
Deep Learning for Vision & 
Language

Natural Language Processing II: Introduction



What we see

How to represent a phrase/sentence?

person holding dog [1 0 1 1 0 0 0 0 0 0 ]{1, 3, 4}

bag-of-words representation

[0 1 1 1 0 0 0 0 0 0 ]person holding cat {2, 3, 4}

[0 0 1 0 0 1 1 0 0 0 ]person using computer {3, 7, 6}

[0 1 2 1 0 1 1 0 0 0 ]
person using computer 
person holding cat

{3, 3, 7, 6, 2}
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What if vocabulary is very large? 



What we see

Sparse Representation

person holding dog indices = [1, 3, 4]     values = [1, 1, 1]{1, 3, 4}

bag-of-words representation

person holding cat {2, 3, 4}

person using computer {3, 7, 6}

person using computer 
person holding cat

{3, 3, 7, 6, 2}

indices = [2, 3, 4]     values = [1, 1, 1]

indices = [3, 7, 6]     values = [1, 1, 1]

indices = [3, 7, 6, 2]     values = [2, 1, 1, 1]



•Bag-of-words encodings for text (e.g. sentences, paragraphs, 
captions, etc)

Recap

You can take a set of sentences/documents and classify 
them, cluster them, or compute distances between them 
using this representation.



Problem with this bag-of-words representation

my friend makes a nice meal

my nice friend makes a meal

These would be the same using bag-of-words



What we see

Bag of Bi-grams

{my friend, friend makes, makes a, 

a nice, nice meal}

{my nice, nice friend, friend makes, 

makes a, a meal}

indices = [10132, 21342, 43233, 53123, 64233]     
values = [1, 1, 1, 1, 1]

indices = [10232, 43133, 21342, 43233, 54233]     
values = [1, 1, 1, 1, 1]

my friend makes a nice meal

my nice friend makes a meal

A dense vector-representation would be very inefficient
Think about tri-grams and n-grams



Recommended reading: n-gram language models

Yejin Choi’s course on Natural Language Processing

http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf


Modern way of representing Phrases/Text

my friend makes a nice meal

Continuous Bag of Words (CBOW) – Word embeddings

Sequence-based representations (RNNs, LSTMs)

Transformer-based representations (e.g. BERT, GPT-2, T5, etc)

Pre-trained Neural Network



What we see

Back to how to represent a word?

dog  

cat

person

[1 0 0 0 0 0 0 0 0 0 ]

[0 1 0 0 0 0 0 0 0 0 ]

[0 0 1 0 0 0 0 0 0 0 ]

1

2

3

Problem: distance between words using one-hot encodings always the same

Idea: Instead of one-hot-encoding use a histogram of commonly co-occurring words.



What we see

Distributional Semantics

dog  [3 2 3 4 2 4 3 5 6 7 … ]

I saw a dog on a leash walking in the park.

Dogs are man’s best friend.

He walks his dog in the late afternoon

…
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His dog is his best companion.



What we see

Distributional Semantics

dog  

cat

person

[5 5 0 5 0 0 5 5 0 2 … ]

[5 4 1 4 2 0 3 4 0 3 … ]

[5 5 1 5 0 2 5 5 0 0 … ]
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This vocabulary can be extremely large



What we see

Toward more Compact Representations

dog  

cat

person

[5 5 0 5 0 0 5 5 0 2 … ]

[5 4 1 4 2 0 3 4 0 3 … ]

[5 5 1 5 0 2 5 5 0 0 … ]
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This vocabulary can be extremely large



What we see

Toward more Compact Representations

dog =  

5 
5 
0 
5 
0 
0 
5 
 5 
0 
2 

 …

= 

0 
1 
0 
1 
0 
0 
0 
 1 
0 
0 

 …

legs, running, 
walking

w1 +   w2

0 
0 
0 
0 
0 
0 
0 
 0 
0 
1 

 …

+   w3

tail, fur,
ears

0 
0 
1 
0 
0 
0 
0 
 0 
1 
0 

 …

mirror, window,
door

+   …



What we see

Toward more Compact Representations

dog =  w1 w2 w3

The basis vectors can be found using Principal Component Analysis (PCA)

This is known as Latent Semantic Analysis sometimes in NLP,
maybe not anymore?



