~ \-,s ,--' , T .
< ;\4 R S A e
R - ‘ 3 . " - - - L Y e
x l] \ A AU DRV s ra & i el s s ST - o
2 : T A ey el e i B i T BT o Wbl il -

e TR L e Sl M Sl il 0 W e P il
i B T e gl Rt S o T P e ok o @ e
T e i e
B IR . <% & . ATl . BT i . Wi @ - | =

\, ‘\.’-’.\\ NG i it 0 S I B . 5 A o S WP
™

Deep Learning for Vision &
Language

Segmentation, AutoEncoders, Variational AutoEncoders, Introduction to
Diffusion Models

% RICE UNIVERSITY

Ny L — = i F e
o s R r \~ B

Denoising Diffusion Probabilistic Models (DDPM)

Forward diffusion: Markov chain of diffusion steps to slowly add gaussian noise to data

Reverse diffusion: A model is trained to generate data from noise by iterative denoising

Forward diffusion process (fixed)

Data Noise
Reverse denoising process (generative)
Denoising Diffusion Probabilistic Models
Jonathan Ho Ajay Jain Pieter Abbeel
https://cvpr2022-tutorial-diffusion-models.github.io/ UC Berkeley UC Berkeley UC Berkeley

.)) jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu
Slides compiled by my student Aman Shrivastava

DDPM | Forward diffusion

Forward diffusion process (fixed)

Data Noise

We add a small amount of gaussian noise to a sample x,in T timesteps to
produces noised samples, {x,, x,, ... , X;}. The steps are controlled by the noise
schedule as follows:

T

Q(xt|xt—1) = N(xt; Vl= ﬁtxt—l,ﬂtl) Q(xl:Tlxo) = HQ(xt|xt—1)

i=1

https://cvpr2022-tutorial-diffusion-models.github.io/

Forward diffusion process (fixed)

Data Noise

g(x¢|xi—1) = N(xf; V1-—Bixi 1,81 g x1T|x{] HQ(xtlxt 1

t
Define &y = H(l —Bs) = q(x¢|xg) = N(x4; Vaixg, (1 — a)I)) (Diffusion Kernel)

s=1

For sampling: x; = v/a; xg+ /(1 —ay) ¢ where € ~ N(0,I)

DDPM | Reverse Diffusion

Reverse denoising process (generative)

€

Data Noise

We learn a neural network model (pe) to approximate these conditional

probabilities q(x(t_l) | x,) in order to run the reverse diffusion process as follows:

T
po(X0.r) = p(x7) Hpo(xt—1|xt) Po(X¢-1|xt) = N (x¢-15 po(xi, t), B (xe, 1))
i=1

https://cvpr2022-tutorial-diffusion-models.github.io/

DDPM | Reverse Diffusion

Reverse denoising process (generative)

€

Data Noise

We learn a neural network model (pe) to approximate these conditional

probabilities q(x(t_l) | x,) in order to run the reverse diffusion process as follows:

T
po(X0.r) = p(x7) Hpo(xt—1|xt) Po(X¢-1|xt) = N (x¢-15 po(xi, t), B (xe, 1))
i=1

https://cvpr2022-tutorial-diffusion-models.github.io/

How do we train?

Reverse denoising process (generative)

<

Data Noise

Algorithm 1 Training

l: repeat

2: xo ~ q(xo)

3: t~ Uniform({1,...,T})
4: e~ N(0,1I)

5: Take gradient descent step on

Vo ||l€ — eo(v/@rxo + VI — are, b))

6: until converged

https://cvpr2022-tutorial-diffusion-models.github.io/

Unet to model transition

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent €y(x;, t)

> €g(X¢,1)

[-
e ———— ————

dam=-
Time Representanon 1 I I

Fully-connected
Layers

Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization
layers. (see Dharivwal and Nichol NeurlPS 2021)

https://cvpr2022-tutorial-diffusion-models.github.io/

How do we train?

Reverse denoising process (generative)

<

Data Noise

Algorithm 2 Sampling

. x7 ~ N(0,I)
cfort=T,...,1do
z~N(0,I)ift > 1,elsez=0

1
2
3
41 x4 = —= (x = Eﬂ(xt: 3)) + o2
3
6

vear \ T T—a;
- end for
: return x;

https://cvpr2022-tutorial-diffusion-models.github.io/

How do we train?

= Reverse denoising process (generative)

Data Noise
Algorithm 1 Training Algorithm 2 Sampling
1: repeat 1: x7 ~ N(0,1)
2: xan(_xn) 2: fort=1T,...,1do
> f”UNﬂ(‘{f]ﬂlﬁl({lw--:T}) 3 z~N(0,1)ift>1,elsez=0
€~ 1 . 1—ex
5: Take gradient descent step on 4 X = ﬁ (xt - JI_TZEB(M: 3)) + o012
vﬂl‘E—E9[1fﬁtxl}+'\f"1 _&tE,f:}Hz 5: end for
6: return xg

6: until converged

https://cvpr2022-tutorial-diffusion-models.github.io/

Imagen by Google

A cute corgi lives in a house made out of sushi.

