

Deep Learning for Vision & Language

Self-supervised Models for Computer Vision

RICE UNIVERSITY

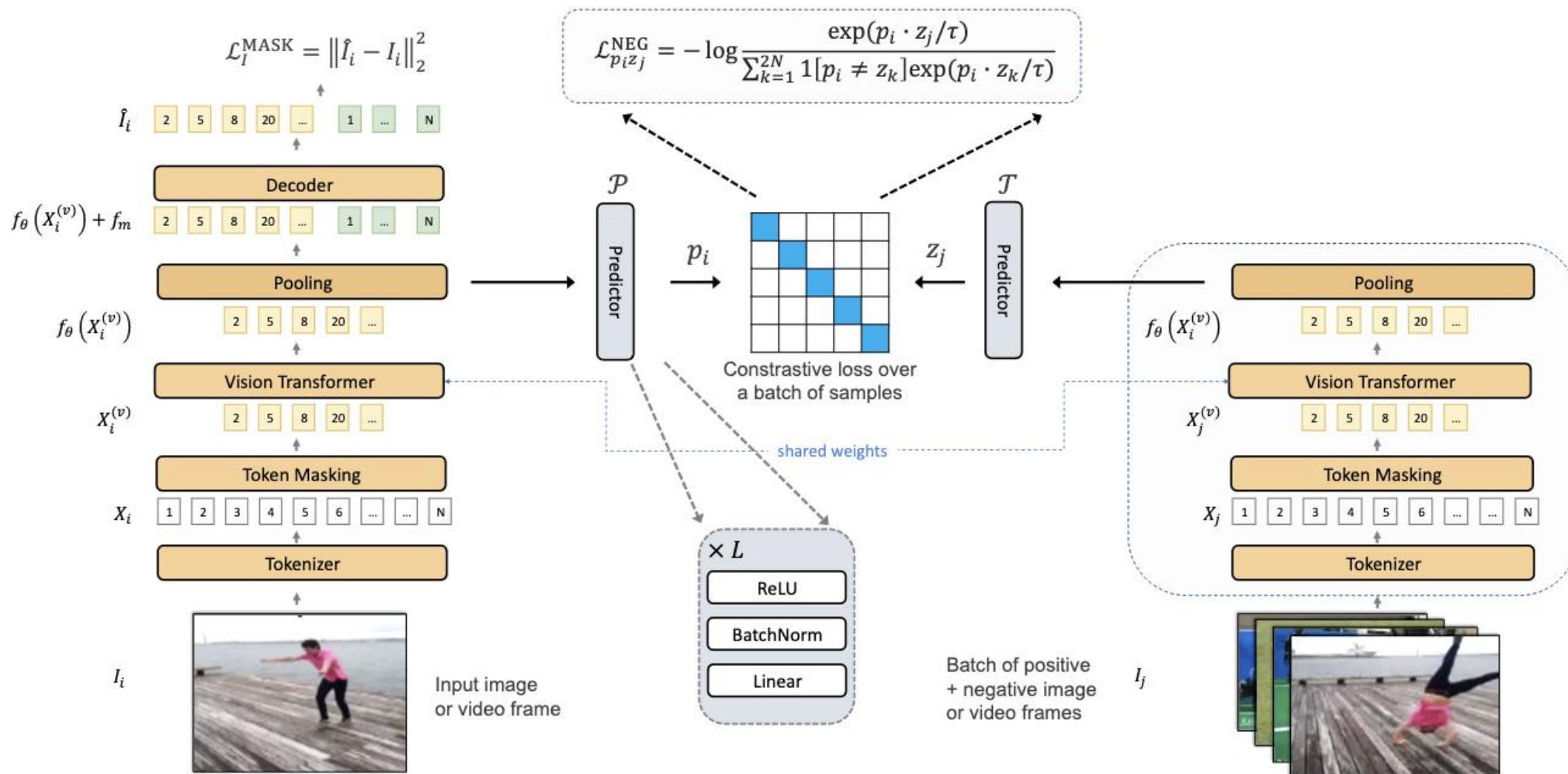
ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders

Jefferson Hernandez¹, Ruben Villegas², Vicente Ordonez¹

¹Rice University, ²Google DeepMind

{jefehern, vicenteor}@rice.edu, rubville@google.com

ViC-MAE



Self-Supervision for Visual Model Learning

- Lots of data but no labels
- Labeling data is expensive

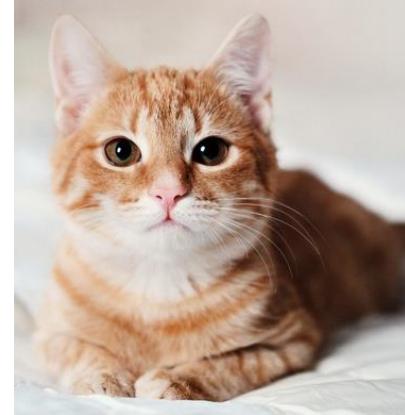
Similarity Learning: Triplet Loss (Supervised)

 x_i^a x_i^p  x_i^n

$$\sum_i^N \left[\|f(x_i^a) - f(x_i^p)\|_2^2 - \|f(x_i^a) - f(x_i^n)\|_2^2 + \alpha \right]_+$$

FaceNet: A Unified Embedding for Face Recognition and Clustering

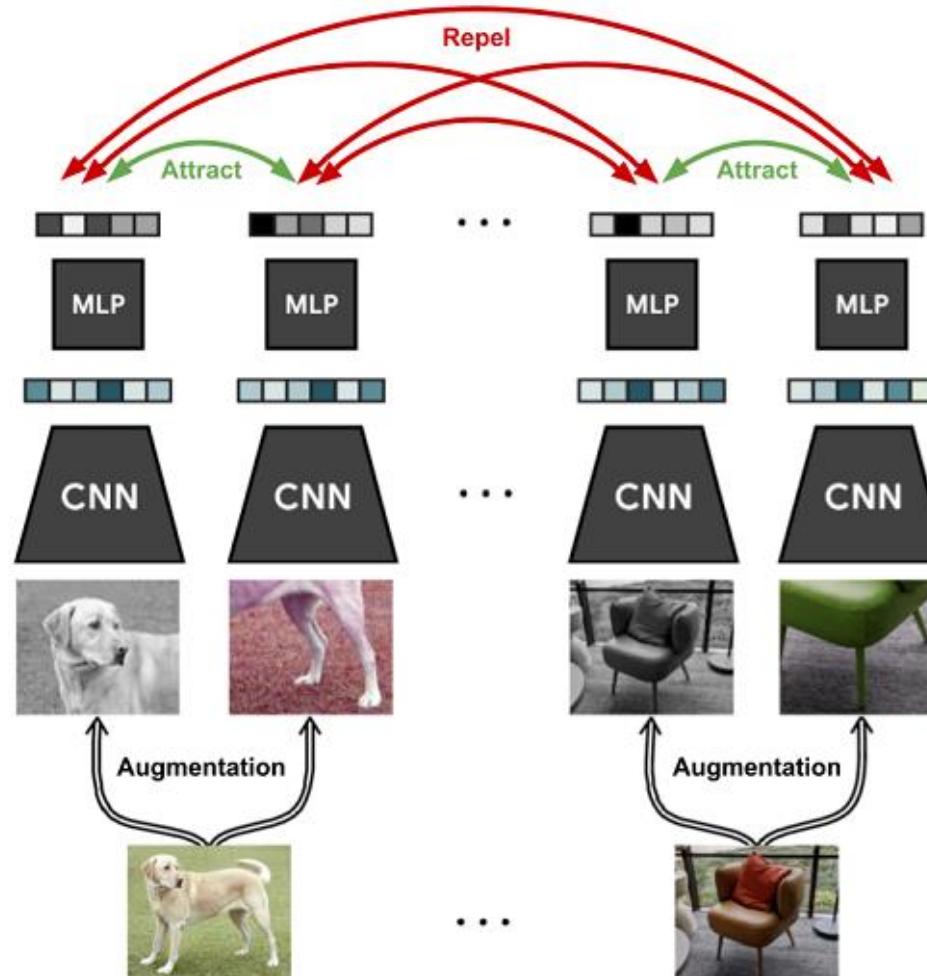
Similarity Learning: Triplet Loss (Self Supervised)

 x_i^a x_i^p  x_i^n

$$\sum_i^N \left[\|f(x_i^a) - f(x_i^p)\|_2^2 - \|f(x_i^a) - f(x_i^n)\|_2^2 + \alpha \right]_+$$

