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How to represent a phrase/sentence?

bag-of-words representation

person holding dog {1, 3, 4} 1 0 1. 1 0 0 0 0 0 O]
person holding cat {2, 3, 4} 0 1 1 1 0 0 0 0 0 O]
person using computer {3, 7, 6} 0 0 1 0 0 1 1 0 0 O
o g
c -}
w . 2 % o £ F
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© (@) o - +— Q >

person using computer

3,3,7,6,2 1 2 1 1 1
person holding cat { b [0 0 0 0 O]

What if vocabulary is very large?



Sparse Representation

bag-of-words representation

person holding dog {1, 3, 4} indices =[1, 3,4] values=1]1, 1, 1]
person holding cat {2, 3, 4} indices =[2, 3,4] values=1[1, 1, 1]
person using computer {3, 7, 6} indices =[3, 7,6] values=1[1, 1, 1]

erson using computer
P 1oIne COMPUIET 3,3,7,6,2)  indices=[3,7,6,2] values=[2,1, 1, 1]
person holding cat



Recap

* Bag-of-words encodings for text (e.g. sentences, paragraphs,
captions, etc)

You can take a set of sentences/documents and classify
them, cluster them, or compute distances between them
using this representation.



Problem with this bag-of-words representation

my friend makes a nice meal

These would be the same using bag-of-words

my nice friend makes a meal



Bag of Bi-grams
indices =[10132, 21342, 43233, 53123, 64233]
values=1[1, 1,1, 1, 1]
my friend makes a nice meal {my friend, friend makes, makes a,

a nice, nice meal}

indices =[10232, 43133, 21342, 43233, 54233]
values=1[1, 1,1, 1, 1]

my nice friend makes a meal {my nice, nice friend, friend makes,

makes a, a meal}

A dense vector-representation would be very inefficient
Think about tri-grams and n-grams



Recommended reading: n-gram language models

Yejin Choi’s course on Natural Language Processing
http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf



http://www3.cs.stonybrook.edu/~ychoi/cse628/lecture/02-ngram.pdf

Modern way of representing Phrases/Text

Y

Pre-trained Neural Network

Continuous Bag of Words (CBOW) — Word embeddings
Sequence-based representations (RNNs, LSTMs)
Transformer-based representations (e.g. BERT, GPT-2, T5, etc)

]

my friend makes a nice meal



Back to how to represent a word?

Problem: distance between words using one-hot encodings always the same

dog 1 1 0 0 0 0 0 O 0 0 O
cat 2 O 1. 0O 0 0 0 0 o0 o o
person 3 O 01 0 0 O 0 o0 o0 o

|Idea: Instead of one-hot-encoding use a histogram of commonly co-occurring words.



Distributional Semantics

Dogs are man’s best friend.
| saw a dog on a leash walking in the park.
His dog is his best companion.

He walks his dog in the late afternoon

sleeps

&
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Distributional Semantics

dog 5 5050055 0 2 ..]
cat 5 a]r afzfo B lafo 3 .
person 5 5 1 5 0 2 5 5 0 0 ..]
©
s 8 . %% 2
S = 2 3 % £ _
835522582 ¢3

This vocabulary can be extremely large



Toward more Compact Representations

dog 5 5 0 5 0 0 5 5 0 2 ..
cat 514 (1]4(2 0 3[4 (0 3 ..]
person 5 5 1 5 0 2 5 5 0 0 ..]
©
s 8 . %% 2
S = 2 3 % £ _
g3 s$s528:8%¢8 %3

This vocabulary can be extremely large



dog

Toward more Compact Representations
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legs, running, tail, fur, mirror, window,
walking ears door



Toward more Compact Representations

dog = wl w2 w3

The basis vectors can be found using Principal Component Analysis (PCA)

This is known as Latent Semantic Analysis sometimes in NLP,
maybe not anymore?



dog

Toward more Compact Representations:
Word Embeddings

e e

= wl w2 w3

— —

The weights w1, ..., wn are found using a neural network

Word2Vec: https://arxiv.org/abs/1301.3781



https://arxiv.org/abs/1301.3781

Word2Vec — CBOW Version

* First, create a huge matrix of word embeddings initialized with
random values — where each row is a vector for a different word in
the vocabulary.