A cute sloth holding a small treasure chest. A bright
golden glow is coming from the chest.

10

Imagen by Google

2.2 Diffusion models and classifier-free guidance

Here we give a brief introduction to diffusion models; a precise description is in Appendix A.
Diffusion models [63, 28, 65] are a class of generative models that convert Gaussian noise into
samples from a learned data distribution via an iterative denoising process. These models can be
conditional, for example on class labels, text, or low-resolution images [e.g. 16, 29, 59, 58, 75, 41, 54].
A diffusion model Xy is trained on a denoising objective of the form

Ex,c}c—:,t [th}A{G ((}ft}{ + O¢€, C) — X”%] (1)

where (x, ¢) are data-conditioning pairs, ¢t ~ U(|[0, 1]), € ~ N(0,1I), and oy, o4, w; are functions of
t that influence sample quality. Intuitively, Xy is trained to denoise z; := a;X + o+€ Into x using
a squared error loss, weighted to emphasize certain values of {. Sampling such as the ancestral
sampler [28] and DDIM [64] start from pure noise z; ~ N (0,I) and iteratively generate points

Zt, - .-, %¢t., where 1 = ¢, > --- > tp = 0, that gradually decrease in noise content. These points
are functions of the x-predictions X}, := Xy (z;, c).

https://arxiv.org/pdf/2205.11487.pdf 11

Latent Diffusion Models (Stable Diffusion

13 Apr 2022

High-Resolution Image Synthesis with Latent Diffusion Models

Robin Rombach! * Andreas Blattmann'® * Dominik Lorenz! Patrick Esser® Bjérn Ommer!
'L udwig Maximilian University of Munich & IWR, Heidelberg University, Germany leRunway ML
https://github.com/CompVis/latent-diffusion

Abstract ours (f = 4) DALL-E (f =9 VQGAN (J = 1)

Input PSNR: 27.4 R-FID: 0.58 PSNR: 22.8 R-FID: 32.01 PSNR: 19.9 R-FID: 4.98

By decomposing the image formation process into a se-
quential application of denoising autoencoders, diffusion
models (DMs) achieve state-of-the-art synthesis results on
image data and beyond. Additionally, their formulation al-
lows for a guiding mechanism to control the image gen-
eration process without retraining. However, since these
models typically operate directly in pixel space, optimiza-
tion of powerful DMs often consumes hundreds of GPU
days and inference is expensive due to sequential evalu-
ations. To enable DM training on limited computational

12

Latent Diffusion Models

Latent Space " (Conditioning
. Diffusion Process - emanti
Ma
Denoising U-Net €y Nz Text
Repres
entations

Q @ Q ¢
KVl KV || KV KV

Pixel Space

2T
i /’/

79
2 RN

denoising step crossattention switch skip connection concat - J

Figure 3. We condition LDMs either via concatenation or by a
more general cross-attention mechanism. See Sec. 3.3

13

Another More Recent Improvement: Flow Matching

Flow matching

L= tx, +(1—0)
X1 P (X¢|Z)

1

1

vt (xt: 9)

Neural network

0| —lr

Conditional vector field
uy(X|z) = X1 — Xo

Lcrm

See video by Jia-bin Huang (U of Maryland)

https://www.youtube.com/watch?v=DDq_plfHgLs

14

Flow matching

Diffusion

— Conditional vector field
uy(X|z) = x1 — Xo
9 | Lk
A jm— Lcrm
Xt vt (xtr 9)
I Neural network
[¥
0 | Ll
p (xt |X0) [—
Xe = \/@Xo + /1 — @€ xt é‘t(xt, 9)

Neural network

15

AV-Link: Temporally-Aligned Diffusion Features for Cross-Modal
Audio-Video Generation

Moayed Haji-Alit2* Willi Menapace? Aliaksandr Siarohin? Ivan Skorokhodov?
Alper Canberk? Kwot Sin Lee? Vicente Ordonez* Sergey Tulyakov?

IRice University 2Snap Inc

Project Webpage: https://snap-research.github.io/AVLink

https://arxiv.org/pdf/2412.15191

16

AV-Link: Temporally-Aligned Diffusion Features for Cross-Modal
Audio-Video Generation

w— m— -

Moaye Input Video
kov?

