

1X31 X32

Xn = [xnl Xn?2

targets /

predictions
ground truth

We need to find a function that
maps x and y for any of them.

Vi =f(x;;0)

How do we “learn” the parameters
of this function?

We choose ones that makes the
following quantity small:

n
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Supervised Learning — Linear Softmax

Training Data

targets /
inputs labels /
ground truth
X1 = [X11 X1p X13 Xq4 yi = 1
Xy = | X1 X2 X3 X4 Yo = 2
X3 = [X31 X32 X33 X34] y; = 1

Xn = [xnl Xn2 Xn3 xn4] Yn = 3



Supervised Learning — Linear Softmax

Training Data

targets /
inputs labels / predictions
ground truth
X1 = [x11 X12 X13 x14: V1 = [1 0 0] yl = [085 0.10 005]
Xy = [Xy1 Xpp X9z Xou] Yo = [0 1 0] y, = [0.20 0.70 0.10]
X3 = :X31 X372 X33 x34: Y3 = [1 0 0] 5;3 = [040 0.45 015]

X, = [Xp1 Xpy Xps Xps]  Yo= [0 0 1] 9, = [0.40 0.25 0.35]



Supervised Learning — Linear Softmax

Xi = X1 Xip Xiz Xia] y;= [1 0 0] yi= 1 f2 f3l
A1 = Wy1Xj1 + WipXip + WisXiz + WigXis + D
Ay = Wy1Xj1 + WoXip + WosXiz + WosXig + by

(3 = W31Xj1 + W3yXip + W33Xj3 + W3sXi4 + by

f1 =e%“/(e"r1+e“2 + e“3)
fo =e%2/(e“14+e?2 + e93)
fz =e"/(e"1+e“2 + e%3)



How do we find a good w and b?

Xi = [Xi1 Xiz X3 Xia] yi= [1 0 0] yi= [filw,b) fo(w,b) f35(w,b)]

We need to find w, and b that minimize the following:

n 3

Lw,b) = ) > ~yijlog®i;) =

=1 j=1 [

—log(Viiaper) = —log fiiaper(w, b)
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Why?



(mini-batch) Stochastic Gradient Descent (SGD)

1=001
[(w,b) = 2 Cost(w, b)

Initialize w and b randomly icB

for e =0, num_epochs do
for b =0, num_batches do

Compute: dl(w,b)/dw and dl(w,b)/db
Updatew: w=w —Adl(w,b)/dw

Updateb: b =bh —Adl(w,b)/db

Print: I(w,b) // Useful tosee if this is becoming smaller or not.

end
end



Computing Analytic Gradients

This is what we have:

E

Il
[y
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Il
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3
Z yljlog(yl] =

j=1 L

M:

L(w,b) =

—log(Viiaver) = ) —l0g f;aper(W,b)

I
=

[ l

To simplify let’'s assumen=1

exp(aiaper(W, b)) )

FW 1) = ~10g(Giap (W, 5)) = —log 5 oo )
k=1 a(vw,



Supervised Learning — Linear Softmax

x=[x1 x5 X3 x4] y= [1 0 0] y= i fo Sl

a; = W1 X1 —+ Wi2X9 + W13X3 —+ W14X4 + bC
az — W21x1 + W22X2 + W23X3 + W24x4 + bd

a3 — W31x1 + W32x2 + W33x3 + W34x4 + bb

f1 =e%“/(e"r1+e“2 + e“3)
fo =e%2/(e“14+e?2 + e93)
[z =e"/(e“14+e?2 + e93)



Computing Analytic Gradients

This is what we have:

exp(@iapet (W, b)) )

£OW ,b) = —108() (W, b)) = —log —
2 =1 €xplax(W, b))



Computing Analytic Gradients

This is what we have:

exp(@iapet (W, b)) )

£OW ,b) = —108() (W, b)) = —log —
2 =1 €xplax(W, b))

exp(afabel) )

= —log( ;
2 =1 €xpla)