FaceNet: A Unified Embedding for Face Recognition and Clustering

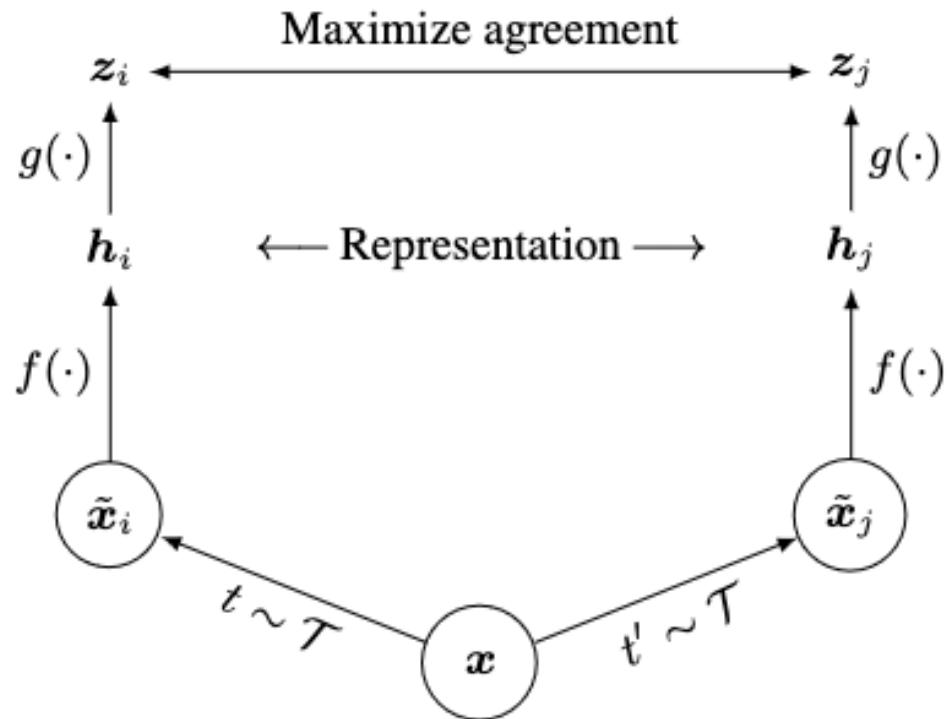
SimCLR: Contrastive Learning



A Simple Framework for Contrastive Learning of Visual Representations

<https://arxiv.org/abs/2002.05709>

Contrastive Learning



$$\mathbf{h}_i = f(\tilde{\mathbf{x}}_i) = \text{ResNet}(\tilde{\mathbf{x}}_i)$$

$$\mathbf{z}_i = g(\mathbf{h}_i) = W^{(2)}\sigma(W^{(1)}\mathbf{h}_i)$$

$$\ell_{i,j} = -\log \frac{\exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(\text{sim}(\mathbf{z}_i, \mathbf{z}_k)/\tau)}$$

