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Deep Learning for Vision &
Language

Computer Vision I: The Convolutional Operator, Image Filtering and
Convolutional Neural Networks, and ConvNet Architectures

% RICE UNIVERSITY




Most important operation for Computer Vision (*)

* The Convolution Operation

Input image * Weights > Output image

415 766

32 8 0|7 0l o o 11| 2 | 15
6 7711 ]s |« 7110 1| —| 13] 8 | 12
30 1|11 0l 0o o

413 2|17

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

(*) Maybe


http://www.cs.virginia.edu/~vicente/recognition/animation.gif

Most important operation for Computer Vision (*)

* The Convolution Operation

Input image * Weights Output image

4 |5 7 6 |6

312 8 0| 7 0ol 0 o0 11| 2 | 15
6|7 7115 |*xl1]0!1 13| 8 | 12
30 111 1 ol ol o 4

4 | 3 2011 | 7

Convolutional filter
Convolutional kernel
Filter
Kernel

(*) Maybe



Most important operation for Computer Vision (*)

* The Convolution Operation

Input image * Weights Output image
4 5 7 6 6
312 8|07 0ol 0 o0 11| 2 | 15
6|7 7115 |*xl1]0!1 13| 8 | 12
310 1711 1 ol ol o 4
4 3 211 7 k(x,y)

fxy) g(x,y)

(*) Maybe



Image filtering: Convolution operator
e.g. mean filter

“__.,—-""'f* operation —J_ 1/9 1/9 1/9

Kl i

k(x, y) _ 1/9 1/9 1/9

Input image k(x, y) Output image 1/9 1/9 1/9

f(x.y) a(x.y)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Image filtering: Convolution operator
e.g. mean filter

,.,~I| ati
[t operation B

- [

T il

k(x,y) =

Input image Output image
fix.y) k (x’ y ) g(x.y)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Example: box filter

1|11
1
— 1] 11
9

1|11

Slide credit: David Lowe (UBC)



Image filtering ABnE
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h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz
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Image filtering T
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h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Image filtering

f[.,.]
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h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Image filtering
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h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Image filtering al- -1 [

f[.,.]

h{m,n] = g[k,1] f[m+k,n-+1]

Credit; S. Seitz



Box Filter

What does it do?

* Replaces each pixel with 111 |1
an average of its 1
neighborhood — |1 (1|1

9
. . 1] 1] 1
* Achieve smoothing effect

(remove sharp features)

Slide credit: David Lowe (UBC)



Image filtering: e.g. Mean Filter




Image filtering: Convolution operator
Important filter: gaussian filter (gaussian blur)

,_~i| ration
L] i H"""‘--.

- [

Kl |

Input image Output image
fix.y) k (x’ y ) g(x.y)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Important filter: Gaussian

* Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
2 0.003 0.013 0.022 0.013 0.003

5X5,0=1
1 _E24y®
G-{I — e 207
22

Slide credit: Christopher Rasmussen



Image filtering: Convolution operator
e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Practical matters

* What about near the edge?

* the filter window falls off the edge of the image
* need to extrapolate

* methods:
* clip filter (black)
* wrap around
* copy edge
 reflect across edge

Source: S. Marschner



Convolution: Useful Operator for Image Processing

* Not all image filtering — region neighborhood operators can be
expressed as convolutions.

* They also can be used to extract information about edges and shapes
.e.g. for image recognition

* Convolutional operations are at the basis of convolutional neural
networks.

21



Image filtering: Convolution operator
Important Filter: Sobel operator

|_—» operation —_ |
e

Kl i

k(yy= | 2 | 0| 7

Input i Output i}
nput image k(x,y) utput image 1 0 1

f(x.y) a(x.y)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-p

rocessing-part-1/



Other filters

110]-1

210]-2

110]-1
Sobel

Vertical Edge
Slide by James Hays (absolute value)



Other filters

11211

0/0/|0

11]-2|-1
Sobel

Horizontal Edge
Slide by James Hays (absolute value)



Sobel operators are equivalent to 2D partial

derivatives of the image
* VVertical sobel operator — Partial derivative in X (width)

* Horizontal sobel operator — Partial derivative in Y (height)
* Can compute magnitude and phase at each location.