15



Efficient Estimation of Word Representations in
Vector Space

Tomas Mikolov
Google Inc., Mountain View, CA

tmikolovldgoogle.com

Greg Corrado
Google Inc., Mountain View, CA

gcorradoligoogle.com

Kai Chen
Google Inc., Mountain View, CA

kaichenldgoogle.com

Jeffrey Dean
Google Inc., Mountain View, CA
jefflgoogle. com



Word2Vec — CBOW Version

* Then, collect a lot of text, and solve the following regression problem

for a large corpus of text:
“the big dog drinks water”

INPUT PROJECTION QUTPUT
Wl —
the w(t-2)
Wy L
big w(t-1)
\‘SUM
/ —+ wt) dog
drinks w(t+1)
water W2
Wn

CBOW

17



The Embedding Layer nn.Embedding

EMBEDDING

CLASS torch.nn.Embedding (num_embeddings, embedding_dim, padding_idx=None,
max_noxrm=None, noxrm_type=2.0, scale_grad_by_ freq=False, sparse=False,
_weight=None, device=None, dtype=None) [SOURCE]

A simple lookup table that stores embeddings of a fixed dictionary and size.

This module is often used to store word embeddings and retrieve them using indices. The input to
the module is a list of indices, and the output is the corresponding word embeddings.

Parameters:

e num_embeddings (int) - size of the dictionary of embeddings

e embedding_dim (int) - the size of each embedding vector

» padding_idx (int, optional) - If specified, the entries at padding_idx do not contribute
to the gradient; therefore, the embedding vector at padding_idx is not updated during
training, i.e. it remains as a fixed “pad”. For a newly constructed Embedding, the
embedding vector at padding_idx will default to all zeros, but can be updated to

another value to be used as the padding vector. "



dog
cat
apple
work#

the

under
wizard

zealot

S—

he Embedding Layer
nn.Embedding

nn.Embedding(n, d)
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Pre-trained Language Models

o ' ' ' ' ' ' '

plays with ball




Pre-trained Language Models

Transformer Model

o ' ' ' ' ' ' '

plays with ball




Pre-trained Language Models

y = dog

Softmax classifier
across n possible words

T

Transformer Model

plays with ball

1-hot vectors

The




Pre-trained Language Models

y = with

Softmax classifier
across n possible words

T

Transformer Model

1-hot vectors ' ' ' '
The big dog

plays

ball

23



Pre-trained Language Models

y1 = b|g y2 = W|th
Softmax classifier Softmax classifier
across n possible words across n possible words

1 1

Transformer Model

1-hot vectors

The dog plays

ball

24



Generative Language Models

y = ball

Softmax classifier
across n possible words

T

Transformer Model

o ' ' ' ' ' '

plays with




Practical Issues - Tokenization

* For each text representation we usually need to separate a sentence
into tokens — we have assumed words in this lecture (or pairs of
words) — but tokens could also be characters and anything in-

between.

* Word segmentation can be used as tokenization.
* In the assignment | was lazy | just did “my sentence”.split(“ “) and called it a
day.
* However, even English is more difficult than that because of punctuation,

double spaces, quotes, etc. For English | would recommend you too look up
the great word tokenization tools in libraries such as Python’s NLTK and Spacy

before you try to come up with your own word tokenizer.

26



Issues with Word based Tokenization

* We already mentioned that tokenization can be hard even when
word-based for other languages that don’t use spaces in-between
words.

* Word tokenization can also be bad for languages where the words can
be “glued” together like German or Turkish.

* Remember funfhundertfinfundfiinfzig? It wouldn’t be feasible to have a word
embedding for every number in the German language.

* It is problematic to handle words that are not in the vocabulary e.g. a
common practice is to use a special <OOV> (out of vocabulary) token
for those words that don’t show up in the vocabulary.

27



Tokenization can be complex

* Think of Japanese

* Three vocabularies/sets of symbols:
Katakana and Hiragana symbols represent syllables / sounds
{=ku, £ =gi, 7 =na, 7=a
Kanji represent ideas / words (Chinese characters).
H =day, sun, X = big, 1= convex [M] = concave

* They can be combined — e.g. tomorrow = B H

e Each symbol also has some structure within the symbols. They are not
independently created. e.g. bright= B % U\, rising sun = /B

* And of course there are no spaces in between the characters.

