
Deep Learning for Vision &
Language

Computer Vision I: The Convolutional Operator, Image Filtering and
Convolutional Neural Networks, and ConvNet Architectures

Most important operation for Computer Vision (*)

• The Convolution Operation

1

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

(*) Maybe

http://www.cs.virginia.edu/~vicente/recognition/animation.gif

Most important operation for Computer Vision (*)

• The Convolution Operation

2

Convolutional filter
Convolutional kernel

Filter
Kernel

(*) Maybe

Most important operation for Computer Vision (*)

• The Convolution Operation

3

𝑔 𝑥, 𝑦 = ෍

𝑣

෍

𝑢

𝑘 𝑢, 𝑣 𝑓(𝑥 − 𝑢, 𝑦 − 𝑣)

𝑓(𝑥, 𝑦) g(𝑥, 𝑦)

𝑘(𝑥, 𝑦)

(*) Maybe

Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Image filtering: Convolution operator
e.g. mean filter

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Example: box filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

?

],[],[],[
,

lnkmflkgnmh
lk

++=

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111

111

111],[g 

Credit: S. Seitz

],[],[],[
,

lnkmflkgnmh
lk

++=

What does it do?

• Replaces each pixel with

an average of its

neighborhood

• Achieve smoothing effect

(remove sharp features)

111

111

111

Slide credit: David Lowe (UBC)

],[g 

Box Filter

Image filtering: e.g. Mean Filter

Image filtering: Convolution operator
Important filter: gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

• Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003

0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022

0.013 0.059 0.097 0.059 0.013

0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Slide credit: Christopher Rasmussen

Important filter: Gaussian

Image filtering: Convolution operator
e.g. gaussian filter (gaussian blur)

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

Practical matters
• What about near the edge?

• the filter window falls off the edge of the image

• need to extrapolate

• methods:
• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Source: S. Marschner

Convolution: Useful Operator for Image Processing

• Not all image filtering – region neighborhood operators can be
expressed as convolutions.

• They also can be used to extract information about edges and shapes
.e.g. for image recognition

• Convolutional operations are at the basis of convolutional neural
networks.

21

Image filtering: Convolution operator
Important Filter: Sobel operator

Image Credit: http://what-when-how.com/introduction-to-video-and-image-processing/neighborhood-processing-introduction-to-video-and-image-processing-part-1/

𝑘(𝑥, 𝑦)

𝑘(𝑥, 𝑦) =

1 0 -1

2 0 -2

1 0 -1

Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel

Slide by James Hays

Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

Slide by James Hays

Sobel operators are equivalent to 2D partial
derivatives of the image
• Vertical sobel operator – Partial derivative in X (width)

• Horizontal sobel operator – Partial derivative in Y (height)

• Can compute magnitude and phase at each location.

• Useful for detecting edges

https://en.wikipedia.org/wiki/Sobel_operator

Sobel filters are (approximate) partial derivatives
of the image

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥, 𝑦)

ℎ

𝑓(𝑥, 𝑦) be your input image, then the partial derivative is:Let

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
= lim

ℎ→0

𝑓 𝑥 + ℎ, 𝑦 − 𝑓(𝑥 − ℎ, 𝑦)

2ℎ
Also:

But digital images are not continuous, they are
discrete

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:

But digital images are not continuous, they are
discrete

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥, 𝑦]

𝑓[𝑥, 𝑦] be your input image, then the partial derivative is:Let

Δ𝑥𝑓[𝑥, 𝑦] = 𝑓[𝑥 + 1, 𝑦] − 𝑓[𝑥 − 1, 𝑦]Also:

-1 1

-1 0 1

k(x, y) =

k(x, y) =

Sobel Operators Smooth in Y and then
Differentiate in X

1 0 -1k(x, y) =

1

2

1

* =

1 0 -1

2 0 -2

1 0 -1

Similarly to differentiate in Y

Image Features: HoG

Scikit-image implementation

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.

Image Features: HoG

Paper by Navneet Dalal & Bill Triggs presented at CVPR 2005 for detecting people.
Figure from Zhuolin Jiang, Zhe Lin, Larry S. Davis, ICCV 2009 for human action recognition.