» Useful for detecting edges



https://en.wikipedia.org/wiki/Sobel operator




Sobel filters are (approximate) partial derivatives
of the image

Let f(x,y) beyourinputimage, then the partial derivative is:

af(x'y) _ llmf(x + h'y) _f(x'y)

dx h—0 h

Also: 0fxy) _ . fathy) —flx—hy)
dx h—0 2h




But digital images are not continuous, they are
discrete

Let f[x,y] beyourinputimage, then the partial derivative is:

Aeflx,yl = flx+ 1Lyl — flx,y]

Also: Acfl,yl=flx+ Lyl = flx = Ly]



But digital images are not continuous, they are
discrete

Let f[x,y] beyourinputimage, then the partial derivative is:

Aeflx,yl = flx+ 1Lyl — flx,y] k(x, y) = -1

Also: Aflx,yl=flx+Ly]=flx=1y] kixy)=| -1 | 0




Sobel Operators Smooth in Y and then
Differentiate in X

k(x, y) = 2 * 1 0 -1 _

Similarly to differentiate in Y



HoG

Image Features

Histogram of Oriented Gradients

Input image

’ :‘.I.l!‘* o — J -~
r D e sl i i ki

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.

Scikit-image implementation



Image Features: HoOG

+ Block Normalization

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.
Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.



Image Features: GIST

The “gist” of a scene: Oliva & Torralba, 2001



Image Features: GIST

| high
—,  edge
energy

low
edge
energy

Edge Orientation

Oriented edge response at multiple scales (5 spatial scales, 6

edge orientations) ggg;and Efros, SIG:



Image Features: GIST

high
edge
energy

low
edge
energy

Edge Onentahon

Aggregated edge responses over 4x4 windows

Hays and Efros, SIG!
2007



The 2D Convolutional Layer in a Neural Network

Input image * Weights — Output image

4 s
32 51010 11| 2 |15
6 | 7 1ol 1| — 13| 8 |12
3 0 0/ 0 O

4 | 3




The 2D Convolutional Layer in a Neural Network

slwlolw &
wlolwin | n




The 2D Convolutional Layer in a Neural Network

Weights

slwloyw b
WwWlolw o n




The 2D Convolutional Layer in a Neural Network

Weights




The 2D Convolutional Layer in a Neural Network

Weights




Convolutional Layer (with 4 filters)

weights:
4x1x9x9

Output: 4x224x224

\

if zero padding,
and stride=1

Input: 1x224x224




Convolutional Layer (with 4 filters)

weights:
4x1x9x9

Output: 4x112x112

\

if zero padding,
but stride =2

Input: 1x224x224




Convolutional Layer in pytorch

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True) [source]

kernel_size

In /\
put out channels x Output
LYJ kernel_size
in_channels
\ J
|
‘ | out_channels (equals the number of

lutional filters for this |
in_channels (e.g. 3 for RGB inputs) convolutional filters for this layer)



Convolutional Network: LeNet

C3: f. maps 16@ 1010
INPUT C1: feature maps S4: f. maps 15@5;{5

B2 B2l .
3232 52 1. maps -[',5 layer Fﬁ layer DLITF"LIT

B@14x14
r

| FuII cmrllecuﬂn Gausslan connections
Convolutions Subsampling Corvolutions  Su bﬁamplmg Full mnnecnﬂn
TITLE CITED BY YEAR
Gradient-based learning applied to document recognition 72753 1998

Y LeCun, L Bottou, Y Bengio, P Haffner
Proceedings of the IEEE 86 (11), 2278-2324

Yann L'eCun



LeNet in Pytorch

# LeNet is French for The Network, and is taken from Yann Lecun's 98 paper
# on digit classification http://yann.lecun.com/exdb/lenet/
# This was also a network with just two convolutional layers.
class LeNet(nn.Module):
def init (self):
super (LeNet, self)._ init ()
# Convolutional layers.
self.convl = nn.Conv2d(3, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)