Reminder: a; = (W;1X1 + WioXp + Wi3X3 + Wi 4X,) + b;



Computing Analytic Gradients

This is what we have:

exp(afabel)
r = —log( ; )
Zk=l exp(ax)



Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log( ; )
D o explag)

This is what we need:

ot or

foreach wj;

ow;; ob,

for each bi




Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log( ; )
Zk,:l exp(ax)

Step 1: Chain Rule of Calculus

of  0f 0a; or or 0a,;

aLU“ B 5615 awu 01)1 - aai ab;

LJ



Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log( ; )
Zk,:l exp(ax)

Step 1: Chain Rule of Calculus

Let’s do these first

ot (3{11- or ot aa,;

56.!5 awu ab; aai abi




Computing Analytic Gradients

da; da;
db,

ow;;;

a; = (Wy1x1 + WX + Wisxs + W;4x4) + by

oa; d
l
= (Wi 11 +Wiox, + Wi3x3 + W 4x,) + by
aWi,3 aWi,3

aai
= X3
aWi,3
aai
— xj

aWi,j



Computing Analytic Gradients

aai aaf

aWi,j - xj abl

a; = (W 1X1 + WXy + Wi3Xs + Wiaxy) + b;

aai _ 0
db; b,

(W11 + WXy + Wi3X3 + Wi 4Xy) + by

aai

ab;



Computing Analytic Gradients

aai aa,;

= X;j — =
awi,]- J abl 1




ot

OW: :

LJ

Computing Analytic Gradients

This is what we have:

exp(afabei)
r = —log( ; )
2. r=1€xp(ax)

Step 1: Chain Rule of Calculus

Now let’s do this one (same for both!)

o7 | da, o¢ [ of Pa,

56.!5 awu ab; aai 'abi




Computing Analytic Gradients

ot 0 [—log( eXp(Qapet) )]

da, aa; E;:l exp(ax)
0
= o {log(z exp(ax)) — aiabel]

k=1

In our cat, dog, bear classification example: i ={1, 2, 3}



Computing Analytic Gradients

ot 0 [—log( eXp(Qapet) )]

da;  0a, E;:l exp(ax)

0
aa,,

[log(z exp(ax)) — aiabef]

k_

In our cat, dog, bear classification example: i ={1, 2, 3}

o0t 0t ¢

Let’s say: label = 2 We need: P P F.
1 2 3
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da,

das

Computing Analytic Gradients

0

aa,;

[log(i exp(ax)) — a!abel]

k=1

when [ # label:
3

log( )’ explay)) — alabel]
k

=1

o _ 0
0{:1,- aa,;

ot 0

3
= lo exp(a
e = % g(; p(a))

3
2_:- = ; )( aii Y exp(ay))

it exp(a) =i

ot . exp(a,;)
Oa Zn'?=1 exp(a;)

|
~



Supervised Learning — Linear Softmax

Xi = X1 Xip Xiz Xia] y;= [1 0 0] yi= 1 f2 f3l
A1 = Wy1Xj1 + WipXip + WisXiz + WigXis + D
Ay = Wy1Xj1 + WoXip + WosXiz + WosXig + by

(3 = W31Xj1 + W3yXip + W33Xj3 + W3sXi4 + by

f1 =e%“/(e"r1+e“2 + e“3)
fo =e%2/(e“14+e?2 + e93)
fz =e"/(e"1+e“2 + e%3)
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da,
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Computing Analytic Gradients

0

aa,;

[log(i exp(ax)) — a!abel]

k=1

when [ # label:
3

log( )’ explay)) — alabel]
k

=1

o _ 0
0{:1,- aa,;

ot 0

3
= lo exp(a
e = % g(; p(a))

3
2_:- = ; )( aii Y exp(ay))

it exp(a) =i

ot . exp(a,;)
Oa Zn'?=1 exp(a;)

|
~
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da,

Computing Analytic Gradients

0

aa,;

[log(zgl exp(ax)) — alabel]

k=1

when i = label:

ot 0

0Q;apel aalabel

[lo g(z exp(ax) — alabel)]

