
Deep Learning for Vision &
Language

Natural Language Processing II: Introduction

What we see

How to represent a phrase/sentence?

person holding dog [1 0 1 1 0 0 0 0 0 0]{1, 3, 4}

bag-of-words representation

[0 1 1 1 0 0 0 0 0 0]person holding cat {2, 3, 4}

[0 0 1 0 0 1 1 0 0 0]person using computer {3, 7, 6}

[0 1 2 1 0 1 1 0 0 0]
person using computer
person holding cat

{3, 3, 7, 6, 2}
d

o
g

ca
t

p
e

rs
o

n

h
o

ld
in

g

tr
ee

co
m

p
u

te
r

u
si

n
g

What if vocabulary is very large?

What we see

Sparse Representation

person holding dog indices = [1, 3, 4] values = [1, 1, 1]{1, 3, 4}

bag-of-words representation

person holding cat {2, 3, 4}

person using computer {3, 7, 6}

person using computer
person holding cat

{3, 3, 7, 6, 2}

indices = [2, 3, 4] values = [1, 1, 1]

indices = [3, 7, 6] values = [1, 1, 1]

indices = [3, 7, 6, 2] values = [2, 1, 1, 1]

•Bag-of-words encodings for text (e.g. sentences, paragraphs,
captions, etc)

Recap

You can take a set of sentences/documents and classify
them, cluster them, or compute distances between them
using this representation.

Problem with this bag-of-words representation

my friend makes a nice meal

my nice friend makes a meal

These would be the same using bag-of-words

What we see

Bag of Bi-grams

{my friend, friend makes, makes a,

a nice, nice meal}

{my nice, nice friend, friend makes,

makes a, a meal}

indices = [10132, 21342, 43233, 53123, 64233]
values = [1, 1, 1, 1, 1]

indices = [10232, 43133, 21342, 43233, 54233]
values = [1, 1, 1, 1, 1]

my friend makes a nice meal

my nice friend makes a meal

A dense vector-representation would be very inefficient
Think about tri-grams and n-grams

Recommended reading: n-gram language models

Yejin Choi’s course on Natural Language Processing

http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

Modern way of representing Phrases/Text

my friend makes a nice meal

Continuous Bag of Words (CBOW) – Word embeddings

Sequence-based representations (RNNs, LSTMs)

Transformer-based representations (e.g. BERT, GPT-2, T5, etc)

Pre-trained Neural Network

What we see

Back to how to represent a word?

dog

cat

person

[1 0 0 0 0 0 0 0 0 0]

[0 1 0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0 0 0]

1

2

3

Problem: distance between words using one-hot encodings always the same

Idea: Instead of one-hot-encoding use a histogram of commonly co-occurring words.

What we see

Distributional Semantics

dog [3 2 3 4 2 4 3 5 6 7 …]

I saw a dog on a leash walking in the park.

Dogs are man’s best friend.

He walks his dog in the late afternoon

…

fr
ie

n
d

le
as

h

p
ar

k

w
al

ki
n

g

w
al

ks

fo
o

d

le
gs

ru
n

s

sl
e

e
p

s

si
ts

…

His dog is his best companion.

What we see

Distributional Semantics

dog

cat

person

[5 5 0 5 0 0 5 5 0 2 …]

[5 4 1 4 2 0 3 4 0 3 …]

[5 5 1 5 0 2 5 5 0 0 …]
fo

o
d

w
al

ks

w
in

d
o

w

ru
n

s

m
o

u
se

in
ve

n
te

d

le
gs

sl
e

e
p

s

m
ir

ro
r

ta
il

…

This vocabulary can be extremely large

What we see

Toward more Compact Representations

dog

cat

person

[5 5 0 5 0 0 5 5 0 2 …]

[5 4 1 4 2 0 3 4 0 3 …]

[5 5 1 5 0 2 5 5 0 0 …]
fo

o
d

w
al

ks

w
in

d
o

w

ru
n

s

m
o

u
se

in
ve

n
te

d

le
gs

sl
e

e
p

s

m
ir

ro
r

ta
il

…

This vocabulary can be extremely large

What we see

Toward more Compact Representations

dog =

5
5
0
5
0
0
5
 5
0
2

 …

=

0
1
0
1
0
0
0
 1
0
0

 …

legs, running,
walking

w1 + w2

0
0
0
0
0
0
0
 0
0
1

 …

+ w3

tail, fur,
ears

0
0
1
0
0
0
0
 0
1
0

 …

mirror, window,
door

+ …

What we see

Toward more Compact Representations

dog = w1 w2 w3

The basis vectors can be found using Principal Component Analysis (PCA)

This is known as Latent Semantic Analysis sometimes in NLP,
maybe not anymore?