# Linear layers.

self.fcl = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear (120, 84)
self.fc3 nn.Linear (84, 10)

def forward(self, x):
out F.relu(self.convl(x))
out = F.max_pool2d(out, 2)
out F.relu(self.conv2(out))
out F.max pool2d(out, 2)

# This flattens the output of the previous layer into a vector.
out = out.view(out.size(0), -1)

out = F.relu(self.fcl(out))
out = F.relu(self.fc2(out))
out = self.fc3(out)

return out



SBlw ol w

Spat__i_all\/laxPooIing Layer

take the max in this neighborhood




LeNet Summary

e 2 Convolutional Layers + 3 Linear Layers

* + Non-linear functions: ReLUs or Sigmoids
+ Max-pooling operations



New Architectures Proposed

* Alexnet (Kriszhevsky et al NIPS 2012) [Required Reading]
* VGG (Simonyan and Zisserman 2014)

* GooglLeNet (Szegedy et al CVPR 2015)

 ResNet (He et al CVPR 2016)

* DenseNet (Huang et al CVPR 2017)



Convolutional Layers as Matrix Multiplication

Input Image

)

B

epth

Convolution Kernel

v\D‘epth

A
Kernel
Size

v

-

Kerne
Size

https://petewarden.com/2015/04/20/why-gemme-is-at-the-heart-of-deep-learning/



Convolutional Layers as Matrix Multiplication

Input Image

N

Patch Patch ';Ziﬁﬂ 12
1 - -~
N ]
Im2col
- ~ -«
~ —_

https://petewarden.com/2015/04/20/why-gemme-is-at-the-heart-of-deep-learning/



Convolutional Layers as Matrix Multiplication

Input Matrix Kernel Matrix
K
< >
Patch 1 4 A
Patch 2
< < Pros?
% x| Cons?
- k|EE
o — N
0
O
-
D
w
v
v « |

Number of Kernels

https://petewarden.com/2015/04/20/why-gemme-is-at-the-heart-of-deep-learning/



CNN Computations are Computationally Expensive

* However highly parallelizable
« GPU Computing is used in practice
* CPU Computing in fact is prohibitive for training these models



he Alexnet network (Krizhevsky et al NIPS 2012)

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca 1ilya@cs.utoronto.ca hinton@cs.utoronto.ca



The Problem: Classification

Classify an image into 1000 possible classes:
e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee,
red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71)
Egyptian cat (0.22)
‘ red fox (0.11)




The Data: ILSVRC

Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories
~1000 training images per Category
~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations,
evaluation is performed centrally by the organizers (max 2 per week)



The Evaluation Metric: Top K-error

True label: Abyssinian cat

1.0
1.0

1.0
0.0
0.0

cat, tabby cat (0.61)
Egyptian cat (0.22)
red fox (0.11)
Abyssinian cat (0.10)
French terrier (0.03)

0.0
0.0

0.0
1.0
1.0



Top-5 error on this competition (2012)

TASK 1 - CLASSIFICATION
35

30

25
3¢ 20
& 15

10

CNN SIFT+FV SVM1 SVM2  NCM

.



Alexnet

https://www.saagie.com/fr/blog/object-detection-partl



Pytorch Code for Alexnet

* In-class analysis

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py



https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Dropout Layer
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(b) After applying dropout.

Standard Neural Net
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Srivastava et al 2014



What is happening?

Deep Neural Network

.-- - 3
N Pt /
X /
7 o‘\\i\\: = \
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SEAOR

Output Layer

Input Layer

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3

edges combinations of edges object models

https://www.saagie.com/fr/blog/object-detection-partl



SIFT + FV + SVM (or softmax)

Feature Feature it
. _ Classification
— | extraction | —| encoding |— (SVM or softmax)
(SIFT) (Bag of words)

Deep Learning

Convolutional
— Neural — Classifier
Network (SVM or softmax)




Pre-training

Convolutional
Neural
Network

Classifier

|
|
|
|
|
|
|
|
|
v

Convolutional
— Neural
Network

My Classifier

1000 categories
1 million images

20 categories
400 images




Preprocessing and Data Augmentation




Preprocessing and Data Augmentation
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256 —




Preprocessing and Data Augmentation

224x224




Preprocessing and Data Augmentation

224x224
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Other Data Augmentation options

Pytorch: https://pytorch.org/vision/stable/transforms.htmi

* Basic: RandomCrop, RandomResize, RandomHorizontalFlip

 Geometric: RandomRotation, RandomPerspective, RandomAffine,
etc.