+ Block Normalization

Image Features: GIST

The “gist” of a scene: Oliva & Torralba, 2001

Image Features: GIST

Oriented edge response at multiple scales (5 spatial scales, 6
edge orientations) Hays and Efros, SIGGRAPH

2007

Image Features: GIST

Aggregated edge responses over 4x4 windows
Hays and Efros, SIGGRAPH
2007

The 2D Convolutional Layer in a Neural Network

The 2D Convolutional Layer in a Neural Network

Weights

The 2D Convolutional Layer in a Neural Network

4

Weights

The 2D Convolutional Layer in a Neural Network

4 1

Weights

The 2D Convolutional Layer in a Neural Network

Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x224x224

if zero padding,
and stride = 1

weights:
4x1x9x9

Convolutional Layer (with 4 filters)

Input: 1x224x224 Output: 4x112x112

if zero padding,
but stride = 2

weights:
4x1x9x9

Convolutional Layer in pytorch

Convolutional Network: LeNet

Yann LeCun

LeNet in Pytorch

SpatialMaxPooling Layer

take the max in this neighborhood

8

8

8

8 8

LeNet Summary
• 2 Convolutional Layers + 3 Linear Layers

• + Non-linear functions: ReLUs or Sigmoids
+ Max-pooling operations

New Architectures Proposed
• Alexnet (Kriszhevsky et al NIPS 2012) [Required Reading]

• VGG (Simonyan and Zisserman 2014)

• GoogLeNet (Szegedy et al CVPR 2015)

• ResNet (He et al CVPR 2016)

• DenseNet (Huang et al CVPR 2017)

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Convolutional Layers as Matrix Multiplication

https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Pros?
Cons?

CNN Computations are Computationally Expensive

• However highly parallelizable

• GPU Computing is used in practice

• CPU Computing in fact is prohibitive for training these models

The Alexnet network (Krizhevsky et al NIPS 2012)

The Problem: Classification

Classify an image into 1000 possible classes:
e.g. Abyssinian cat, Bulldog, French Terrier, Cormorant, Chickadee,

red fox, banjo, barbell, hourglass, knot, maze, viaduct, etc.

cat, tabby cat (0.71)
Egyptian cat (0.22)
red fox (0.11)
…..

The Data: ILSVRC

Imagenet Large Scale Visual Recognition Challenge (ILSVRC): Annual Competition

1000 Categories

~1000 training images per Category

~1 million images in total for training

~50k images for validation

Only images released for the test set but no annotations,
evaluation is performed centrally by the organizers (max 2 per week)

The Evaluation Metric: Top K-error

cat, tabby cat (0.61)
Egyptian cat (0.22)
red fox (0.11)
Abyssinian cat (0.10)
French terrier (0.03)
…..

True label: Abyssinian cat

Top-1 error: 1.0 Top-1 accuracy: 0.0

Top-2 error: 1.0 Top-2 accuracy: 0.0

Top-3 error: 1.0 Top-3 accuracy: 0.0

Top-4 error: 0.0 Top-4 accuracy: 1.0

Top-5 error: 0.0 Top-5 accuracy: 1.0

Top-5 error on this competition (2012)

Alexnet

https://www.saagie.com/fr/blog/object-detection-part1

Pytorch Code for Alexnet

• In-class analysis

 https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py

Dropout Layer

Srivastava et al 2014

What is happening?

https://www.saagie.com/fr/blog/object-detection-part1

Feature
extraction

(SIFT)

Feature
encoding

(Bag of words)

Classification
(SVM or softmax)

SIFT + FV + SVM (or softmax)

Convolutional
Neural

Network

Deep Learning

Classifier
(SVM or softmax)

Convolutional
Neural

Network
Classifier

Pre-training

Fine-tuning

1000 categories
1 million images

Convolutional
Neural

Network
My Classifier

20 categories
400 images

Preprocessing and Data Augmentation

Preprocessing and Data Augmentation

256

256

Preprocessing and Data Augmentation

224x224

Preprocessing and Data Augmentation

224x224

True label: Abyssinian cat

Other Data Augmentation options
Pytorch: https://pytorch.org/vision/stable/transforms.html

• Basic: RandomCrop, RandomResize, RandomHorizontalFlip

• Geometric: RandomRotation, RandomPerspective, RandomAffine,
etc.

• Color: RandomAutoContrast, RandomEqualize, RandomPosterize, etc.