What we see

Toward more Compact Representations:
Word Embeddings

dog = w1 w2 w3

The weights w1, …, wn are found using a neural network

Word2Vec: https://arxiv.org/abs/1301.3781

https://arxiv.org/abs/1301.3781

Word2Vec – CBOW Version
• First, create a huge matrix of word embeddings initialized with

random values – where each row is a vector for a different word in
the vocabulary.

15

n

d

𝑤1

𝑤2

𝑤𝑛

…

Word2Vec – CBOW Version
• Then, collect a lot of text, and solve the following regression problem

for a large corpus of text:

17

n

d

𝑤1

𝑤2

𝑤𝑛

…

the

big

drinks

water

dog

“the big dog drinks water”

The Embedding Layer nn.Embedding

18

The Embedding Layer
nn.Embedding

19

nn.Embedding(n, d)

dog

cat

apple

work#

the

wizard

zealot

under

…

n

d

Pre-trained Language Models

20

The big dog plays with a ball

1-hot vectors

21

The big plays with a ball

Transformer Model

dog

1-hot vectors

Pre-trained Language Models

22

The big plays with a ball

Transformer Model

Softmax classifier
across n possible words

y = dog

1-hot vectors

Pre-trained Language Models

23

The big plays a ball

Transformer Model

1-hot vectors

Softmax classifier
across n possible words

y = with

dog

Pre-trained Language Models

24

The plays a ball

Transformer Model

1-hot vectors

Softmax classifier
across n possible words

y2 = with

dog

Softmax classifier
across n possible words

y1 = big

Pre-trained Language Models

25

The plays a

Transformer Model

1-hot vectors

dog

Generative Language Models

big with

Softmax classifier
across n possible words

y = ball

Practical Issues - Tokenization
• For each text representation we usually need to separate a sentence

into tokens – we have assumed words in this lecture (or pairs of
words) – but tokens could also be characters and anything in-
between.

• Word segmentation can be used as tokenization.
• In the assignment I was lazy I just did “my sentence”.split(“ “) and called it a

day.

• However, even English is more difficult than that because of punctuation,
double spaces, quotes, etc. For English I would recommend you too look up
the great word tokenization tools in libraries such as Python’s NLTK and Spacy
before you try to come up with your own word tokenizer.

26

Issues with Word based Tokenization
• We already mentioned that tokenization can be hard even when

word-based for other languages that don’t use spaces in-between
words.

• Word tokenization can also be bad for languages where the words can
be “glued” together like German or Turkish.
• Remember fünfhundertfünfundfünfzig? It wouldn’t be feasible to have a word

embedding for every number in the German language.

• It is problematic to handle words that are not in the vocabulary e.g. a
common practice is to use a special <OOV> (out of vocabulary) token
for those words that don’t show up in the vocabulary.

27

Tokenization can be complex
• Think of Japanese

• Three vocabularies/sets of symbols:
Katakana and Hiragana symbols represent syllables / sounds
く= ku, ぎ = gi, ナ = na, ア= a
Kanji represent ideas / words (Chinese characters).

日 = day, sun, 大 = big, 凸= convex 凹 = concave

• They can be combined – e.g. tomorrow = 明日

• Each symbol also has some structure within the symbols. They are not
independently created. e.g. bright= 明るい , rising sun = 旭

• And of course there are no spaces in between the characters.

28

Solution: Sub-word Tokenization

• Byte-pair Encoding Tokenization (BPE)
• Start from small strings and based on

substring counts iteratively use larger
sequences until you define a vocabulary that
maximizes informative subtokens. That way
most will correspond to words at the end.

• Byte-level BPE Tokenizer
• Do the same but at the byte representation

level not at the substring representation level.

29
huggingface/tokenizers

30

BPE Tokenization Overview

• Learn BPE operations (python code on the
right) – from the paper.

• Use said operations to construct your sub-
word vocabulary.

• Treat each sub-word token as a “word” in
any models we will discuss. https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbB

P-6MkE_BMck6gm?usp=sharing

https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing
https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing

Tokenization used in GPT-3

31

https://platform.openai.com/tokenizer

The cat is in the house The geologist made an effort to rationalize the explanation

fünfhundertfünfundfünfzig
La ardilla va a la universidad

https://platform.openai.com/tokenizer

Tokenization used in GPT-3

32

https://platform.openai.com/tokenizer

深層学

কেমন আছেন? வணக்கம்

https://platform.openai.com/tokenizer

Recurrent Neural Networks
• These are models for handling sequences of things.