28



Solution: Sub-word Tokenization

v Tokenizers

* Byte-pair Encoding Tokenization (BPE) T —

¢ Sta rt frOm Sma” StrlngS and ba Sed On Provides an implementation of today's most used
S u bStri ng COU nts |te ratIVE|y u Se Ia rge r tokenizers, with a focus on performance and versatility.
sequences until you define a vocabulary that Main features:
maX|mlzeS |nf0 rm at|ve SUth kens. Th at Way « Train new vocabularies and tokenize, using today's

most used tokenizers.

most will correspond to words at the end.

e Extremely fast (both training and tokenization),
thanks to the Rust implementation. Takes less than

[ ) Byte - I eve | B P E TO ke n ize r é(;lsteconds to tokenize a GB of text on a server's
* Do the same but at the byte representation ) EZZT;;:T;ﬁilifiﬁ’?ﬁi";‘flil‘i’t?f:"*'
level not at the substring representation level. + Normalization comes with alignments tracking. It's

always possible to get the part of the original
sentence that corresponds to a given token.

* Does all the pre-processing: Truncate, Pad, add the
special tokens your model needs.

huggingface/tokenizers
29



Algorithm 1 Learn BPE operations

import re, collections

BPE Tokenization Overview . ....coom.

pairs = collections.defaultdict (int)
for word, freq in vocab.items():
symbols = word.split ()
for i in range(len(symbols)-1):
pairs([symbols[i],symbols[i+l]] += freqg
return pairs

Neural Machine Translation of Rare Words with Subword Units
def merge vocab(pair, v_in):

v_out = {}
bi = re. "' joi i
Rico Sennrich and Barljy Had'dow'and Algxandra Birch pli’rj;“.CO;;ifZ‘fi??§<!\Si?lf‘ii‘;i;; 5ot (21\5) ")
School of Informatics, University of Edinburgh for word in v in:
{rico.sennrich,a.birch}@ed.ac.uk,bhaddow@inf.ed.ac.uk w_out = p.sub(''.join(pair), word)
v_out[w_out] = v_in[word]

return v out

vocab = {'l o w </w>' : 5, 'l ower </w>': 2,
* Learn BPE operations (python code on the nam merges — 10 </w>'i6, 'widest </w':3})
nght) — from the paper. for i in range (num merges) :
pairs = get stats(vocab)

best = max(pairs, key=pairs.get)
vocab = merge vocab(best, vocab)

» Use said operations to construct your sub- print (best)
word vocabulary.

* Treat each sub-word token as a “word” in

any models we will discuss. https://colab.research.google.com/drive/1gUjL _h2tXdTtPSfxbB
P-6MkE BMckbgm?usp=sharing

30


https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing
https://colab.research.google.com/drive/1gUjL_h2tXdTtPSfxbBP-6MkE_BMck6gm?usp=sharing

Tokenization used in G

https://platform.openai.com/tokenizer

The cat is in the house

Characters

23

Tokens

6

The cat is in the house

[464, 3797, 318, 287, 262, 2156]

finfhundertfinfundfinfzig

Characters

29

Tokens
funfhundertfiinfundfiinfzig

[69, 9116, 77, 69, 3987, 71, 4625,
3987, 69, 9116, 77, 69, 38262]

83, 3987, 69, 9116, 77, 69, 3987, 917,

PT-3

The geologist made an effort to rationalize the explanation

Characters

59

Tokens

1

The geologist made an effort to rationalize the explanation

[464, 4983, 7451, 925, 281, 3626, 284, 9377, 1896, 262, 7468]

La ardilla va a la universidad

Characters

30

Tokens

8

La ardilla va a la universidad

[14772, 33848, 5849, 46935, 257, 8591, 5828, 32482]

31


https://platform.openai.com/tokenizer

Tokenization used in GPT-3

https://platform.openai.com/tokenizer

N =4
REFE
Tokens Characters
8 3
0000000

[162, 115, 189, 161, 109, 97, 27764, 99]

(P TCRA? 6L GBI H SBLD
Tokens Characters Tokens Characters

20 10 21 7

000000000 0000000007
[48071, 243, 156, 168, 229, 48671, 186, 48071, 101, 220, 48871, 228,
48071, 249, 156, 108, 229, 48671, 101, 38]

[156, 186, 113, 156, 186, 96, 156, 186, 243, 156, 187, 235, 156, 186,
243, 156, 186, 186, 156, 187, 235]

32


https://platform.openai.com/tokenizer

Recurrent Neural Networks

* These are models for handling sequences of things.
* Each input is not a vector but a sequence of input vectors.

e e.g. Each input can be a “word embedding” or any “word”
representation — we will use in our first examples one-hot encoded
tokens but in practice continuous dense word embeddings are used.