What we see

Toward more Compact Representations: 
Word Embeddings

dog =  w1 w2 w3

The weights w1, …, wn are found using a neural network

Word2Vec: https://arxiv.org/abs/1301.3781

https://arxiv.org/abs/1301.3781


Word2Vec – CBOW Version
• First, create a huge matrix of word embeddings initialized with 

random values – where each row is a vector for a different word in 
the vocabulary.

15
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Word2Vec – CBOW Version
• Then, collect a lot of text, and solve the following regression problem 

for a large corpus of text: 

17
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water

dog

“the big dog drinks water”



The Embedding Layer nn.Embedding

18



The Embedding Layer 
nn.Embedding

19

nn.Embedding(n, d)

dog
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apple

work#
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Pre-trained Language Models

20

The big dog plays with a ball 

1-hot vectors
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The big plays with a ball 

Transformer Model

dog 

1-hot vectors

Pre-trained Language Models
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The big plays with a ball 

Transformer Model

Softmax classifier
across n possible words

y = dog 

1-hot vectors

Pre-trained Language Models
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The big plays a ball 

Transformer Model

1-hot vectors

Softmax classifier
across n possible words

y = with 

dog 

Pre-trained Language Models
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The plays a ball 

Transformer Model

1-hot vectors

Softmax classifier
across n possible words

y2 = with 

dog 

Softmax classifier
across n possible words

y1 = big 

Pre-trained Language Models
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The plays a 

Transformer Model

1-hot vectors

dog 

Generative Language Models

big with 

Softmax classifier
across n possible words

y = ball 



Practical Issues - Tokenization
• For each text representation we usually need to separate a sentence 

into tokens – we have assumed words in this lecture (or pairs of 
words) – but tokens could also be characters and anything in-
between.

• Word segmentation can be used as tokenization. 
• In the assignment I was lazy I just did “my sentence”.split(“ “) and called it a 

day.

• However, even English is more difficult than that because of punctuation, 
double spaces, quotes, etc. For English I would recommend you too look up 
the great word tokenization tools in libraries such as Python’s NLTK and Spacy 
before you try to come up with your own word tokenizer.

26



Issues with Word based Tokenization
• We already mentioned that tokenization can be hard even when 

word-based for other languages that don’t use spaces in-between 
words. 

• Word tokenization can also be bad for languages where the words can 
be “glued” together like German or Turkish.
• Remember fünfhundertfünfundfünfzig? It wouldn’t be feasible to have a word 

embedding for every number in the German language.

• It is problematic to handle words that are not in the vocabulary e.g. a 
common practice is to use a special <OOV> (out of vocabulary) token 
for those words that don’t show up in the vocabulary.

27



Tokenization can be complex
• Think of Japanese 

• Three vocabularies/sets of symbols: 
Katakana and Hiragana symbols represent syllables / sounds 
く= ku, ぎ = gi, ナ = na, ア= a
Kanji represent ideas / words (Chinese characters).

日 = day, sun, 大 = big, 凸= convex 凹 = concave

• They can be combined – e.g. tomorrow = 明日

• Each symbol also has some structure within the symbols. They are not 
independently created. e.g. bright= 明るい , rising sun = 旭

• And of course there are no spaces in between the characters.

28



Solution: Sub-word Tokenization

• Byte-pair Encoding Tokenization (BPE)
• Start from small strings and based on 

substring counts iteratively use larger 
sequences until you define a vocabulary that 
maximizes informative subtokens. That way 
most will correspond to words at the end.

• Byte-level BPE Tokenizer
• Do the same but at the byte representation 

level not at the substring representation level.

29
huggingface/tokenizers
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BPE Tokenization Overview

• Learn BPE operations (python code on the 
right) – from the paper.

• Use said operations to construct your sub-
word vocabulary.