Positive pair

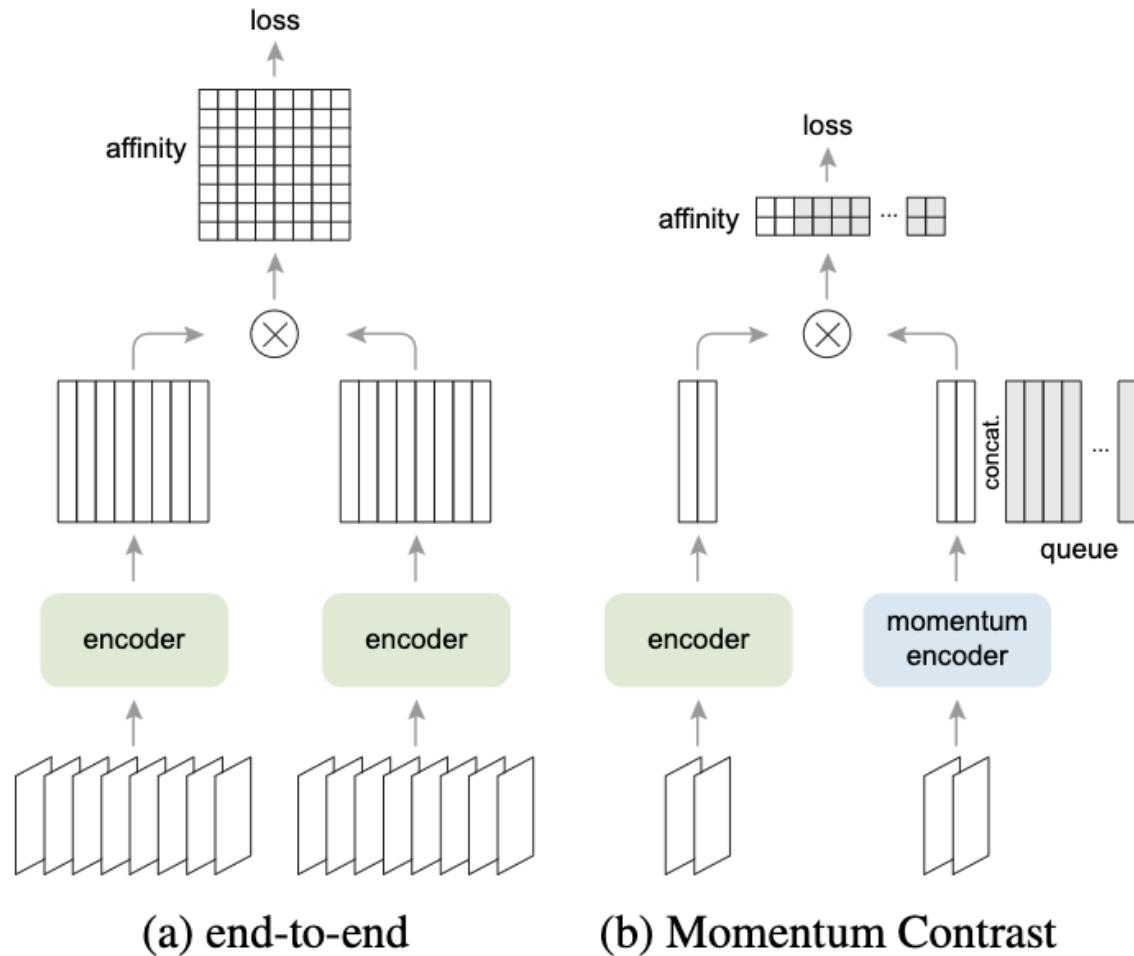
Negative pairs

A Simple Framework for Contrastive Learning of Visual Representations

Issue with Contrastive Learning

- Large number of negative examples in the denominator are needed
- In practice this is approximated through batches – all other elements in the batch are negatives.
- Random negative examples are easy
- Large number of negative examples means larger batch sizes which occupy more memory
- GPU memory is expensive
(What is the max memory a GPU has these days vs your PC?)

Momentum Contrastive Learning (MoCo)