33



Recurrent Neural Network Cell

hl = tanh(Whth + thxl)

& - @ — 6
|
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Recurrent Neural Network Cell

& - @ - &

hl — tanh(Whth + thxl)
y1 = softmax(Wp, h;) @



Recurrent Neural Network Cell

y; = [0.1,0.05,0.05,0.1, 0.7]
1

h, =[01 020 —0.3 —0.1]

1

ho =[0000000] — —  h;=[0.1 020 —0.3 —0.1]

hy = tanh(Wppho + Whyx1) x; = [00100]
y1 = softmax(Wp, h;)



Recurrent Neural Network Cell

y» = [0.1,0.05,0.05,0.1,0.7] —— e (0.7)
1

Ry =[0.1 020 —0.3 —0.1]
ho =10000000] Ry =[0.1 020 —0.3 —0.1]

N

100]
111
Cde

x; = |

QD —O
O — O



Recurrent Neural Network Cell

& - @ - &

hl — tanh(Whth + thxl)
y1 = softmax(Wp, h;) @



Recurrent Neural Network Cell

&

|
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hl = tanh(Whth + thxl)



Recurrent Neural Network Cell

& - @ — 6
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hl = tanh(Whth + thxl)



RNN

CLASS torch.nn.RNN(self, input_size, hidden_size, num_layers=1, nonlinearity="tanh’,

bias=True, batch_first=False, dropout=0.0, bidirectional=False, device=None, &
dtype=None) [SOURCE]

Apply a multi-layer EIman RNN with tanh or ReLLU non-linearity to an input sequence. For each element in the
input sequence, each layer computes the following function:

hy = tanh(z,W2 + bip, + hy 1 WE + bun)

where h; is the hidden state at time t, ; is the input at time t, and h(t—l} is the hidden state of the previous layer at

time t-7 or the initial hidden state at time o. If nonlinearity is 'relu',then ReLU is used instead of tanh.

Parameters

input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two RNNs
together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and
computing the final results. Default: 1

nonlinearity — The non-linearity to use. Can be either 'tanh' or 'relu'.Default: 'tanh’

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first - If True, then the input and output tensors are provided as (batch, seg, feature) instead
of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs
sections below for details. Default: False

dropout - If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last
layer, with dropout probability equal to dropout. Default: 0

bidirectional - If True, becomes a bidirectional RNN. Default: False



[ANR TR

Inputs: input, h_0 =
e input: tensor of shape (L, H;,,) for unbatched input, (L, N, H;, ) when batch_first=False or
(N, L, H;,) when batch_first=True containing the features of the input sequence. The input can
also be a packed variable length sequence. See torch.nn.utils.xnn.pack_padded_sequence() or
toxch.nn.utils.znn.pack_sequence() for details.

e h_0: tensor of shape (D * num_layers, H,,;) for unbatched input or (D *
num_layers, N, H(mt) containing the initial hidden state for the input sequence batch. Defaults to

zeros if not provided.

where:

N = batch size

L = sequence length

D = 2 if bidirectional=True otherwise 1
H;, = input_size

hidden_size

T
&
I

Outputs: output, h_n

e output: tensor of shape (L, D % H,,;) for unbatched input, (L, N, D * H,,;) when
batch_first=False or (N, L, D * H,,;) when batch_first=True containing the output features
(h_t) from the last layer of the RNN, for each t. If a torch.nn.utils.rnn.PackedSequence has been
given as the input, the output will also be a packed sequence.

e h_n: tensor of shape (D * num_layers, H,,;) for unbatched input or (D *
num_layers, N, Hout) containing the final hidden state for each element in the batch.



(Unrolled) Recurrent Neural Network



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

<<possessive>> <<nhoun>> <<verb>>

?
?



