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Deep Learning for Vision &
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Segmentation, AutoEncoders, Variational AutoEncoders, Introduction to
Diffusion Models
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Final Project

| am still giving feedback on the project proposal. There’s no grade for
the project proposal. There’s also no grade for class attendance. See
course syllabus. | won’t change course syllabus in the middle of the
course. | aim to send feedback to everyone before Spring Break.

| will provide you an opportunity to provide a Project Progress Report
so you have an idea of my expectations and grade and avoid
“surprises”.

* Final project deliverables is worth 60% of the class divided as follows:
e Originality: 10pts
* Technical accuracy: 10pts
* Presentation: 10pts
e Results: 10pts



Final Project

* Originality: Is the idea of the project original itself? Is the original idea of
the project standard but is any of the experiments original? [10pts]

* Technical accuracy: Is your final project report accurate? Are all the terms
used appropriately and are the mathematical expressions used to explain
your model/loss/optimization accurate?

* Presentation: Is your final report publication-ready? Could your final
project report be published as a technical report? | don’t want to see
unprofessional practices that you would not see on a technical paper.
Common mistakes: Pixelated images, axis on output figures that don’t
warrant axes, etc.

* Results: Are your results good? | can judge this by using metrics such as
accuracy, BLEU, retrieval @K, human surveys, and | can also judge by
IooII|<ing at any input-output results that you include. | want to SEE you did
well.




Semantic Segmentation / Image Parsing




ldea 1: Convolutionalization

“tabby cat”
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However resolution of the segmentation map is low.

https://people.eecs.berkeley.edu/~jonlong/long shelhamer fcn.pdf



https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

Alexnet

https://www.saagie.com/fr/blog/object-detection-partl



ldea 1: Convolutionalization

nn.Linear(4096, 1000) == nn.Conv2D(4096, 1000, kernel_size = 1, stride = 1)
input tensor:
4096
output tensor:
1000 input tensor: output tensor:
4096x1x1 . 1000x1x1
Linear-layer — SpatialCony
— = » f
W: 1000x4096x1x1

> |W:4096 x 1000 ” b: 1000

b: 1000




Fully Convolutional Networks (CVPR 2015)

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell
UC Berkeley

{jonlong, shelhamer, trevor}@cs.berkeley.edu
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ldea 2: Up-sampling Convolutions or "Deconvolutions” or
Transposed Convolutions

224x224 224x224

12x112  convolution network

Unpooling

Unpooling
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Learning Deconvolution Network for Semantic Segmentation

Hyeonwoo Noh Seunghoon Hong Bohyung Han
Department of Computer Science and Engineering, POSTECH, Korea
{hyeonwoonoh_,maga33,bhhan}@postech.ac.kr

http://cvlab.postech.ac.kr/research/deconvnet/



http://cvlab.postech.ac.kr/research/deconvnet/

ldea 2: Up-sampling Convolutions or ”Deconvolutions” or
Transposed Convolutions

https://github.com/vdumoulin/conv arithmetic



https://github.com/vdumoulin/conv_arithmetic

ldea 2: Up-sampling Convolutions or “Deconvolutions”

Deconvolutional Layers
Upconvolutional Layers

Backwards Strided
Convolutional Layers

Fractionally Strided
Convolutional Layers

Transposed
Convolutional Layers

Spatial Full
Convolutional Layers




Pytorch

Docs » torch.nn > ConvTranspose2d

CONVTRANSPOSE2D

CLASS torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0,
output_padding=8, groups=1, bias=True, dilation=1, padding mode='zeros', device=None,
dtype=None) [SOURCE]

Applies a 2D transposed convolution operator over an input image composed of several input planes.

This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided
convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true
inverse of convolution). For more information, see the visualizations here and the Deconvolutional Networks paper.