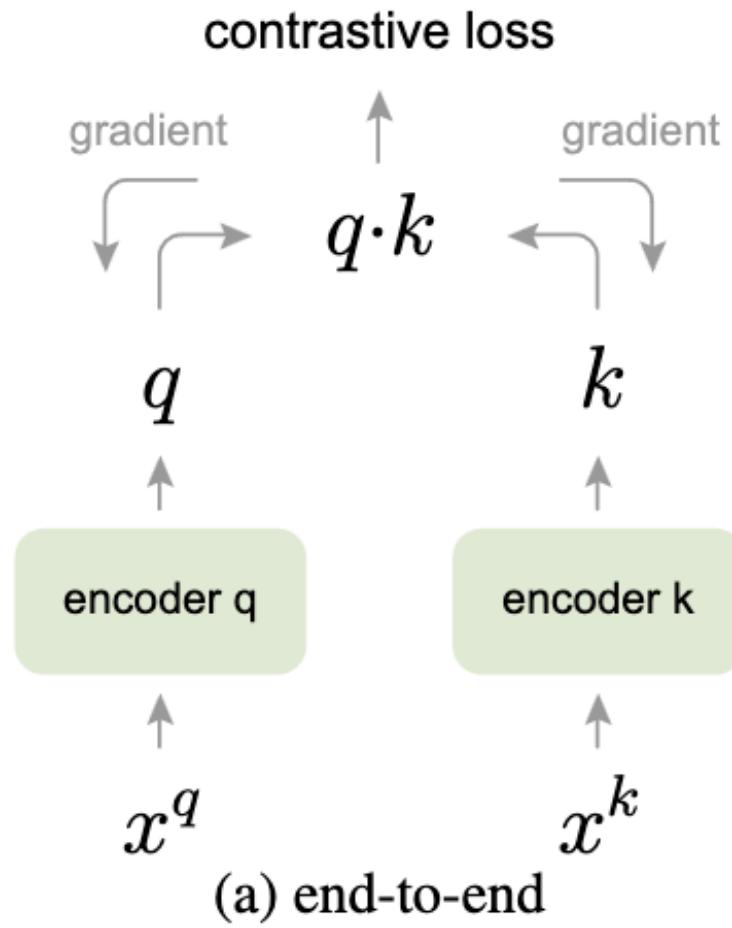
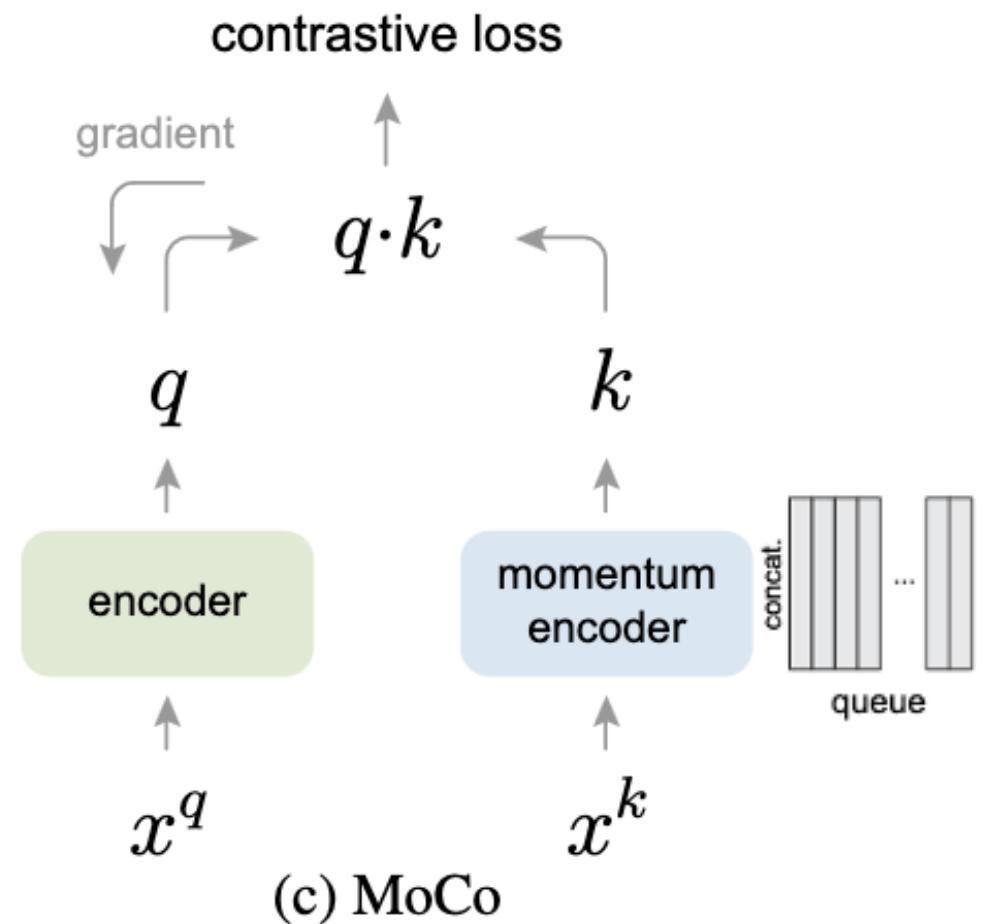