• Other: RandomErasing (https://arxiv.org/abs/1708.04896)

69

https://pytorch.org/vision/stable/transforms.html
https://arxiv.org/abs/1708.04896

Advanced Data Augmentation
• MixUp – 2017 (https://arxiv.org/abs/1710.09412)

• AutoAugment - 2018 (https://arxiv.org/abs/1805.09501)

• RandAugment - 2019 (https://arxiv.org/abs/1909.13719)

• CutMix – 2019 (https://arxiv.org/abs/1905.04899)

• AugMix – 2019 (https://arxiv.org/abs/1912.02781)

• TrivialAugment - 2021 (https://arxiv.org/abs/2103.10158)

70

https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1905.04899
https://arxiv.org/abs/1912.02781
https://arxiv.org/abs/2103.10158

•Using ReLUs instead of Sigmoid or Tanh

•Momentum + Weight Decay

•Dropout (Randomly sets Unit outputs to zero during training)

•GPU Computation!

Other Important Aspects

VGG Network

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

Simonyan and Zisserman, 2014.

Top-5:

https://arxiv.org/pdf/1409.1556.pdf

https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py
https://arxiv.org/pdf/1409.1556.pdf

GoogLeNet

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py

Szegedy et al. 2014

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

https://github.com/kuangliu/pytorch-cifar/blob/master/models/googlenet.py
https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf

Further Refinements – Inception v3, e.g.

GoogLeNet (Inceptionv1) Inception v3

BatchNormalization Layer

https://arxiv.org/abs/1502.03167

Slide by Mohammad Rastegari

ResNet (He et al CVPR 2016)

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png

Sorry, does not fit in slide.

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

http://felixlaumon.github.io/assets/kaggle-right-whale/resnet.png
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

More Recent CNNs you can learn

• DenseNet - 2016 (Similar to ResNet but all layers connect to all next and previous
layers) https://arxiv.org/abs/1608.06993

• ResNext – 2016 (Combines ideas from ResNet and InceptionNets
https://arxiv.org/abs/1611.05431v2)

• NASNet – 2017 (Search the space of possible architectures)
https://arxiv.org/abs/1707.07012

• EfficientNet – 2019 (Scales up both width and depth of CNNs using a more
principled approach) https://arxiv.org/abs/1905.11946

• RegNet – 2020 (Paper has a more principled formula to decide on widths and
depths) https://arxiv.org/abs/2003.13678

• ConvNext – 2022 (Combines many tricks both at the architecture and
optimization level) https://arxiv.org/abs/2201.03545

https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1611.05431v2
https://arxiv.org/abs/1707.07012
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2003.13678
https://arxiv.org/abs/2201.03545

79

Questions?

	Slide 0: Deep Learning for Vision & Language
	Slide 1: Most important operation for Computer Vision (*)
	Slide 2: Most important operation for Computer Vision (*)
	Slide 3: Most important operation for Computer Vision (*)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Practical matters
	Slide 21: Convolution: Useful Operator for Image Processing
	Slide 22
	Slide 23: Other filters
	Slide 24: Other filters
	Slide 25: Sobel operators are equivalent to 2D partial derivatives of the image
	Slide 26
	Slide 27: Sobel filters are (approximate) partial derivatives of the image
	Slide 28: But digital images are not continuous, they are discrete
	Slide 29: But digital images are not continuous, they are discrete
	Slide 30: Sobel Operators Smooth in Y and then Differentiate in X
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: LeNet Summary
	Slide 48: New Architectures Proposed
	Slide 49
	Slide 50
	Slide 51
	Slide 52: CNN Computations are Computationally Expensive
	Slide 53: The Alexnet network (Krizhevsky et al NIPS 2012)
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58: Alexnet
	Slide 59: Pytorch Code for Alexnet
	Slide 60: Dropout Layer
	Slide 61: What is happening?
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Other Data Augmentation options
	Slide 70: Advanced Data Augmentation
	Slide 71
	Slide 72: VGG Network
	Slide 73: GoogLeNet
	Slide 74: Further Refinements – Inception v3, e.g.
	Slide 75: BatchNormalization Layer
	Slide 76
	Slide 77: ResNet (He et al CVPR 2016)
	Slide 78: More Recent CNNs you can learn
	Slide 79: Questions?