Seeing & Hearing
[CVPR’24]

FoleyCrafter
[arXiv’'24]

Diff-Foley
[NeurlPS’23]

AV-Link

Ground Truth Audio

17

3.1. Background

We base our generative models on the Flow Matching
framework [47, 50]. Flow Matching expresses generation

of data X; ~ pg as the progressive transformation of X,
following a path connecting samples from the two distribu-
tions. In its simplest formulation [50], the path is instanti-
ated as a linear interpolation between the samples:

X, = X, + (1 —)Xo, (1)

and Xy ~ p, = N(0,1) originate from a noise distribution.
We can move along the path following the velocity v, =

dfét = X; — X approximated by learnable G minimizing:

L = Etp, X1~pa,Xo~pn ||g(Xt7 t) — Ut| Z’ (2)

where p; indicates a training distribution over time ¢, which
we instantiate as a logit normal distribution [17].

18

3.1. Background

We base our generative models on the Flow Matching
framework [47, 50]. Flow Matching expresses generation

of data X; ~ pg as the progressive transformation of X,
following a path connecting samples from the two distribu-
tions. In its simplest formulation [50], the path is instanti-
ated as a linear interpolation between the samples:

X, = X, + (1 —)Xo, (1)

and Xy ~ p, = N(0,1) originate from a noise distribution.
We can move along the path following the velocity v; =

dflit = X; — X approximated by learnable G minimizing:

L = Etp, X1~pa,Xo~pn ||g(Xt’t) o Ut| 2’ (2)

where p; indicates a training distribution over time ¢, which
we instantiate as a logit normal distribution [17].

Assume we have the following:

Xo

How do we find X

19

3.1. Background

We base our generative models on the Flow Matching '
framework [47, 50]. Flow Matching expresses generation Assume we have the following:

of data X; ~ pgy as the progressive transformation of X,
following a path connecting samples from the two distribu-
tions. In its simplest formulation [50], the path is instanti-
ated as a linear interpolation between the samples:

X0

Xt = tXl + (]_ — t)XO, (1) How do we find Xt

and Xq ~ p, = N (0,) originate from a noise distribution.
We can move along the path following the velocity v; =

dzt = X1 — X approximated by learnable G minimizing:

L= Etnp, X1 ~pa,Xo~pn ||g(Xt’t) B Ut| Z’ (2)

where p; indicates a training distribution over time ¢, which
we instantiate as a logit normal distribution [17].

At inference time, an ODE solver such as first-order Eu-
ler can be employed to produce samples X starting from

Gaussian noise X using the model’s velocity estimates.
20

Also check this material to know more

* Entire class on Flow Matching and Diffusion Models:
https://diffusion.csail.mit.edu/

21

Alternative Methods to Diffusion

e Auto-Regressive models (LLMs to Generate Images!)

22

Text to Scene as Machine Translation!

T T T

***@~ﬂ~@— ﬂ
[.

Mike holds a hotdog \ \ \

Text2Scene: Generating Compositional Scenes from Textual Descriptions
Fuwen Tan, Song Feng, Vicente Ordonez. Intl. Conference on Computer Vision and Pattern Recognition. CVPR 2019.
Long Beach, California. June 2019.(~Oral presentation + Best Paper Finalist -- top 1% of submissions)

The actual model

locations
objects

Objective

n n
m Location-1 Attributes-| Location-2 Attributes-2
~ () ~ (%) -
a

hotdog

Mike holds

E _ Bj RE BE
= BIGRU(e k1 WY B A = ComvGRU(. p(0y) o ©°([ug; 0. plls, (RE}) = O%([ul; 01;)

atlributes
(A) Text Encoder (B) Image Encoder {§ § (C) Convolutional ' (E) Object (F) Attribute
SoEmn = Recurrent | 1 Prediction Prediction . .
Module | Encourage attention weights

to fully use the input text.

Latm = 2 [1 - Z at,i]z
i t

t-1 ,
Recurrent Llanguage |: Object Location Attribute
Input sentence hidden state context | OneHot map maps

] uvavision / Text2Scene ® Watch~ 6 Ystar 26 YFork 6

@ vislang.ai

<> Code Issues 0 Pull requests 0 Projects 0 Wiki Security Insights Settings

[CVPR'9] Text2Scene: Generating Compositional Scenes from Textual Descriptions Edit Hiseleias Mikeand dentyfadlTias o

reference any of these other objects: bear,
cat, dog, duck, owl, snake, hat, crown,
pirate hat, viking hat, witch hat, glasses,
P 4 commits ¥ 1branch © 0 releases 42 1 contributor pie, pizza, hot dog, ketchup, mustard,
drink, bee, slide, sandbox, swing, tree,
pine tree, apple tree, helicopter, balloon,

Manage topics

Branch: master v New pull request Create new file = Upload files = Find File Clone or download +~ sun, cloud, rocket, airplane, ball, foo“?a”'
basketball, baseball bat, shovel, tennis
racket, kite, fire. Also feel free to describe

fwtan Update README.md Latest commit 568167 4 days ago Mike and Jenny with other attributes or
action words such as sitting, running,

I data cleaning up the codes, alpha version 19 days ago jumping, kicking, standing, afraid, happy,
scared, angry, etc.