* Color: RandomAutoContrast, RandomEqualize, RandomPosterize, etc.

e Other: RandomeErasing (https://arxiv.org/abs/1708.04896)

69


https://pytorch.org/vision/stable/transforms.html
https://arxiv.org/abs/1708.04896

Advanced Data Augmentation

* MixUp — 2017 (https://arxiv.org/abs/1710.09412)

e AutoAugment - 2018 (https://arxiv.org/abs/1805.09501)
 RandAugment - 2019 (https://arxiv.org/abs/1909.13719)
e CutMix — 2019 (https://arxiv.org/abs/1905.04899)

e AugMix — 2019 (https://arxiv.org/abs/1912.02781)

* TrivialAugment - 2021 (https://arxiv.org/abs/2103.10158)

70


https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1905.04899
https://arxiv.org/abs/1912.02781
https://arxiv.org/abs/2103.10158

Other Important Aspects

* Using RelLUs instead of Sigmoid or Tanh

* Momentum + Weight Decay

* Dropout (Randomly sets Unit outputs to zero during training)
* GPU Computation!

Model Top-1 | Top-5

Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%




VGG Network Top-5:

FC
Prediction
[ ————— ]

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

Simonyan and Zisserman, 2014.
https://arxiv.org/pdf/1409.1556.pdf



https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://arxiv.org/pdf/1409.1556.pdf

GoogleNet

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py

Szegedy et al. 2014
https://www.cs.unc.edu/~wliu/papers/GoogleNet.pdf



https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

5x5

Filter Concat

3x3

1x1

1x1

GoogleNet (Inceptionvl)

1x1

Pool

\‘

Base

Further Refinements — Inception v3, e.g.

Filter Concat

1x1

3x3
3x3 3x3 1x1
1x1 1x1 Pool 1x1

T

Base

Inception v3

/




BatchNormalization Layer

Input: Values of x over a mini-batch: B = {x1_ . };
Parameters to be learned: ~, 3
Output: {y; = BN, g(z;)}

1 m
— — i // mini-batch
b ;:r: mini-batch mean
O E i(az — uB)* // mini-batch variance
coom i=1 Z
T 15 // normalize
\/ 0123 + €
yi < 7T + = BN, g(z;) // scale and shift

https://arxiv.org/abs/1502.03167



Revolution of Depth

cicheheher et

AlexNet, 8 layers = VGG, 19 layers
(ILSVRC 2012) (ILSVRC 2014)

ResNet, 152 layers
(ILSVRC 2015)

e

i

28.2

‘ 152 layers ’

\
\
\
‘ 22 layers H 19 Iayers
\ 6.7 I

ILSVRC'15 ILSVRC'14  ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

UBEELUL

i

i

iy

.

e

W.

Slide by Mohammad Rastegari



ResNet (He et al CVPR 2016)

Sorry, does not fit in slide.

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py



http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

More Recent CNNs you can learn

 DenseNet - 2016 (Similar to ResNet but all layers connect to all next and previous
layers) https://arxiv.org/abs/1608.06993

* ResNext — 2016 (Combines ideas from ResNet and InceptionNets
https://arxiv.org/abs/1611.05431v2)

* NASNet — 2017 (Search the space of possible architectures)
https://arxiv.org/abs/1707.07012

 EfficientNet — 2019 (Scales up both width and depth of CNNs using a more
principled approach) https://arxiv.org/abs/1905.11946

* RegNet — 2020 (Paper has a more principled formula to decide on widths and
depths) https://arxiv.org/abs/2003.13678

* ConvNext — 2022 (Combines many tricks both at the architecture and
optimization level) https://arxiv.org/abs/2201.03545



https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1611.05431v2
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/2201.03545

Questions?

79
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