This module supports TensorFloat32.



ldea 3: Dilated Convolutions

MULTI-SCALE CONTEXT AGGREGATION BY
DILATED CONVOLUTIONS

Fisher Yu Vladlen Koltun
Princeton University  Intel Labs ICLR 2016



ldea 3: Dilated Convolutions

MULTI-SCALE CONTEXT AGGREGATION BY
DILATED CONVOLUTIONS

Fisher Yu Vladlen Koltun
Princeton University  Intel Labs ICLR 2016



Convolutional Layer in pytorch

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,
groups=1, bias=True) [source]

kernel_size 2/\

Input out_channels x i } Output

kernel_size
\_Y_}
in_channels
\ J
|
— out_channels (equals the number of

in_channels (e.g. 3 for RGB inputs) convolutional filters for this layer)



input
image
tile
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U-Net: Convolutional Networks for Biomedical

Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies,

University of Freiburg, Germany
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https://arxiv.org/abs/1505.04597

https://github.com/milesial/Pytorch-UNet
https://github.com/usuyama/pytorch-unet



from .unet_parts import =*

UNet in Pytorch T

def _init_ (self, n_channels, n_classes, bilinear=False):
super{UNet, self)._ init_ ()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear

self.inc = (DoubleConv(n_channels, 64))
self.downl = (Down(64, 128))

self.down2 = (Down(128, 256))

self.down3 = (Down(256, 512))

factor = 2 if bilinear else 1

self.downd = (Down(512, 1824 // factor))
self.upl = (Up(1@24, 512 // factor, bilinear))
self.up2 = (Up(512, 256 // factor, bilinear))
self.up3 = (Up(256, 128 // factor, bilinear))
self.upd = (Up(128, 64, bilinear})

self.outc = (OutConv(B4, n_classes))

def forward(self, x):
x1 = self.inc{x)
%2 = self.downl(x1)
%3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.downd(x4)
® = self.upl{x5, x4)
® = self.up2ix, x3)
® = self.up3(x, x2)
® = self.upd(x, x1)
logits = self.outc(x)
return logits

https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py



https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py

Chair segmentation - Training

output
~| segmentation
;) map

=»conv 3x3, ReLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
% % =» conv 1x1

Chair Segments: A Compact Benchmark for the Study of Object Segmentation

Leticia Pinto-Alvatf, Ian K. Torres® Rosangel Garcia®* Ziyan Yang', Vicente Ordonez’

tUniversidad Catdlica San Pablo, "University of Massachusetts, Ambherst, $Le Moyne College,
tUniversity of Virginia

lp2rv@virginia.edu, zy3cx@virginia.edu, vicente@virginia.edu



Chair segmentation - Prediction
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imzfge > > olels output
tile o o .| segmentation
2l & & map
n| ] B
’ 128 128
256 128
L
=) B
= B szl
[3'] Nl o
' 256 256 512 256 '
= e 3 “‘I"I = conv 3x3, ReLU
SH Sl 3 S L= q
o SIS copy and cro
¥ sz s 1024 512 Py P
sl . I-l- # max pool 2x2
K
RS ] 1024 45 B 4 up-conv 2x2
5, S > E— - Conv 1x1
™ o~

Chair Segments: A Compact Benchmark for the Study of Object Segmentation

Leticia Pinto-Alvatf, Ian K. Torres® Rosangel Garcia®* Ziyan Yang', Vicente Ordonez’

fUniversidad Catélica San Pablo, *University of Massachusetts, Amherst, SLe Moyne College,
fUniversity of Virginia

lp2rv@virginia.edu, zy3cx@virginia.edu, vicente@virginia.edu



Bilinear Upsampling Layer

https://machinethink.net/blog/coreml-upsampling/



Encoder

AutoEncoder Models (Downsample, Upsample

Decoder

20



Variational AutoEncoders (VAE)

neural network
decoder

neural network
encoder

loss = ||x-x]|]? + KL ,N(©,1)]

https://pytorch.org/docs/stable/generated/torch.normal.html
https://ai.stackexchange.com/questions/30176/are-mean-and-standard-deviation-in-variational-autoencoders-unique

21



Reparameterization “trick”

z = z_mean + sigma * epsilon
sigma=exp(z_log_var/2)

g ~ Normal(0,1)

neural network
decoder

1 neural network
|| encoder

loss = ||x-x]|]? + KL ,N(©,1)]

https://pytorch.org/docs/stable/generated/torch.normal.html
https://ai.stackexchange.com/questions/30176/are-mean-and-standard-deviation-in-variational-autoencoders-unique

22



Kullback-Leibler Divergence

D (P || Q) = ZP:{:) log( Ple,

reX ( :




KLDIVLOSS KLDivLoss

KLDivLoss

CLASS torch.nn.KLDivLoss(size_ average=None, reduce=None, reduction="'mean’, log_target=False) [SOURCE]

The Kullback-Leibler divergence loss.