3

or 0
= log( ) exp(ax)) — 1
aalabel aalabel ;
or 1 0 :
(b ) S -
0Qgpel Yo exp(ay) / \ Oiavel (=]

of  _ _explawe) |

0a4pe; y k3= L explay)

Yyi—1



Computing Analytic Gradients

label = 2
83_/\ af_A 1 03_,\
aal_yl aaz_yz aa3_y3
¢ -
dul [ 9 ] [%] o
2 T I P B S _ s
9a |aa 7 |72 = |72 —|11=y-Yy
ot | L Y3 | V3 0
_aag_




Computing Analytic Gradients

of  of da, o o da,
awfj B aa,; awu abl aaf ab;
aai — . 6ai_ 85_/\ B
an"j_ J a_bl_l a_al_yl Vi
0¢ 0¢
oW @i — yix o5, = Ti =)




Automatic Differentiation

You only need to write code for the operations in the prediction step,
Gradient computation can be computed “automatically”.

Pytorch (Facebook -- mostly): https://pytorch.org/
Tensorflow (Google -- mostly): https://www.tensorflow.org/

MXNet (Amazon -- mostly): https://mxnet.apache.org/versions/1.9.0/



Perceptron Model

Frank Rosenblatt (1957) - Cornell University Activation

function

@k }
f(.X') _ {1, if wix; + b>0 @

Wy
i=0 Tb @ %@ —
0, otherwise /3'

More: https://en.wikipedia.org/wiki/Perceptron




Perceptron Model

Frank Rosenblatt (1957) - Cornell University

dendrites nucleus I ; NEURON
/\ o

n
)1, if wix;+b>0 | axon
flx) = { t=0 / axon ending

0, otherwise \
\ myelin sheath

cell body

More: https://en.wikipedia.org/wiki/Perceptron



Perceptron Model

Frank Rosenblatt (1957) - Cornell University Activation

function

@k }
f(.X') _ {1, if wix; + b>0 @

Wy
i=0 Tb @ %@ —
0, otherwise /3'

More: https://en.wikipedia.org/wiki/Perceptron




Activation Functions

Step(x) Sigmoid(x)

1.0}
08
06|
0.4

0.2]

-1.0 -0.5 0.5 1.0

-1.0 -0.5



Two-layer Multi-layer Perceptron (MLP)

Do
®-6—§

"hi dde "layer

Loss/C iterion

/@@@@

®-0— ¢
- /"



Linear Softmax

X = [x;1 Xip Xz Xig) y;= [1 0 0]

Jc = WeiXjp + WeaXin + WesXijz + WeaXig + D
Ja = Wq1Xi1 T WgaXip + WazXiz + WaaXis + by

Jp = Wp1Xi1 + WpaXip + Wp3Xiz + WpaXig + Dy

fC — egc/(egc+egd _|_ egb)
fd — egd/(egc+egd _|_ egb)

fb — egb/(egc+egd - egb)



Linear Softmax

X = [x;1 Xip Xz Xig) y;= [1 0 0] Vi

We1

e = WeiXip + WepXip + WesXiz + WegXiy + b — |lwy,
Ja = Wa1Xin T WaaXiz + Wa3Xiz + WaaXis + by Wp1
Ip = Wp1Xi1 T WpaXjz + Wp3Xj3 + WpaXig + Dy b —

fC — egc/(egc+egd _|_ egb)
fd — egd/(egc+egd _|_ egb)

fb — egb/(egc+egd - egb)



Linear Softmax

X = [x;1 Xip Xz Xig) Yi

g=wx! + bl

fC — egc/(egc+egd -+ egb)
fd — egd/(egc+egd -+ egb)

[, = e9b [(eIc+e9d + eIb)

[1 0 O]

W =

Wa1 Wa2 Wgaz Wgs



X; = [xXi1 X2 X3 X]

g=wx! + bl

f =softmax(g)

