
Deep Learning for Vision & 
Language

Computer Vision I: The Convolutional Operator, Image Filtering and 
Convolutional Neural Networks, and ConvNet Architectures 



Most important operation for Computer Vision (*)

• The Convolution Operation
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http://www.cs.virginia.edu/~vicente/recognition/animation.gif

(*) Maybe

http://www.cs.virginia.edu/~vicente/recognition/animation.gif


Most important operation for Computer Vision (*)

• The Convolution Operation
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Convolutional filter
Convolutional kernel

Filter
Kernel

(*) Maybe
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• The Convolution Operation

3

𝑔 𝑥, 𝑦 = ෍

𝑣

෍

𝑢

𝑘 𝑢, 𝑣 𝑓(𝑥 − 𝑢, 𝑦 − 𝑣) 

𝑓(𝑥, 𝑦) g(𝑥, 𝑦)

𝑘(𝑥, 𝑦)
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Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/
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Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/
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Example: box filter
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What does it do?

• Replaces each pixel with 

an average of its 

neighborhood

• Achieve smoothing effect 

(remove sharp features)
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Slide credit: David Lowe (UBC)
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Box Filter



Image filtering: e.g. Mean Filter



Image filtering: Convolution operator
Important filter: gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦) 

𝑘(𝑥, 𝑦) =  

1/16 1/8 1/16
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• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003

0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022

0.013   0.059   0.097   0.059   0.013

0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen 

Important filter: Gaussian



Image filtering: Convolution operator
e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/



Practical matters
• What about near the edge?

• the filter window falls off the edge of the image

• need to extrapolate

• methods:
• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner



Convolution: Useful Operator for Image Processing

• Not all image filtering – region neighborhood operators can be 
expressed as convolutions.

• They also can be used to extract information about edges and shapes 
.e.g. for image recognition

• Convolutional operations are at the basis of convolutional neural 
networks.

21



Image filtering: Convolution operator
Important Filter: Sobel operator

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦) 

𝑘(𝑥, 𝑦) =  
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Other filters
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Sobel

Slide by James Hays



Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

Slide by James Hays



Sobel operators are equivalent to 2D partial 
derivatives of the image
• Vertical sobel operator – Partial derivative in X (width)

• Horizontal sobel operator – Partial derivative in Y (height)

• Can compute magnitude and phase at each location.

• Useful for detecting edges



https://en.wikipedia.org/wiki/Sobel_operator



Sobel filters are (approximate) partial derivatives 
of the image

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥, 𝑦)

ℎ

𝑓(𝑥, 𝑦) be your input image, then the partial derivative is:Let

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥 − ℎ, 𝑦)

2ℎ
Also:



But digital images are not continuous, they are 
discrete

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:



But digital images are not continuous, they are 
discrete

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:

-1 1

-1 0 1

k(x, y) =

k(x, y) =



Sobel Operators Smooth in Y and then 
Differentiate in X

1 0 -1k(x, y) =

1

2

1

* =

1 0 -1

2 0 -2

1 0 -1

Similarly to differentiate in Y



Image Features: HoG

Scikit-image implementation

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people. 



Image Features: HoG

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.
Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.

+ Block Normalization



Image Features: GIST

The “gist” of a scene: Oliva & Torralba, 2001



Image Features: GIST

Oriented edge response at multiple scales (5 spatial scales, 6 
edge orientations) Hays and Efros, SIGGRAPH 

2007



Image Features: GIST

Aggregated edge responses over 4x4 windows
Hays and Efros, SIGGRAPH 
2007



The 2D Convolutional Layer in a Neural Network



The 2D Convolutional Layer in a Neural Network



Weights

The 2D Convolutional Layer in a Neural Network
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Weights

The 2D Convolutional Layer in a Neural Network
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Weights

The 2D Convolutional Layer in a Neural Network



Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x224x224

if zero padding,
and stride = 1

weights:
4x1x9x9



Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x112x112

if zero padding,
but stride = 2

weights:
4x1x9x9



Convolutional Layer in pytorch



Convolutional Network: LeNet

Yann LeCun



LeNet in Pytorch



SpatialMaxPooling Layer

take the max in this neighborhood

8

8

8

8 8



LeNet Summary 
• 2 Convolutional Layers + 3 Linear Layers

• + Non-linear functions: ReLUs or Sigmoids
+ Max-pooling operations



New Architectures Proposed
• Alexnet (Kriszhevsky et al NIPS 2012) [Required Reading]

• VGG (Simonyan and Zisserman 2014)

• GoogLeNet (Szegedy et al CVPR 2015)

• ResNet (He et al CVPR 2016)

• DenseNet (Huang et al CVPR 2017)



Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/



Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/



Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Pros?
Cons?