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!

input output
my car works <<possessive>> <<noun>> <<verb>>
my dog ate the assignment <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>
my mother saved the day <<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>

the smart kid solved the problem <<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!

input output
L(my car works) =3 L (<<possessive>> <<noun>> <<verb>>) = 3
L{ my dog ate the assighment ) =5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) =5
L{ my mother saved the day ) =5 L (<<possessive>> <<noun>> <<verb>> <<pronoun>> <<noun>>) =5

L( the smart kid solved the problem ) =6 L(<<pronoun>> <<qualifier>> <<noun>> <<verb>> <<pronoun>> <<noun>>) = 6



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x3
T: 1000 x5 T:20 x5
T: 1000 x5 T:20x5

T: 1000 x 6 T:20x 6



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x3
T: 1000 x5 T:20x5
T: 1000 x5 T:20x5
T: 1000 x 6 T:20 x 6

How do we create batches if inputs and outputs have different shapes?



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x3
T: 1000 x5 T:20 x5
T: 1000 x5 T:20x5
T: 1000 x 6 T:20 x 6

How do we create batches if inputs and outputs have different shapes?

Solution 1: Forget about batches, just process things one by one.



How can it be used? — e.g. Tagging a Text Sequence
One-to-one Sequence Mapping Problems

Training examples don’t need to be the same length!
If we assume a vocabulary of a 1000 possible words and 20 possible output tags

input output
T: 1000 x 3 T:20x3
T: 1000 x5 T:20 x5
T: 1000 x5 T:20x5
T: 1000 x 6 T:20 x 6

How do we create batches if inputs and outputs have different shapes?

Solution 2: Zero padding. We can put the above vectorsin T:4 x 1000 x 6



the

How can it be used? — e.g. Scoring the Sentiment of a Text Sequence
Many-to-one Sequence to score problems

positive /
negative sentiment rating

cat likes <<EOS>>



How can it be used? — e.g. Sentiment Scoring
Many to one Mapping Problems

Input training examples don’t need to be the same length!
In this case outputs can be.

input output
this restaurant has good food Positive
this restaurant is bad Negative
this restaurant is the worst Negative

this restaurant is well recommended Positive



?

How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TRAINING

world is not enough

<START> world is not

O-@-0-©
&
@~@~@ ®
@
6
@
6
0
@ ®
.
-@-

<END>

!



How can it be used? — e.g. Text Generation
Auto-regressive Models

Input training examples don’t need to be the same length!
In this case outputs can be.

input output
<START> this restaurant has good food this restaurant has good food <END>
<START> this restaurant is bad this restaurant is bad <END>
<START?> this restaurant is the worst this restaurant is the worst <END>

<START> this restaurant is well recommended this restaurant is well recommended <END>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

(hp) — (fn) —
I
)

<START>



?
&-@-©—-©

How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

The

— (1)

<START>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

<START>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

The world

I 1

1 1

1 1
® )

<START>



How can it be used? — e.g. Text Generation
Auto-regressive model — Sequence to Sequence during Training, Auto-regressive during test

DURING TESTING

The world is not enough <END>

o o :

3 o

<START>



How can it be used? — e.g. Machine Translation
Sequence to Sequence — Encoding — Decoding — Many to Many mapping

DURING TRAINING

The world is not enough <END>

@ @) @ ®
t t t ¢ t t

o ¢ o o ¢
-»-»@-»-»@-»-»@-»-»-»-»@-» -> »»@-»-»@-»-»@-»-»-»-»@-»
) ) ) ) ¢ ¢ ¢

¢ ¢ ¢ t ¢
@ @ ® @) @ @ @ ®

<START> El mundo no es suficiente <START> The world is not enough



How can it be used? — e.g. Machine Translation
Sequence to Sequence Models

Input training examples don’t need to be the same length!
In this case outputs can be.

input output

<START> este restaurante tiene buena comida this restaurant has good food <END>

<START> this restaurant has good food

<START> el mundo no es suficiente the world is not enough <END>

<START> the world is not enough



How can it be used? — e.g. Machine Translation
Sequence to Sequence — Encoding — Decoding — Many to Many mapping

DURING TRAINING — (Alternative)

The world is not enough <END>

@ @) @ ®
t t t ¢ t t

Poe ?
»»@»»@»»@»»»»@»
() ) () ()

The world is not enough

-»-»@-»-»@-»-»@-»-»-»-»@-» -
() () @) ()

<START> El mundo no es suficiente



Problems

* Long Sequences lead to vanishing

* Hidden states can not carry information in a long sequence
(Telephone Game problem)