Linear Softmax

y; = [1 0 O]

W =

yl — [fc
Weq Weo
Wa1 Wao
Wp1 Wh2
b= [bc bd



Linear Softmax

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] Vi /e fa Jbl

f = softmax(wx? + bT)



Two-layer MLP + Softmax

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] Vi /e fa Jbl

a, = sigmoid(wpx" + byyy)

f = softmax(wpp;a," + b))



X; = [xXi1 X2 X3 X]

N-layer MLP + Softmax

y; = [1 0 O]

a, = sigmoid(wpx" + byyy)

a, = sigmoid(wpai + bjy)

ay = sigmoid(Wyag—q + byjg)

f = softmax(Wpyah_1 + bjyy)



How to train the parameters?

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] Vi /e fa Jbl

a, = sigmoid(wyx" + byyp)

a, = sigmoid(wpy;ai + biy)

ay = sigmoid(Wpag—q + i)

f = softmax(Wpyah_1 + bjyy)



Forward pass (Forward-propagation)

DO @08
@@\ @@@@

T @/
- /"
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Forward pass (Forward-propagation)

n . .
z : a; = Sigmoid(z;
1=




How to train the parameters?

X; = [Xj1 Xip Xz X4 yi= [1 0 0] yi= e fa

Q
[N
|

sigmoid(wyx" + byyy)

Q
N
|

sigmoid(wpp;ai + b))
We can still use SGD

ay = sigmoid(Wpqag—q + bj)
We need!

ol ol
OW (ki 0Dk

f = softmax(Wpyah_1 + bjyy)




How to train the parameters?

X; = [xXi1 X2 X3 X] Yi

a, = sigmoid(wyx" + byyp)

a, = sigmoid(wpy;ai + biy)

a; = Sigmoid(w[k]a£_1 + bf;{])

f = softmax(Wpyas_1 + biyy)

[ = loss(f,y)

[1 0 O]

We can still use SGD

We need!
dl 0l
OW[k)ij 0Dy



How to train the parameters?

X; = [xXi1 X2 X3 X] Yi

a, = sigmoid(wyx" + byyp)

a, = sigmoid(wpy;ai + biy)

a; = Sigmoid(w[k]a£_1 + bf;{])

f = softmax(Wpyas_1 + biyy)

[ = loss(f,y)

[1 0 O]

We can still use SGD

We need!
dl 0l
OW[k)ij 0Dy



How to train the parameters?

X; = [Xi1 Xip Xiz Xig] yi= [1 0 0] yi= Uc fa Jb]

a, = sigmoid(wyx" + byyp)
a, = sigmoid(wpy;ai + biy)

al dl day,, Odag_p dap_4
OWkjij 0an_1 0an_p dag_1 OW[K);;

a; = Sigmoid(w[k]a£_1 + bf;{])

f = softmax(Wpyas_1 + biyy)

[ = loss(f,y)



Backward pass (Back-propagation)

oL 9 " oL dL d < d )aL
R — = (—— LY b R  — = —Siogmoi 7.) ——
dxy (axkzizowllfle“ 1) 0z; 0z; 0z; 7 Y oag
dL B 0 Z” b oL
@ q@ \ da N (aak i:oWZiai 2) op,
oL a .. . oL
\ dp1  0py Stgmoid(p:) 0y1

s
Sz P exelele 6
T @-0— 2
dL  dp, OL
/! ow,; 0wy, dp, 2L = aiylL(yl, V1)
TN @0/
oWy, B oWy, azi

91




Automatic Differentiation

You only need to write code for the forward pass,
backward pass is computed automatically.