• Each input is not a vector but a sequence of input vectors.

• e.g. Each input can be a “word embedding” or any “word”
representation – we will use in our first examples one-hot encoded
tokens but in practice continuous dense word embeddings are used.

33

Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

ℎ1

𝑦1

𝑦1 = softmax(𝑊ℎ𝑦ℎ1)

Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥1 = [0 0 1 0 0]

ℎ0 = [0 0 0 0 0 0 0]

𝑦1 = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1]

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

𝑦1 = softmax(𝑊ℎ𝑦ℎ1)

Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥1 = [0 0 1 0 0]

ℎ0 = [0 0 0 0 0 0 0]

𝑦1 = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1]

a b c d e

e (0.7)

c

Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑦1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

𝑦1 = softmax(𝑊ℎ𝑦ℎ1)

Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

Pytorch RNN

(Unrolled) Recurrent Neural Network

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

𝑥2

𝑅𝑁𝑁 ℎ2

𝑥3

𝑅𝑁𝑁 ℎ3

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑥2

𝑅𝑁𝑁 ℎ2

ℎ2

𝑥3

𝑅𝑁𝑁 ℎ3

ℎ3

my car works

<<noun>> <<verb>>

𝑦1 𝑦2 𝑦3

<<possessive>>

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

my car works <<possessive>> <<noun>> <<verb>>

my dog ate the assignment <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

my mother saved the day <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

the smart kid solved the problem <<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>

Training examples don’t need to be the same length!

input output

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

L(my car works) = 3 L (<<possessive>> <<noun>> <<verb>>) = 3

L(my dog ate the assignment) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L(my mother saved the day) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L(the smart kid solved the problem) = 6 L (<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 6

Training examples don’t need to be the same length!

input output

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 1: Forget about batches, just process things one by one.

How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 2: Zero padding. We can put the above vectors in T: 4 x 1000 x 6

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

𝑥2

𝑅𝑁𝑁 ℎ2

𝑥3

𝑅𝑁𝑁 ℎ𝑛

ℎ𝑛

the cat likes

positive /
negative sentiment rating

𝑦

How can it be used? – e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems

𝑅𝑁𝑁…

<<EOS>>

𝑥𝑛

How can it be used? – e.g. Sentiment Scoring
Many to one Mapping Problems

this restaurant has good food Positive

this restaurant is bad Negative

this restaurant is the worst Negative

this restaurant is well recommended Positive

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

DURING TRAINING

How can it be used? – e.g. Text Generation
Auto-regressive Models

<START> this restaurant has good food

<START> this restaurant is bad

<START> this restaurant is the worst

<START> this restaurant is well recommended

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

this restaurant is bad <END>

this restaurant is the worst <END>

this restaurant is well recommended <END>

How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

DURING TESTING

How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

DURING TESTING

How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

𝑥2

DURING TESTING

How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

𝑥2

ℎ2

𝑦2

ℎ2

world

DURING TESTING

How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

𝑥6

ℎ6

𝑦6

<END>

DURING TESTING

How can it be used? – e.g. Machine Translation

Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

DURING TRAINING

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

How can it be used? – e.g. Machine Translation
Sequence to Sequence Models

<START> este restaurante tiene buena comida

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

<START> this restaurant has good food

<START> el mundo no es suficiente the world is not enough <END>

<START> the world is not enough

How can it be used? – e.g. Machine Translation

Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ0

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

DURING TRAINING – (Alternative)

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

Problems
• Long Sequences lead to vanishing

• Hidden states can not carry information in a long sequence
(Telephone Game problem)

63

Solutions Proposed
• Use another hidden state variable and experiment with more

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

64

LSTM Cell (Long Short-Term Memory)

𝑥1

𝐿𝑆𝑇𝑀
ℎ0

ℎ1

𝑐0 𝑐1

Solutions Proposed
• Use another hidden state variable and experiment with more

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

66

Bidirectional Recurrent Neural Network

𝑥1

𝐵𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑥2

B𝑅𝑁𝑁 ℎ2

ℎ2

𝑥3

𝐵𝑅𝑁𝑁 ℎ3

ℎ3

the cat wants

<<pronoun>> <<noun>> <<verb>>

𝑦1 𝑦2 𝑦3

Solutions Proposed
• Use another hidden state variable and experiment with more

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

• Stack RNNs, use an RNN that feeds its output states to another RNN
and this second RNN outputs the final output states.
• Stacked RNNs, or Deep RNNs.