8 examples cleaning up the codes, alpha version 19 days ago

#1 Mike is next to a tree

B8 experiments/scripts cleaning up the codes, alpha version 19 days ago

i lib cleaning up the codes, alpha version 19 days ago #2 Jenny is happy and kicks the t

| tools cleaning up the codes, alpha version 19 days ago

#3 Thereis afire
E) README.md Update README.md 4 days ago

Text2Scene: Generating Compositional Scenes from Textual
Descriptions

https://www.vislang.ai/text2scene

Amazon Alexa Al

Surprise Me

Select Your Hero

2. Mermaid

https://www.amazon.science/blog/the-science-behind-alexas-new-interactive-story-creation-experience

Amazon Alexa Al

https://www.amazon.science/blog/the-science-behind-alexas-new-interactive-story-creation-experience

Vector Quantized - GAN

real/fake
] (Codebook Z \ / Transformer I \ fle|t]e¢
0 — > A1 I] I 18 flf]r|f
1 p(S) ’.‘ .~°. r| f|r | f
sz | f r r r
N-1

CNN

Discriminator

argmin,cz ||2 — z]|

>

quantization

https://arxiv.org/abs/2012.09841

https://arxiv.org/pdf/2110.04627.pdf 28

Vector Quantized GAN (VQGAN)

real/fake
r

n (COdebOOK Z\ / Transformer I |)
| 0 — L |I il
1 p(s) = 1Lip(sils<i) -

- | = - | -,
- - = | -~
- - = | =

f
f
r

~ CNN
~ Discriminator

s A CNN
argming. cz ”z — Z “ Decoder
quantization ;
_ A2 B 2
Q* — arg minmngzup(z) [£VQ(E1 G,Z) *C'VQ(E‘J G!Z) - “‘1" 'T” + ”Sg[E($)] zq“;
EG,Z + Isglzq] — E(z)|l2
+ALaan({E, G, 2}, D)] Loan({E, G, 2}, D) = [log D(z) + log(1 — D(%))]

https://arxiv.org/abs/2012.09841 https://arxiv.org/pdf/2110.04627 .pdf

Zero-Shot Text-to-Image Generation

OpenAl Feb 2021

DALL-E (v1)

Step 1:

Learn Discrete Dictionary of Visual Tokens

VQVAE — Oord,Vinyals, Kavukcuoglu, 2017
VQGAN — Esser, Rombach, Ommer; 202 |
dVAE - DALL-E — Ramesh et al 202 |

Aditya Ramesh ! Mikhail Pavlov! Gabriel Goh! Scott Gray!
Chelsea Voss ! Alec Radford! Mark Chen! Ilya Sutskever !

Step 2:

Build a scene as a composition of discrete visual tokens

Visual tokens
ABCDE

EREE!
Bidirectional |:> Autoregressive
- Encoder - Decoder
Freft FEfrft
A_B _E <sSABCD
Text tokens Visual tokens

BART, GPT-3, etc

30

DALL-E (v1)

Step 1:

Learn Discrete Dictionary of Visual Tokens

. e y
-] ¥ Y
ol | NN A
CNN e, plxlz,)
1 ®

VQVAE — Oord,Vinyals, Kavukcuoglu, 2017
VQGAN — Esser, Rombach, Ommer; 202 |
dVAE - DALL-E — Ramesh et al 202 |

Step 2:

Build a scene as a composition of discrete visual tokens

Visual tokens

ABCDE

EREE!
Bidirectional |:> Autoregressive
- Encoder - Decoder
Freft FEfrft
A B _E <s>SABCD
Text tokens Visual tokens

BART, GPT-3, etc

31

an armchair in the shape of an avocado.. ..

32

Questions

	Slide 0: Deep Learning for Vision & Language
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: How do we train?
	Slide 7: Unet to model transition
	Slide 8: How do we train?
	Slide 9: How do we train?
	Slide 10: Imagen by Google
	Slide 11: Imagen by Google
	Slide 12: Latent Diffusion Models (Stable Diffusion)
	Slide 13: Latent Diffusion Models
	Slide 14: Another More Recent Improvement: Flow Matching
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Also check this material to know more
	Slide 22: Alternative Methods to Diffusion
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Vector Quantized - GAN
	Slide 29: Vector Quantized GAN (VQGAN)
	Slide 30: DALL-E (v1)
	Slide 31: DALL-E (v1)
	Slide 32
	Slide 33: Questions