Improved Baselines with Momentum Contrastive Learning

<https://arxiv.org/abs/2003.04297>

<https://arxiv.org/abs/1911.05722>

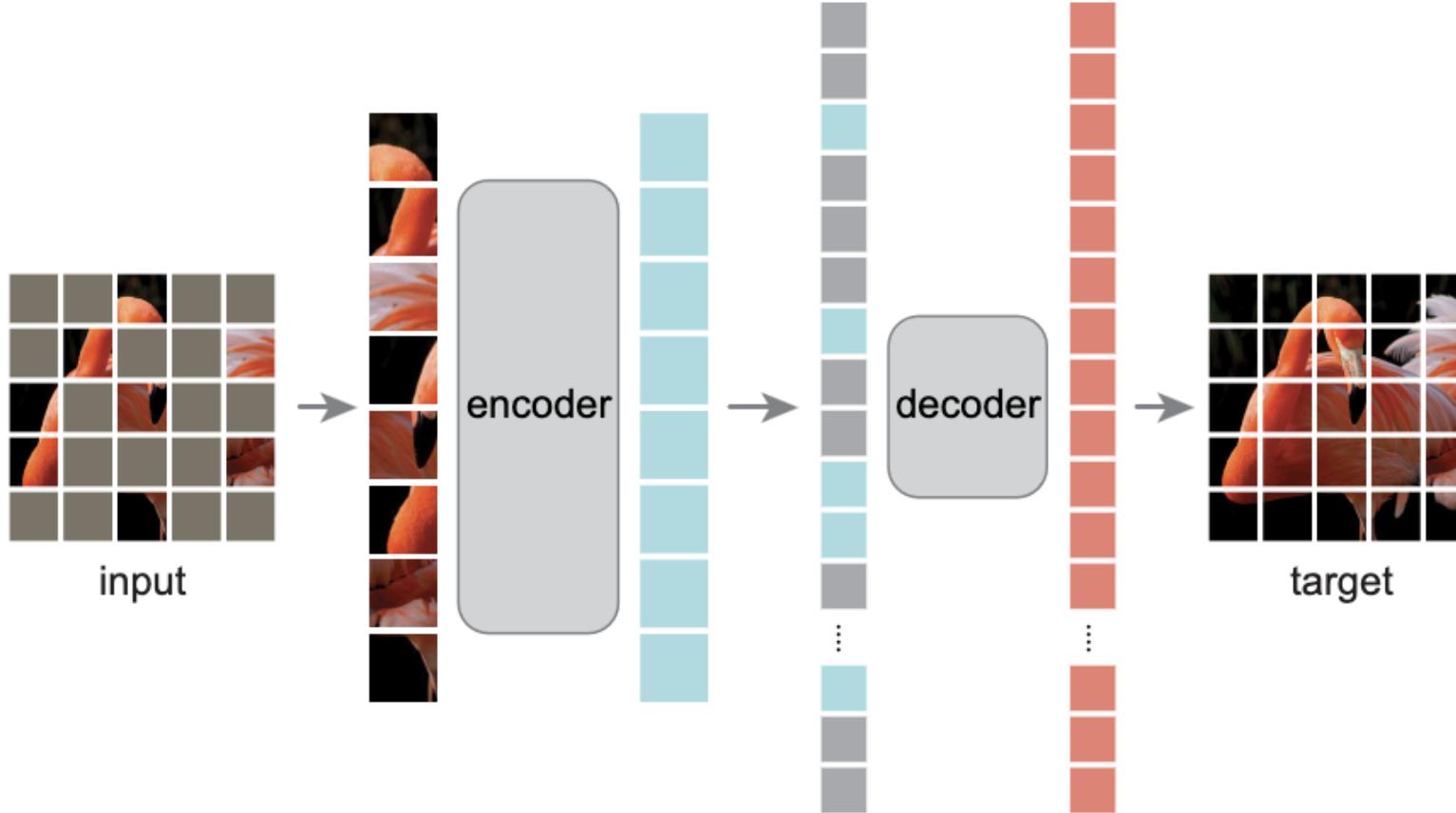
Momentum Contrastive Learning (MoCo)



Improved Baselines with Momentum Contrastive Learning

<https://arxiv.org/abs/2003.04297> <https://arxiv.org/abs/1911.05722>

Alternative: Masked AutoEncoders (MAE)

