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Transformers: Attention is All You Need
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Attention is All you Need (no RNNs)

Vaswani et al. Attention is
all you need

https://arxiv.org/abs/1706.0

3762
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We can also draw this as in the paper:
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Regular Attention: + Scaling factor

Vaswani et al. Attention is
all you need

https://arxiv.org/abs/1706.0 Attention(Q, K, V') = softmax(

3762 \/d_k
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This is not unlike what we already used before

Only showing the third time step encoder-decoder connection
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Multi-head Attention: Do not settle for just one set of attention weights.

Vaswani et al. Attention is MultiHead(Q, K, V) = Concat(heady, ..., heady, ) W
all you need where head; = Attention(QWS, KWX, VW)
https://arxiv.org/abs/1706.0

3762
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We can lose track of position since we are aggregating across all locations
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The BERT Encoder Model (October, 2018)

Devlin et al. BERT: Pre-training of Deep

Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805 NSP Mask LM Mask LM \
& @ ar
Important things to know [ ° J[ i ] [ Tn ][ U= ][ L} ]
* No decoder
BERT
* Train the model to fill-in-the-blank by
: . B E, Ey E[SEP] E/ | .- Ey
masking some of the input tokens and
trying to recover the full sentence. == - = = =
[CLS] Tok1 | ... Tok N [SEP] Tok1 | ... TokM
* The input is not one sentence but two | | I |—|—‘
sentences separated by a [SEP] token. Masked Sentence A Masked Sentence B
* Also try to predict whether these two e /

input sentences are consecutive or not. ..
Pre-training
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The BERT Encoder Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805
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The BERT Encoder-only Model

Devlin et al. BERT: Pre-training of Deep
Bidirectional Transformers for Language
Understanding . https://arxiv.org/abs/1810.04805
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The T5 Encoder-Decoder Model
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Instruction Tuning (FLAN-TS by Google)

Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?
N

Chain-of-thought finetuning

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

.

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

Language
model

N

Multi-task instruction finetuning (1.8 tasks)

Inference: generalization to unseen tasks
Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

https://arxiv.org/pdf/2210.11416.pdf



The GPT-2, GPT-3 Decoder-only Model
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The GPT-2 Model (Feb, 2019)

Language Models are Unsupervised Multitask Learners

Alec Radford *! Jeffrey Wu *! Rewon Child! David Luan' Dario Amodei ™! Ilya Sutskever ™!

https://openai.com/blog/better-language-models/
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The GPT-2 Model
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The GPT-2 Model
BERT GPT
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The GPT-2 Model

Output
Input ?
recite the first law

https://jalammar.github.io/illustrated-gpt2/
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The GPT-2 Model

Output
A robot may not
Input T
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https://jalammar.github.io/illustrated-gpt2/
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The GPT-2 Model
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GPT-1vs GPT-2 vs GPT-3

Parameters
Decoder Layers
Context Token Size
Hidden Layer
Batch Size

GPT-1

117 Million
12

512

768

64

GPT-2

1.5 Billion
48

1024
1600

512

https://360digitmg.com/blog/types-of-gpt-in-artificial-intelligence

GPT-3

175 Billion
96

2048
12288
3.2M

23



GPT-3 (July, 2020)

Model Name Nparams Tayers @model Mheads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 x 10~4
GPT-3 XLL 1.3B 24 2048 24 128 1M 2.0 x 10~4
GPT-3 2.7B 2.7B 32 2560 32 80 1M 1.6 x 10~4
GPT-3 6.7B 6.7B 32 4096 32 128 M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10~
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10~4

https://arxiv.org/abs/2005.14165
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GPT family keeps growing

* GPT-3.5

e GPT-3.5-turbo
* GPT4

* GPT-4-turbo
* GPT-4o

* 01, 03, 03-pro

Competitors

e Gemini family (Gemini Pro) (Google)

* Mistral 7xMoE (Open Source by Mistral.ai)

* Llama-2, Llama-3(Open Source by Meta Al)

* DeepSeek, DeepSeek-R1 (Open Source by DeepSeek Team)
* Claude3.5 Sonnet, Haiku, etc (Anthropic)

* Grok3 (Twitter/xAl)

25



Vision Transformers Transformer Encoder
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https://arxiv.org/abs/2010.11929

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Svlvain Gelly, Jakob Uszkoreit, Neil Houlsby 26



https://arxiv.org/search/cs?searchtype=author&query=Dosovitskiy%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Beyer%2C+L
https://arxiv.org/search/cs?searchtype=author&query=Kolesnikov%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Weissenborn%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Zhai%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Zhai%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Unterthiner%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Dehghani%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Minderer%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Heigold%2C+G
https://arxiv.org/search/cs?searchtype=author&query=Gelly%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Uszkoreit%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Houlsby%2C+N

The CLIP Model
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https://arxiv.org/abs/2103.00020

Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

T; T T, Tn
L LT | LT,  I'T L' Ty
1) LT | IyTy | IrTs LTy
I3 'y | 3T, | 3T I3 Ty
In INTy | INT2 | InT3 IN'TN

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, llya Sutskever

L = z ‘g(lka)
k

exp(sim(ly, Ty))

’g(Ika) = — 10g<

2N 1[k # i]exp(sim(Iy, Ty))
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Learning Transferable Visual Models From Natural Language Supervision
Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
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Next Work Prediction is lim

* Predicting the next word can lead to inte

ited

ligent behavior such as the

one exemplified earlier however this still limited
 What makes some of the new LLMs special? ChatGPT (GPT-3.5, 3.5

Turbo, 4, 4-turbo), FLAN-T5, OPT-IML

* SFT: Supervised Finetuning (Curated Input/Output Instruction Sets)

 DPO: Direct Preference Optimization

* PPO: Proximal Policy Optimization (Reinforcement Learning with Human

Feedback)

 GRPO: Group-relative Policy Optimization (DeepSeek)

29



Instruction Tuning (e.g. FLAN-TS by Google)

Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?
N

Chain-of-thought finetuning

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they
used 20 for lunch and bought 6 more,
how many apples do they have?

.

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought 6 more
apples, so they have 3 + 6 = 9.

Language
model

N

Multi-task instruction finetuning (1.8 tasks)

Inference: generalization to unseen tasks
Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

https://arxiv.org/pdf/2210.11416.pdf



FLAN-TS

-~

.

Model input (Disambiguation QA) ]—\

Q: In the following sentences, explain the
antecedent of the pronoun (which thing the
pronoun refers to), or state that it is ambiguous.

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options:

(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes
(C) Ambiguous

A: Let's think step by step.

The reporter and the chef will discuss their favorite
dishes.

The reporter and the chef will discuss the reporter's
favorite dishes.

The reporter and the chef will discuss the chef's
favorite dishes.

The reporter and the chef will discuss the reporter's
and the chef's favorite dishes.

8 (doesn’t answer question)

/—[ Before instruction finetuning ]—\

31



FLAN-TS

/—[ Model input (Disambiguation QA) ]—\ /—[ After instruction finetuning ]‘\
Q: In the following sentences, explain the The reporter and the chef will discuss their favorite
antecedent of the pronoun (which thing the dishes does not indicate whose favorite dishes they
pronoun refers to), or state that it is ambiguous. will discuss. So, the answer is (C). (2

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options:

(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes

(C) Ambiguous

A: Let's think step by step.
\- VRN J/
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Questions?
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