• Treat each sub-word token as a “word” in 
any models we will discuss. https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbB

P-6MkE_BMck6gm?usp=sharing

https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing
https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing


Tokenization used in GPT-3

31

https://platform.openai.com/tokenizer

The cat is in the house The geologist made an effort to rationalize the explanation

fünfhundertfünfundfünfzig
La ardilla va a la universidad

https://platform.openai.com/tokenizer


Tokenization used in GPT-3

32

https://platform.openai.com/tokenizer

深層学

কেমন আছেন? வணக்கம்

https://platform.openai.com/tokenizer


Recurrent Neural Networks
• These are models for handling sequences of things.

•  Each input is not a vector but a sequence of input vectors.

•  e.g. Each input can be a “word embedding” or any “word” 
representation – we will use in our first examples one-hot encoded 
tokens but in practice continuous dense word embeddings are used.

33



Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)



Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

ℎ1

𝑦1

𝑦1 = softmax(𝑊ℎ𝑦ℎ1)



Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥1 =  [0 0 1 0 0]

ℎ0 = [0 0 0 0 0 0 0 ]

𝑦1 = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1 ]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1 ]

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

𝑦1 = softmax(𝑊ℎ𝑦ℎ1)



Recurrent Neural Network Cell

𝑅𝑁𝑁

𝑥1 =  [0 0 1 0 0]

ℎ0 = [0 0 0 0 0 0 0 ]

𝑦1 = [0.1, 0.05, 0.05, 0.1, 0.7]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1 ]

ℎ1 = [0.1 0.2 0 − 0.3 − 0.1 ]

a b c d e

e (0.7)

c



Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑦1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)

𝑦1 = softmax(𝑊ℎ𝑦ℎ1)



Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)



Recurrent Neural Network Cell

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1 = tanh(𝑊ℎℎℎ0 + 𝑊ℎ𝑥𝑥1)



Pytorch RNN





(Unrolled) Recurrent Neural Network

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

𝑥2

𝑅𝑁𝑁 ℎ2

𝑥3

𝑅𝑁𝑁 ℎ3



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑥2

𝑅𝑁𝑁 ℎ2

ℎ2

𝑥3

𝑅𝑁𝑁 ℎ3

ℎ3

my car works

<<noun>> <<verb>>

𝑦1 𝑦2 𝑦3

<<possessive>>



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

my car works <<possessive>> <<noun>> <<verb>>

my dog ate the assignment <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

my mother saved the day <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

the smart kid solved the problem <<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>

Training examples don’t need to be the same length!

input output



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

L(my car works) = 3 L (<<possessive>> <<noun>> <<verb>>) = 3

L( my dog ate the assignment ) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L( my mother saved the day ) = 5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 5

L( the smart kid solved the problem ) = 6 L (<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 6

Training examples don’t need to be the same length!

input output



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 1:  Forget about batches, just process things one by one.



How can it be used? – e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

T: 1000 x 3 T: 20 x 3

T: 1000 x 5 T: 20 x 5

T: 1000 x 5 T: 20 x 5

T: 1000 x 6 T: 20 x 6

Training examples don’t need to be the same length!

input output

If we assume a vocabulary of a 1000 possible words and 20 possible output tags

How do we create batches if inputs and outputs have different shapes?

Solution 2:  Zero padding. We can put the above vectors in T: 4 x 1000 x 6



𝑥1

𝑅𝑁𝑁ℎ0 ℎ1

𝑥2

𝑅𝑁𝑁 ℎ2

𝑥3

𝑅𝑁𝑁 ℎ𝑛

ℎ𝑛

the cat likes

positive / 
negative sentiment rating

𝑦

How can it be used? – e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems

𝑅𝑁𝑁…

<<EOS>>

𝑥𝑛



How can it be used? – e.g. Sentiment Scoring
Many to one Mapping Problems

this restaurant has good food Positive

this restaurant is bad Negative

this restaurant is the worst Negative

this restaurant is well recommended Positive

Input training examples don’t need to be the same length!
In this case outputs can be.

input output



How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

DURING TRAINING



How can it be used? – e.g. Text Generation
Auto-regressive Models

<START> this restaurant has good food

<START> this restaurant is bad

<START> this restaurant is the worst

<START> this restaurant is well recommended

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

this restaurant is bad <END>

this restaurant is the worst <END>

this restaurant is well recommended <END>



How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

DURING TESTING



How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

DURING TESTING



How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

𝑥2

DURING TESTING



How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

𝑥2

ℎ2

𝑦2

ℎ2

world

DURING TESTING



How can it be used? – e.g. Text Generation

Auto-regressive model – Sequence to Sequence during Training, Auto-regressive during test

