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Deep Learning for Vision &
Language

Convolutional Neural Networks for Object Detection




Object Detection
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Object Detection as Classification
with Sliding Window
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Object Detection as Classification
with Box Proposals
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Box Proposal Method — SS: Selective Search

Segmentation As
Selective Search for
Object Recognition. van
de Sande et al. ICCV
2011




R-CNN: Regions with CNN features

9] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Rich feature hierarchies for accurate object detection and semantic
segmentation. Girshick et al. CVPR 2014.



https://people.eecs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Fast-RCNN
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For each Rol

Idea: No need to recompute features for every box independently,
Regress refined bounding box coordinates.
https://arxiv.org/abs/1504.08083

. . https://github.com/sunshineatnoon/Paper-
Fast R-CNN. Girshick. ICCV 2015. Collection/blob/master/Fast-RCNN.md



https://arxiv.org/abs/1504.08083

Faster-RCNN

Object is a cat Refine BB position

Object or not object BB proposal |
Rol pooling

proposals
Idea: Integrate the Bounding /

Box Proposals as part of the Fiegion Propssal Hetwore
CNN predictions ™. “Last conv layer

pre-train image-net

CNN

https://arxiv.org/abs/1506.01497 e /
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Ren et al. NIPS 2015. — el


https://arxiv.org/abs/1506.01497

Single-shot Object Detectors

* No two-steps of box proposals + Classification
* Anchor Points for predicting boxes



YOLO- You Only Look Once

Idea: No bounding
box proposals.
Predict a class and a
box for every location
in a grid.

i & I '
S movemp e SEE | HER 4
- .y

S S grid on input

Class probability map

https://arxiv.org/abs/1506.02640

Final detections

Redmon et al. CVPR 2016.


https://arxiv.org/abs/1506.02640

YOLO- You Only Look Once
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Divide the image into 7x7 cells.

Each cell trains a detector.
The detector needs to predict the object’s class distributions.

The detector has 2 bounding-box predictors to predict
bounding-boxes and confidence scores.

https://arxiv.org/abs/1506.02640 Redmon et al. CVPR 2016.



https://arxiv.org/abs/1506.02640

YOLO - Loss Function
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SSD: Single Shot Detector
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(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Idea: Similar to YOLO, but denser grid map, multiscale grid maps. +
Data augmentation + Hard negative mining + Other design choices i

n the network. Liu et al. ECCV 2016.



S S D VS YO LO Extra Feature Layers
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Object Detection with Transfromers (DETR) (2020)
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https://arxiv.org/abs/2005.12872 https://github.com/facebookresearch/detr



GLIP: CLIP but also outputs boxes (2021)

Prompt

Person. Bicycle ... Hairdryer.

A woman holds a blow dryer,
wearing protective goggles

: Encoder

Text

Visual

https://arxiv.org/abs/2112.03857
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https://github.com/microsoft/GLIP 19



More recent Object Detectors

e OWL-VIT (2022): https://arxiv.org/abs/2205.06230
e GLIP-v2 (2022): https://arxiv.org/abs/2206.05836
e DetCLIP (2022): https://arxiv.org/abs/2209.09407
* YOLO-World (2024): https://github.com/AlLab-CVC/YOLO-World

20


https://arxiv.org/abs/2205.06230
https://arxiv.org/abs/2206.05836
https://arxiv.org/abs/2209.09407
https://github.com/AILab-CVC/YOLO-World

Questions
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