63



Solutions Proposed

* Use another hidden state variable and experiment with more
complex transition functions than h = tanh(W;h + W,x).
e Read about LSTMs, GRUs, etc

64



LSTM Cell (Long Short-Term Memory)

i = 0 (Weite + Whihy 1 + Weier 1 + by) (7)
ft =0 Wypze + Whihi1 + Wepes—1 + by) (8)
ct = frer—1 + iy tanh (Wyezt + Whehe—1 + be) (9)
0 = 0 (WaeoTt + Whohi—1 + Weocy +b,) (10)
ht = o tanh(c;) (11)



Solutions Proposed

* Use another hidden state variable and experiment with more
complex transition functions than h = tanh(W;h + W,x).
e Read about LSTMs, GRUs, etc

* Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.
* Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

66



Bidirectional Recurrent Neural Network



Solutions Proposed

* Use another hidden state variable and experiment with more
complex transition functions than h = tanh(Wh + W,x).
e Read about LSTMs, GRUs, etc

* Encode the sentences both from left-to-right and right-to-left using
two RNNs and combine the final hidden states from each direction.
* Read about Bidirectional RNNs (BiRNNs), BiLSTMs, BiGRUs

e Stack RNNs, use an RNN that feeds its output states to another RNN
and this second RNN outputs the final output states.

e Stacked RNNs, or Deep RNNs.
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Stacked Recurrent Neural Network
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Stacked Bidirectional Recurrent Neural Network
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Best Solution: Learning Attention Weights



RNNs — Sequence to score prediction

Classify

[English, German, Swiss German, Gaelic, Dutch, Afrikaans, Luxembourgish, Limburgish, other]
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RNNs for Text Generation (Auto-regressive)



RNNs for Machine Translation Seg-to-Seg
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RNNs for Machine Translation Seg-to-Seg
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RNNs for Machine Translation Seg-to-Seg
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RNNs for Machine Translation Seg-to-Seg

T;he W'?Pﬂd iS r?pot eéwugh <END>
@ @) @ @ ®
Perhaps an even better idea is to ) t ) ) ¢ ¢
compute the average h vector across all steps C’;D 5 @B 5 @;D @B
and pass this to the decoder at each time i |
step in the decoder but using a weighted average " ~® - " - " @ i " - " (Dag
with learned weights!! g
© ® © @ © ®
; : ‘ i A : A A
’/ T:he ; 4wg‘rld : Js | pt enot;.lgh
@ —_ =>

)\

3 @ @ @

t t t t t t
-»-»@-»-»@-»-»@-»-»-»-»@-»
@ © ® &)

<START> El mundo



RNNs for Machine Translation Seg-to-Seg

Only showing the third time step encoder-decoder connection
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Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION

BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau
Jacobs University Bremen, Germany

KyungHyun Cho  Yoshua Bengio*
Université de Montréal

Let’s take a look at one of
the first papers introducing
this idea.

X X X X,

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the ¢-th tar-
get word y; given a source
sentence (z1, T2, ...,ZTT).
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Let’s look at the Attention weights
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Transformers: Attention is All You Need

Attention Is All You Need
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Questions?

82



	Slide 0: Deep Learning for Vision & Language
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Word2Vec – CBOW Version
	Slide 16
	Slide 17: Word2Vec – CBOW Version
	Slide 18: The Embedding Layer nn.Embedding
	Slide 19: The Embedding Layer nn.Embedding
	Slide 20: Pre-trained Language Models
	Slide 21: Pre-trained Language Models
	Slide 22: Pre-trained Language Models
	Slide 23: Pre-trained Language Models
	Slide 24: Pre-trained Language Models
	Slide 25: Generative Language Models
	Slide 26: Practical Issues - Tokenization
	Slide 27: Issues with Word based Tokenization
	Slide 28: Tokenization can be complex
	Slide 29: Solution: Sub-word Tokenization
	Slide 30
	Slide 31: Tokenization used in GPT-3
	Slide 32: Tokenization used in GPT-3
	Slide 33: Recurrent Neural Networks
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Problems 
	Slide 64: Solutions Proposed
	Slide 65
	Slide 66: Solutions Proposed
	Slide 67
	Slide 68: Solutions Proposed
	Slide 69
	Slide 70
	Slide 71: Best Solution: Learning Attention Weights
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Let’s look at the Attention weights
	Slide 81: Transformers: Attention is All You Need
	Slide 82: Questions?