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

𝑥6

ℎ6

𝑦6

<END>

DURING TESTING



How can it be used? – e.g. Machine Translation

Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ0

<START>

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

DURING TRAINING

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6



How can it be used? – e.g. Machine Translation
Sequence to Sequence Models

<START> este restaurante tiene buena comida 

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

this restaurant has good food <END>

<START> this restaurant has good food

<START> el mundo no es suficiente the world is not enough <END>

<START> the world is not enough



How can it be used? – e.g. Machine Translation

Sequence to Sequence – Encoding – Decoding – Many to Many mapping

RNNℎ0

𝑥1

ℎ1

𝑦1

ℎ1

The

RNN

The

𝑥2

ℎ2

𝑦2

ℎ2

world

RNN

world

𝑥3

ℎ3

𝑦3

ℎ3

is

RNN

is

𝑥4

ℎ4

𝑦4

ℎ4

not

RNN

not

𝑥5

ℎ5

𝑦5

ℎ5

enough

RNN

enough

𝑥6

ℎ6

𝑦6

<END>

DURING TRAINING – (Alternative)

RNNℎ0

<START>

𝑥1

ℎ1 RNN

El

𝑥2

ℎ2 RNN

mundo

𝑥3

ℎ3 RNN

no

𝑥4

ℎ4 RNN

es

𝑥5

ℎ5 RNN

suficiente

𝑥6



Problems 
• Long Sequences lead to vanishing

• Hidden states can not carry information in a long sequence 
(Telephone Game problem)
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Solutions Proposed
• Use another hidden state variable and experiment with more 

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc
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LSTM Cell (Long Short-Term Memory)

𝑥1

𝐿𝑆𝑇𝑀
ℎ0

ℎ1

𝑐0 𝑐1



Solutions Proposed
• Use another hidden state variable and experiment with more 

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using 
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs
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Bidirectional Recurrent Neural Network

𝑥1

𝐵𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑥2

B𝑅𝑁𝑁 ℎ2

ℎ2

𝑥3

𝐵𝑅𝑁𝑁 ℎ3

ℎ3

the cat wants

<<pronoun>> <<noun>> <<verb>>

𝑦1 𝑦2 𝑦3



Solutions Proposed
• Use another hidden state variable and experiment with more 

complex transition functions than h = tanh(W1h + W2x).
• Read about LSTMs, GRUs, etc

• Encode the sentences both from left-to-right and right-to-left using 
two RNNs and combine the final hidden states from each direction.
• Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

• Stack RNNs, use an RNN that feeds its output states to another RNN 
and this second RNN outputs the final output states.
• Stacked RNNs, or Deep RNNs.
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Stacked Recurrent Neural Network

𝑥1

𝑅𝑁𝑁

ෘℎ1

𝑥2

𝑅𝑁𝑁

𝑥3

𝑅𝑁𝑁

c a t

𝑦1 𝑦2 𝑦3

𝑅𝑁𝑁ℎ0 ℎ1

ℎ1

𝑅𝑁𝑁 ℎ2

ℎ2

𝑅𝑁𝑁 ℎ3

ℎ3

ෘℎ2 ෘℎ3

ෘℎ0
ෘℎ1 ෘℎ2 ෘℎ3
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Perhaps a better idea is to
compute the average h vector across all steps
and pass this to the decoder
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder!
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Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights!!

തℎ = ෍ 𝑎𝑖ℎ𝑖
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തℎ

Perhaps an even better idea is to
compute the average h vector across all steps
and pass this to the decoder at each time
step in the decoder but using a weighted average
with learned weights, and the weights are specific
for each time step!!!

ഥℎ𝑗 = ෍ 𝑎𝑗,𝑖ℎ𝑖

Only showing the third time step encoder-decoder connection

such that:

𝑎𝑗,𝑖 =
exp(ℎ𝑗𝑣𝑗−1)

σ exp(ℎ𝑖𝑣𝑖−1)



Let’s take a look at one of 
the first papers introducing 
this idea.



Let’s look at the Attention weights
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