Pytorch (Facebook -- mostly): https://pytorch.org/
Tensorflow (Google -- mostly): https://www.tensorflow.org/

MXNet (Amazon -- mostly): https://mxnet.apache.org/versions/1.9.0/



Defining a Model in Pytorch (Two Layer NN)

import torch.nn as nn
import torch.nn.functional as F

class TwoLayerNN(nn.Module):
def init (self):
super (TwoLayerNN, self). init ()

nn.Linear(l * 28 * 28, 512)
nn.Linear(512, 10)

self.linearl =
self.linear2 =
def forward(self, x):

X = X.view(batchSize, 1 * 28 * 28)

z = F.relu(self.linearl(x))

return self.linear2(z)



1. Creating Model, Loss, Optimizer

# Create the model.
model = TwoLayerNN()
loss fn = nn.CrossEntropyLoss()

# Define a learning rate.
learningRate = 5e-2

# Optimizer.
optimizer = optim.SGD(model.parameters(), lr = learningRate,
momentum = 0.9, weight decay = le-4)



2. Running forward and backward on a batch

# Forward pass. (Prediction stage)
scores = model (inputs)
loss = loss fn(scores, labels)

# Zero the gradients in the network.
optimizer.zero grad()

#Backward pass. (Gradient computation stage)
loss.backward()

# Parameter updates (SGD step) -- if done with torch.optim!
optimizer.step()



Create an algorithm to distinguish dogs

from cats
. Birdsnap

1

Yellow-breasted Chat

Face Detection in
Cameras

Computer Vision

Left view

Right view



Human Vision / Human Brain

Geometry
Machine Learning
5 ] . Computer Vision
eep Learning Optics /
Cameras

Robotics



Who is using
Computer
Vision?

Facebook — Oculus VR, Image Search, Image tagging, Content
filtering, Instagram, etc.

Google/Alphabet — Waymo, DeepMind, Image Search, Google
Earth/Maps, Street View, Google Photos, etc.

Adobe — Photoshop, Premiere, Lightroom, etc.

Snap Inc — Snapchat, Smart Goggles, Filters, Face Detection,
Style Transfer, etc.

eBay Inc — Product Search, Product Matching, Content
Filtering, Duplicate Removal, etc.

Amazon — Warehouse robotics, Smart Stores, Product Search.
IBM — Image Retrieval, Medical Applications, Product Quality.

Microsoft — Hololens, Optical Character Recognition (OCR),
Face Detection, Cloud Services.

Apple — Face Verification, Enhanced cameras and chips for
image processing.

59



bristles

‘TJ’ compare paint colors
@,\ tape for clean edges

7{‘( mix & match products

\ easy hackground removal

erase hardware & fixtures

[ save & share mockups

https://bristles.ai/

\883\‘s\-‘lq

60


https://bristles.ai/
https://bristles.ai/

//bristles.ai/

https
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https://bristles.ai/
https://bristles.ai/

Safety Score
r | Loved. O nes, : Your nightly average:
for Caregivers
ote Al older adult monitoring at home and in communitig : ,
i .‘\.‘"I 7 " g\ 4 / i 1 4&, .
Order Now ) » Product Demo [ - g 1 ; -J“
N v B 7 P Last Nights Detection

‘ Current Status g

Mom
Fallen Out of Bed for 2 minutes

||l|u|||“|||
‘)\'ﬁ%

S

https://www.mercuryalert.ai/ 62



https://www.mercuryalert.ai/

Home - 418 Smithe St ]2]4

14.2 mi - 15 min Monday, August 24

Th
Ay ¢ Begy ngef
;M

PHEIMRIR

Phiar.ai (now part of Google)
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Images

* Can be viewed as a matrix with pixel values

_,A.'.:@;-- B 8 7 f g 4 3 2
\L.t‘(;.lrc Montparnase. 1595
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Images

 Or as a function in a 2D domain

65



Color Images

e Can be viewed as tensors (3-dimensional arrays)

OOEEEEERE

sizeof(T) = 3 x height x width

Channels are usually RGB: Red, Green, and Blue

Other color spaces: HSV, HSL, LUV, XYZ, Lab, CMYK, etc

66



Why is it hard?
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This is just as hard for computers

JEEAADEEEEAEDEDEEEEEENEDAEEHEEAAARDEEEMEECIEEEEIE]
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Why is Computer Vision hard?