CNN Computations are Computationally Expensive

• However highly parallelizable

• GPU Computing is used in practice

• CPU Computing in fact is prohibitive for training these models



The Alexnet network (Krizhevsky et al NIPS 2012)



The Problem: Classification

Classify an image into 1000 possible classes:
e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee, 

red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat  (0.71)
Egyptian cat (0.22)
red fox (0.11)
…..



The Data: ILSVRC

Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations, 
evaluation is performed centrally by the organizers (max 2 per week)



The Evaluation Metric: Top K-error

cat, tabby cat  (0.61)
Egyptian cat (0.22)
red fox (0.11)
Abyssinian cat (0.10)
French terrier (0.03)
…..

True label: Abyssinian cat

Top-1 error: 1.0 Top-1 accuracy: 0.0

Top-2 error: 1.0 Top-2 accuracy: 0.0

Top-3 error: 1.0 Top-3 accuracy: 0.0

Top-4 error: 0.0 Top-4 accuracy: 1.0

Top-5 error: 0.0 Top-5 accuracy: 1.0



Top-5 error on this competition (2012)



Alexnet

https://www.saagie.com/fr/blog/object-detection-part1



Pytorch Code for Alexnet 

• In-class analysis

 https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py


Dropout Layer

Srivastava et al 2014



What is happening?

https://www.saagie.com/fr/blog/object-detection-part1



Feature 
extraction 

(SIFT)

Feature 
encoding

(Bag of words)

Classification
(SVM or softmax)

SIFT + FV + SVM (or softmax)

Convolutional 
Neural

Network

Deep Learning

Classifier
(SVM or softmax)



Convolutional 
Neural

Network
Classifier

Pre-training

Fine-tuning

1000 categories
1 million images

Convolutional 
Neural

Network
My Classifier

20 categories
400 images



Preprocessing and Data Augmentation



Preprocessing and Data Augmentation

256

256



Preprocessing and Data Augmentation

224x224



Preprocessing and Data Augmentation

224x224



True label: Abyssinian cat



Other Data Augmentation options
Pytorch: https://pytorch.org/vision/stable/transforms.html

• Basic: RandomCrop, RandomResize, RandomHorizontalFlip

• Geometric: RandomRotation, RandomPerspective, RandomAffine, 
etc.

• Color: RandomAutoContrast, RandomEqualize, RandomPosterize, etc.

• Other: RandomErasing (https://arxiv.org/abs/1708.04896)

69

https://pytorch.org/vision/stable/transforms.html
https://arxiv.org/abs/1708.04896


Advanced Data Augmentation
• MixUp – 2017 (https://arxiv.org/abs/1710.09412)

• AutoAugment - 2018 (https://arxiv.org/abs/1805.09501)

• RandAugment - 2019 (https://arxiv.org/abs/1909.13719)

• CutMix – 2019 (https://arxiv.org/abs/1905.04899)

• AugMix – 2019 (https://arxiv.org/abs/1912.02781)

• TrivialAugment - 2021 (https://arxiv.org/abs/2103.10158)

70

https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1905.04899
https://arxiv.org/abs/1912.02781
https://arxiv.org/abs/2103.10158


•Using ReLUs instead of Sigmoid or Tanh

•Momentum + Weight Decay

•Dropout (Randomly sets Unit outputs to zero during training) 

•GPU Computation!

Other Important Aspects



VGG Network

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

Simonyan and Zisserman, 2014.

Top-5: 

https://arxiv.org/pdf/1409.1556.pdf

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://arxiv.org/pdf/1409.1556.pdf


GoogLeNet

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py

Szegedy et al. 2014

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf


Further Refinements – Inception v3, e.g. 

GoogLeNet (Inceptionv1) Inception v3



BatchNormalization Layer

https://arxiv.org/abs/1502.03167



Slide by Mohammad Rastegari



ResNet (He et al CVPR 2016)

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png

Sorry, does not fit in slide.

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py


More Recent CNNs you can learn

• DenseNet - 2016 (Similar to ResNet but all layers connect to all next and previous 
layers) https://arxiv.org/abs/1608.06993

• ResNext – 2016 (Combines ideas from ResNet and InceptionNets 
https://arxiv.org/abs/1611.05431v2)

• NASNet – 2017 (Search the space of possible architectures) 
https://arxiv.org/abs/1707.07012

• EfficientNet – 2019 (Scales up both width and depth of CNNs using a more 
principled approach) https://arxiv.org/abs/1905.11946

• RegNet – 2020 (Paper has a more principled formula to decide on widths and 
depths) https://arxiv.org/abs/2003.13678

• ConvNext – 2022 (Combines many tricks both at the architecture and 
optimization level) https://arxiv.org/abs/2201.03545

https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1611.05431v2
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/2201.03545
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Questions?
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