68

Stacked Recurrent Neural Network

𝑥1

𝑅𝑁𝑁

ෘℎ1

𝑥2

𝑅𝑁𝑁

𝑥3

𝑅𝑁𝑁

c a t

𝑦1 𝑦2 𝑦3

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑅𝑁𝑁 ℎ2

ℎ2

𝑅𝑁𝑁 ℎ3

ℎ3

ෘℎ2 ෘℎ3

ෘℎ0
ෘℎ1 ෘℎ2 ෘℎ3

Stacked Bidirectional Recurrent Neural Network

𝑥1

𝑅𝑁𝑁

ෘℎ1

𝑥2

𝑅𝑁𝑁

𝑥3

𝑅𝑁𝑁

c a t

𝑦1 𝑦2 𝑦3

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑅𝑁𝑁 ℎ2

ℎ2

𝑅𝑁𝑁 ℎ3

ℎ3

ෘℎ2 ෘℎ3

ෘℎ0
ෘℎ1 ෘℎ2 ෘℎ3

Best Solution: Learning Attention Weights

71

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

RNNs – Sequence to score prediction

ℎ6

𝑦6

[English, German, Swiss German, Gaelic, Dutch, Afrikaans, Luxembourgish, Limburgish, other]

Classify

RNNℎ0

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

RNNs for Text Generation (Auto-regressive)

<START>

+ Noise
vector

RNNℎ0

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

RNNs for Machine Translation Seq-to-Seq

ℎ6

RNNℎ0

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

RNNs for Machine Translation Seq-to-Seq

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

തℎ

തℎ =
1

𝑛
෍ ℎ𝑖

Perhaps a better idea is to
compute the average h vector across all steps
and pass this to the decoder

RNNℎ0

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

RNNs for Machine Translation Seq-to-Seq

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

തℎ

തℎ =
1

𝑛
෍ ℎ𝑖

Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder!

RNNℎ0

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

RNNs for Machine Translation Seq-to-Seq

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

തℎ

Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights!!

തℎ = ෍ 𝑎𝑖ℎ𝑖

RNN𝑣0

𝑥1

ℎ1

𝑦1

𝑣1

The

RNN

The

𝑥2

ℎ2

𝑦2

𝑣2

world

RNN

world

𝑥3

ℎ3

𝑦3

𝑣3

is

RNN

is

𝑥4

ℎ4

𝑦4

𝑣4

not

RNN

not

𝑥5

ℎ5

𝑦5

𝑣5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6

RNNs for Machine Translation Seq-to-Seq

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6

തℎ

Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights, and the weights are specific
for each time step!!!

ഥℎ𝑗 = ෍ 𝑎𝑗,𝑖ℎ𝑖

Only showing the third time step encoder-decoder connection

such that:

𝑎𝑗,𝑖 =
exp(ℎ𝑗𝑣𝑗−1)

σ exp(ℎ𝑖𝑣𝑖−1)

Let’s take a look at one of
the first papers introducing
this idea.

Let’s look at the Attention weights

80

Transformers: Attention is All You Need

81

82

Questions?

	Slide 0: Deep Learning for Vision & Language
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Word2Vec – CBOW Version
	Slide 16
	Slide 17: Word2Vec – CBOW Version
	Slide 18: The Embedding Layer nn.Embedding
	Slide 19: The Embedding Layer nn.Embedding
	Slide 20: Pre-trained Language Models
	Slide 21: Pre-trained Language Models
	Slide 22: Pre-trained Language Models
	Slide 23: Pre-trained Language Models
	Slide 24: Pre-trained Language Models
	Slide 25: Generative Language Models
	Slide 26: Practical Issues - Tokenization
	Slide 27: Issues with Word based Tokenization
	Slide 28: Tokenization can be complex
	Slide 29: Solution: Sub-word Tokenization
	Slide 30
	Slide 31: Tokenization used in GPT-3
	Slide 32: Tokenization used in GPT-3
	Slide 33: Recurrent Neural Networks
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Problems
	Slide 64: Solutions Proposed
	Slide 65
	Slide 66: Solutions Proposed
	Slide 67
	Slide 68: Solutions Proposed
	Slide 69
	Slide 70
	Slide 71: Best Solution: Learning Attention Weights
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Let’s look at the Attention weights
	Slide 81: Transformers: Attention is All You Need
	Slide 82: Questions?