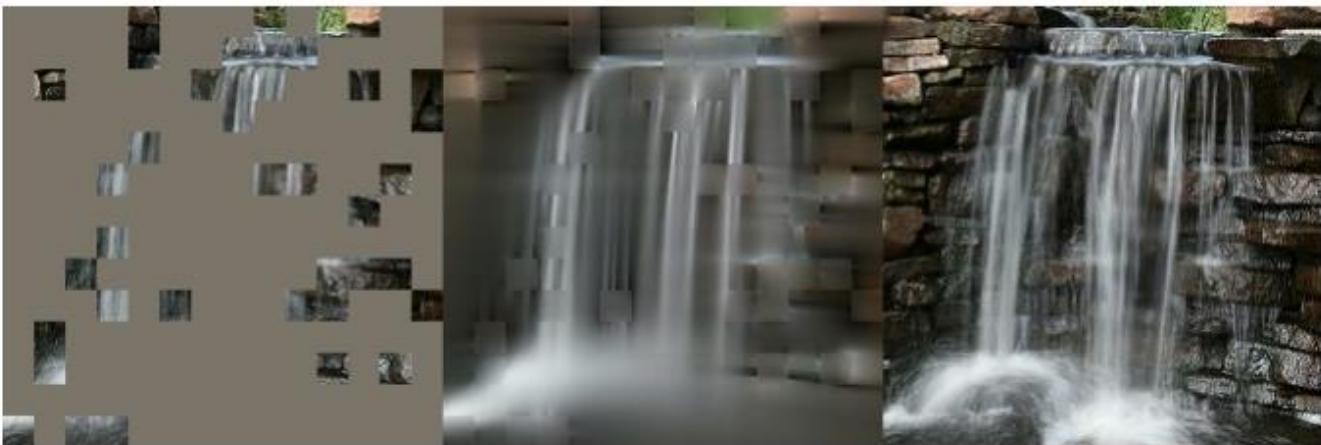


Masked Autoencoders Are Scalable Vision Learners

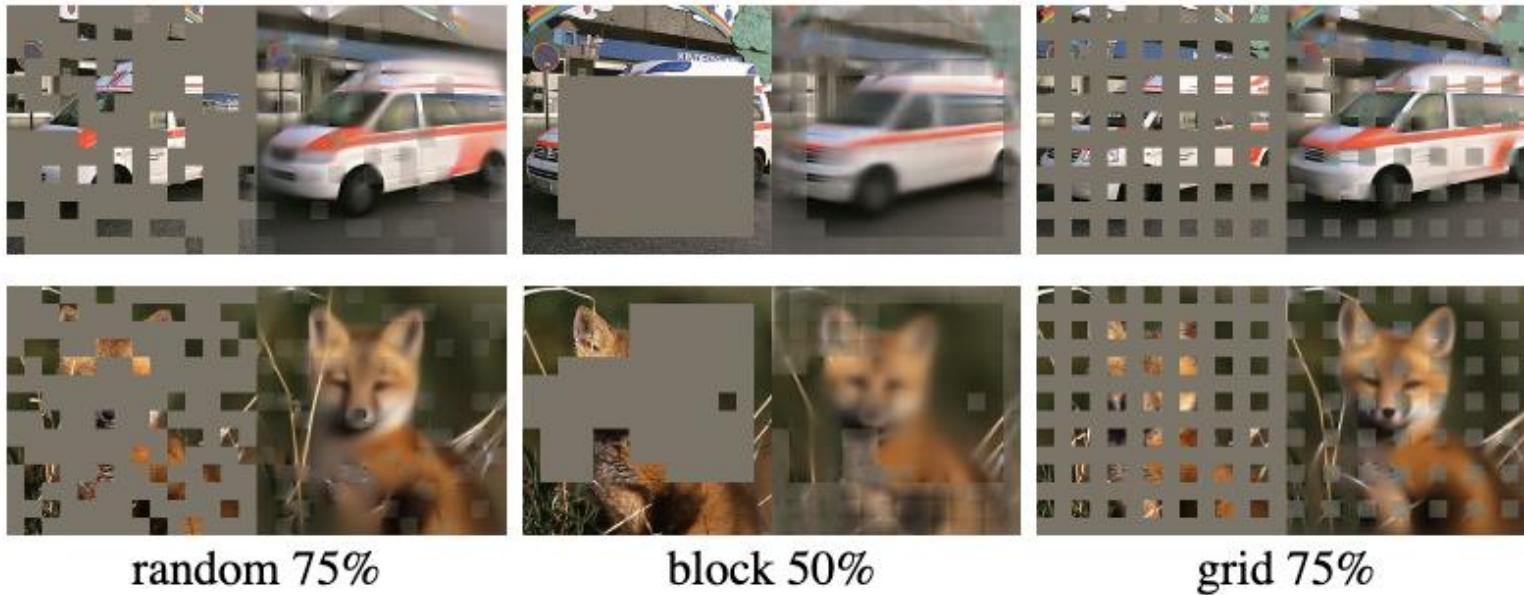
<https://arxiv.org/abs/2111.06377>

Examples

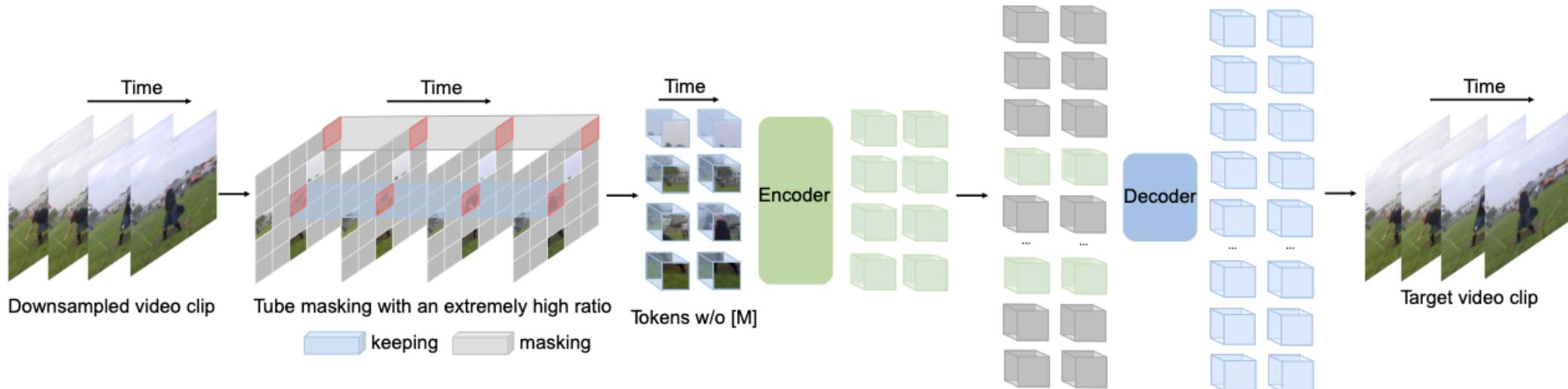