For tensors of the same shape Ypredy Ytrue, Where Ypred is the input and Yy is the target, we define the pointwise
KL-divergence as

Ytrue
Ypred

L (ypreda ytrue) = Ytrue - 1ﬂg — Ytrue * (lﬂg Ytrue — lﬂg ypred}

To avoid underflow issues when computing this quantity, this loss expects the argument input in the log-space. The
argument target may also be provided in the log-space if log_target = True.

To summarise, this function is roughly equivalent to computing

if not log_target: # default
loss_pointwise = target % (target.log() - input)
else:
loss_pointwise

target.exp() = (target - input)



For Gaussian Probabilities KL Divergence even simpler

Dgr(N (1, 0°)|IN(0,1)) QZ p; +0; —lno; —1)

=]

def loss_function(self,
*args,
*kkwargs) —> dict:
recons = args|[0]
input = args[1]
mu = args[2]
log_var = args[3]

kld_weight = kwargs['M_N'] # Account for the minibatch samples from the dataset
recons_loss =F.mse_loss(recons, input)

kld_loss = torch.mean(-0.5 * torch.sum(1l + log_var — mu %k 2 - log_var.exp(), dim = 1), dim = @)

loss = recons_loss + kld_weight * kld_loss
return {'loss': loss, 'Reconstruction_Loss':recons_loss, 'KLD':-kld_loss}

https://github.com/AntixK/PyTorch-VAE/blob/master/models/cvae.py

25



Encoding different points into latent space

L = II.CU — .’,/l\?llg -+ ADKL(N([L, U),N(O, 1)) Because of our KL

divergence loss, the

N (u,0) For any input
data point has to be

N(p@xa)o(xa) | w(0) somewhat similar to

N(0,1)

N (pu(xy), 0(x41))

So, if we sample a point
from N (0,1), it is very
likely to fFall within one
of these encoded

N (u(xg), o(x6
N(ﬂ(xﬂ: U(x'r))

N (u(x3), 0(x3

Slide from Ritambara Singh’s Deep Learning class at Brown

26
https://brown-deep-learning.github.io/dl-website-s23/slides/lecture27.pdf



Denoising Diffusion Probabilistic Models (DDPM)

Forward diffusion: Markov chain of diffusion steps to slowly add gaussian noise to data

Reverse diffusion: A model is trained to generate data from noise by iterative denoising

Forward diffusion process (fixed)

Noise

Data
Reverse denoising process (generative)
Denoising Diffusion Probabilistic Models
Jonathan Ho Ajay Jain Pieter Abbeel
https://cvpr2022-tutorial-diffusion-models.github.io/ UC Berkeley UC Berkeley UC Berkeley

. ) ) jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu
Slides compiled by my student Aman Shrivastava

27



DDPM | Forward diffusion

Forward diffusion process (fixed)

Data

Noise

We add a small amount of gaussian noise to a sample x,in T timesteps to

produces noised samples, {x,, X
schedule as follows:

2’ e ,

x.-}. The steps are controlled by the noise

Q(xt|xt—1) = N(xt; Vl= ﬁtxt—l,ﬂtl) Q(xl:Tlxo) = HQ(xt|xt—1)

T

i=1

https://cvpr2022-tutorial-diffusion-models.github.io/

28



Forward diffusion process (fixed)

Data

g(x¢|xi—1) = N(xf; V1-—Bixi 1,81 g x1T|x{] HQ(xtlxt 1

f

Define ay = [J(1—5s) =  aq(xelx0) = N(x¢; vVagxo, (1 — a)l))

s=1

For sampling: x; = v/a; xg+ /(1 —ay) ¢  where € ~ N(0,I)

