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VIC-MAE
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Selt-Supervision for Visual Model Learning

* Lots of data but no labels
* Labeling data is expensive



Similarity Learning: Triplet Loss (Supervised)
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FaceNet: A Unified Embedding for Face Recognition and Clustering

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff FaceNet_A_ Unified_2015_CVPR_paper.html



Similarity Learning: Triplet Loss (Self Supervised)
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FaceNet: A Unified Embedding for Face Recognition and Clustering

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Schroff FaceNet_A_ Unified_2015_CVPR_paper.html



SIMCLR: Contrastive Learning
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A Simple Framework for Contrastive Learning of Visual Representations
https://arxiv.org/abs/2002.05709



Contrastive Learning
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A Simple Framework for Contrastive Learning of Visual Representations
https://arxiv.org/abs/2002.05709



Issue with Contrastive Learning

e Large number of negative examples in the denominator are needed

* In practice this is approximated through batches — all other elements
in the batch are negatives.

* Random negative examples are easy

e Large number of negative examples means larger batch sizes which
OCCUpy more memory

* GPU memory is expensive
(What is the max memory a GPU has these days vs your PC?)



Momentum Contrastive Learning (MoCo)
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Improved Baselines with Momentum Contrastive Learning
https://arxiv.org/abs/2003.04297  https://arxiv.org/abs/1911.05722



Momentum Contrastive Learning (MoCo)

contrastive loss
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Improved Baselines with Momentum Contrastive Learning

https://arxiv.org/abs/2003.04297

https://arxiv.org/abs/1911.05722
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Alternative: Masked AutoEncoders (MAE)
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Masked Autoencoders Are Scalable Vision Learners
https://arxiv.org/abs/2111.06377



Examples

e After training,
the model learns
to fill-in-the-
blanks for
Images.

e Similar to text
masked image
modeling

* The model can
be finetuned for
any other task.




Several Analysis in the Paper
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Video MAE
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VideoMAE: Masked Autoencoders are Data-Efficient
Learners for Self-Supervised Video Pre-Training

Decoder

https://arxiv.org/abs/2203.12602
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Masked Autoencoders As Spatiotemporal Learners
https://arxiv.org/abs/2205.09113

15



VIC-MAE

ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders

https://arxiv.org/abs/2303.12001
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VIC-MAE
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Results

Method Arch. Pre-training Data In-Domain Out-of-Domain
INIK K400 Places-365 SSv2
ViT [22] ICML’20 Vil-B IN1K 82.3 68.5 57.0 61.8
§ ViT [22] ICML’20 ViT-L IN1K 82.6 78.6 58.9 66.2
Z  OMNIVORE [27] CVPR'22  ViT-B IN1K + K400 + SUN RGB-D 840  83.3 59.2 68.3

Z OMNIVORE [27] CVPR'22  ViT-L IN1K + K400 + SUN RGB-D 860 84.1 - —~

TubeViT [63] CVPR’23 ViT-B K400 + IN1K 814  88.6 - -
TubeViT [63] CVPR’23 ViT-L K400 + IN1K . 90.2 . 76.1
MAE [35] CVPR’22 ViT-B IN1K 83.4 - 57.9 59.6
MAE [35] CVPR’22 ViT-L IN1K 85.5 82.3 594 57.7
ST-MAE [26] NeurIPS’22 ViT-B K400 81.3 81.3 574 69.3
ST-MAE [26] NeurIPS’22 ViT-L K400 81.7 84.8 58.1 73.2
VideoMAE [68] NeurIPS’22  ViI-B K400 81.1 80.0 - 69.6
?‘;{ VideoMAE [68] NeurIPS’22  ViT-L K400 — 85.2 — 74.3
% OmniMAE [29] CVPR’23 ViT-B K400 + IN1K 82.8 80.8 58.5 69.0
u;"'l’ OmniMAE [29] CVPR’23 ViT-L K400 + IN1K 84.7 84.0 594 73.4
S ViC-MAE ViT-L K400 850  85.1 59.5 73.7
ViC-MAE ViT-L MiT 85.3 84.9 59.7 73.8
ViC-MAE ViT-B K400 + IN1K 83.0 80.8 58.6 69.5
ViC-MAE ViT-L K400 + IN1K 86.0 86.8 60.0 75.0
ViC-MAE ViT-B K400 + K600 + K700 + MiT + INIK ~ 83.8 80.9 59.1 69.8
ViC-MAE VIiT-L K400 + K600 + K700 + MiT + IN1K 87.1 87.8 60.7 759
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Questions
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