Ambiguities due to
viewpoints

X
[Sinha and Adelson 1993]
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Why is Computer Vision hard?

Ambiguities due to
viewpoints

~ slide by Fei Fei, Fergus & Torralba
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Why is Computer Vision hard?

Issues with
lllumination

slide credit: S. Ullman
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Why is Computer Vision hard?

Background
clutter
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Why is Computer Vision hard?

Intra-class
variation

I

i /
/
/
'
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slide by Fei-Fei, Fergus & Torralba
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Computer Vision vs Image Processing

* Computer Vision: Image —— Knowledge
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Computer Vision vs Image Processing

* Image Processing: Image —— Image
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Basic Image Processing

Primer on Image Processing: https://bit.ly/3IGEdwv
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https://bit.ly/3lGEdwv

Most important operation for Computer Vision (*)

* The Convolution Operation

(*) Maybe

Input image * Weights > Output image

4 \'5 7 6|6

312 8|07 0!l 0 O 11| 2 | 15
6 7711 ]s |« 7110 1| —| 13] 8 | 12
3]0 1111 0o 0! 0

4 '3 2117

http://www.cs.virginia.edu/~vicente/recognition/animation.gif
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http://www.cs.virginia.edu/~vicente/recognition/animation.gif

Most important operation for Computer Vision (*)

* The Convolution Operation

Input image * Weights

415 7|66
312 8,07 0. 0 0
6|7 7115 |*xl1]0!1
3.0 1|11 0 0 0
4 13 20117

Convolutional filter
Convolutional kernel
Filter
Kernel

(*) Maybe

Output image

15

12

11| 2
13 | 8
4
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Most important operation for Computer Vision (*)

* The Convolution Operation

Input image * Weights Output image
4 5 7 6 6
312 8|07 0ol 0 o0 11| 2 | 15
6|7 7115 |*xl1]0!1 13| 8 | 12
310 1711 1 ol ol o 4
4 3 211 7 k(x,y)

fxy) g(x,y)

(*) Maybe
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Image filtering: Convolution operator
e.g. mean filter

“__.,—-""'f* operation —J_ 1/9 1/9 1/9

Kl i

k(x, y) _ 1/9 1/9 1/9

Input image k(x, y) Output image 1/9 1/9 1/9

f(x.y) a(x.y)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Image filtering: Convolution operator
e.g. mean filter

,.,~I| ati
[t operation B

- [

T il

k(x,y) =

Input image Output image
fix.y) k (x’ y ) g(x.y)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Example: box filter

1|11
1
— 1] 11
9

1|11

Slide credit: David Lowe (UBC)



Image filtering ABnE
o -1 2

f[.,.] l.,.]

h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz
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Image filtering ABnE
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Image filtering T

f[.,.] l.,.]

h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Image filtering

f[.,.]

ol 1:

., ]

20

30

30

h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Image filtering

f[.,.]

ol 1:

., ]

20

30

30

50

h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Image filtering al- -1 [

f[.,.]

h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Box Filter

What does it do?

* Replaces each pixel with 111 |1
an average of its 1
neighborhood — |1 (1|1

9
. . 1] 1] 1
* Achieve smoothing effect

(remove sharp features)

Slide credit: David Lowe (UBC)



Image filtering: e.g. Mean Filter




Image filtering: Convolution operator
Important filter: gaussian filter (gaussian blur)

,_~i| ration
L] i H"""‘--.

- [

Kl |

Input image Output image
fix.y) k (x’ y ) g(x.y)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Important filter: Gaussian

* Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
2 0.003 0.013 0.022 0.013 0.003

5X5,0=1
1 _E24y®
G-{I — e 207
22

Slide credit: Christopher Rasmussen



Image filtering: Convolution operator
e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Practical matters

* What about near the edge?

* the filter window falls off the edge of the image
* need to extrapolate

* methods:
* clip filter (black)
* wrap around
* copy edge
 reflect across edge

Source: S. Marschner



Questions?
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