Noise

(Diffusion Kernel)

29



DDPM | Reverse Diffusion

Reverse denoising process (generative)

€

Data Noise

We learn a neural network model (pe) to approximate these conditional

probabilities q(x(t_l) | x,) in order to run the reverse diffusion process as follows:

T
po(X0.r) = p(x7) Hpo(xt—1|xt) Po(X¢-1|xt) = N (x¢-15 po(xi, t), B (xe, 1))
i=1

https://cvpr2022-tutorial-diffusion-models.github.io/



DDPM | Reverse Diffusion

Reverse denoising process (generative)

€

Data Noise

We learn a neural network model (pe) to approximate these conditional

probabilities q(x(t_l) | x,) in order to run the reverse diffusion process as follows:

T
po(X0.r) = p(x7) Hpo(xt—1|xt) Po(X¢-1|xt) = N (x¢-15 po(xi, t), B (xe, 1))
i=1

https://cvpr2022-tutorial-diffusion-models.github.io/



How do we train?

Reverse denoising process (generative)

<

Data Noise

Algorithm 1 Training

l: repeat

2: xo ~ q(xo)

3: t~ Uniform({1,...,T})
4: e~ N(0,1I)

5: Take gradient descent step on

Vo ||l€ — eo(v/@rxo + VI — are, b))

6: until converged

https://cvpr2022-tutorial-diffusion-models.github.io/ 32



Unet to model transition

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €y(x;, t)

> €g(X¢,1)

[ -
e ———— ————

dam=-
Time Representanon 1 I I

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurlPS 2021)

https://cvpr2022-tutorial-diffusion-models.github.io/

33



How do we train?

Reverse denoising process (generative)

<

Data Noise

Algorithm 2 Sampling

. x7 ~ N(0,I)
cfort=T,...,1do
z~N(0,I)ift > 1,elsez=0

1
2
3
41 x4 = —= (x = Eﬂ(xt: 3)) + o2
3
6

vear \ T T—a;
- end for
: return x;

https://cvpr2022-tutorial-diffusion-models.github.io/ 34



How do we train?

= Reverse denoising process (generative)

Data Noise
Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: x7 ~ N(0,1)
2: xan(_xn) 2: fort=1T,...,1do
> f”UNﬂ(‘{f]ﬂlﬁl({lw--:T}) 3 z~N(0,1)ift>1,elsez=0
€~ 1 . 1—ex
5: Take gradient descent step on 4 X = ﬁ (xt - JI_TZEB(M: 3)) + o012
vﬂl‘E—E9[1fﬁtxl}+'\f"1 _&tE,f:}Hz 5: end for
6: return xg

6: until converged

https://cvpr2022-tutorial-diffusion-models.github.io/ 3



Imagen by Google

A cute corgi lives in a house made out of sushi.

A cute sloth holding a small treasure chest. A bright
golden glow is coming from the chest.

36



Imagen by Google

2.2 Diffusion models and classifier-free guidance

Here we give a brief introduction to diffusion models; a precise description is in Appendix A.
Diffusion models [63, 28, 65] are a class of generative models that convert Gaussian noise into
samples from a learned data distribution via an iterative denoising process. These models can be
conditional, for example on class labels, text, or low-resolution images [e.g. 16, 29, 59, 58, 75, 41, 54].
A diffusion model Xy is trained on a denoising objective of the form

Ex,c}c—:,t [th}A{G ((}ft}{ + O¢€, C) — X”%] (1)

where (x, ¢) are data-conditioning pairs, ¢t ~ U(|[0, 1]), € ~ N(0,1I), and oy, o4, w; are functions of
t that influence sample quality. Intuitively, Xy is trained to denoise z; := a;X + o+€ Into x using
a squared error loss, weighted to emphasize certain values of {. Sampling such as the ancestral
sampler [28] and DDIM [64] start from pure noise z; ~ N (0,I) and iteratively generate points

Zt, - .-, %¢t., where 1 = ¢, > --- > tp = 0, that gradually decrease in noise content. These points
are functions of the x-predictions X}, := Xy (z;, c).

https://arxiv.org/pdf/2205.11487.pdf 37



Questions
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