- After training, the model learns to fill-in-the-blanks for images.
- Similar to text masked image modeling
- The model can be finetuned for any other task.



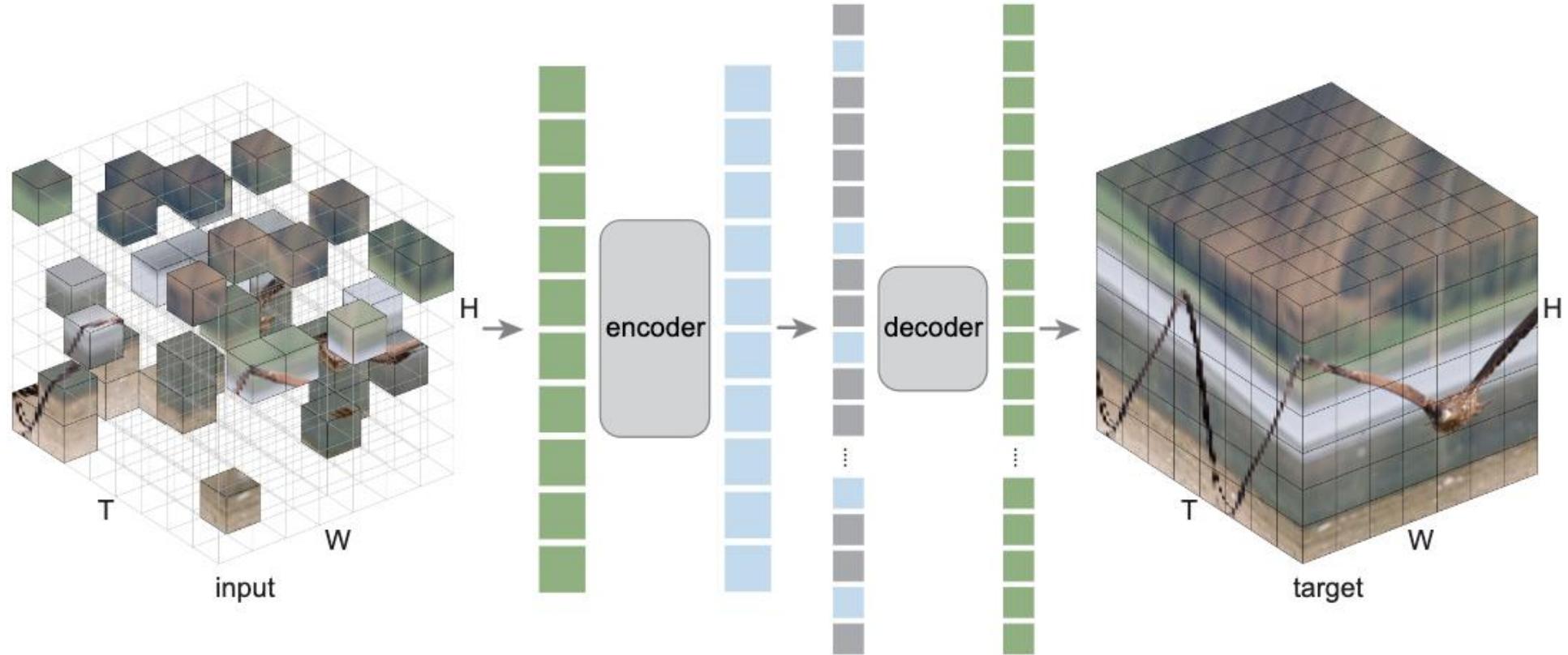
Several Analysis in the Paper



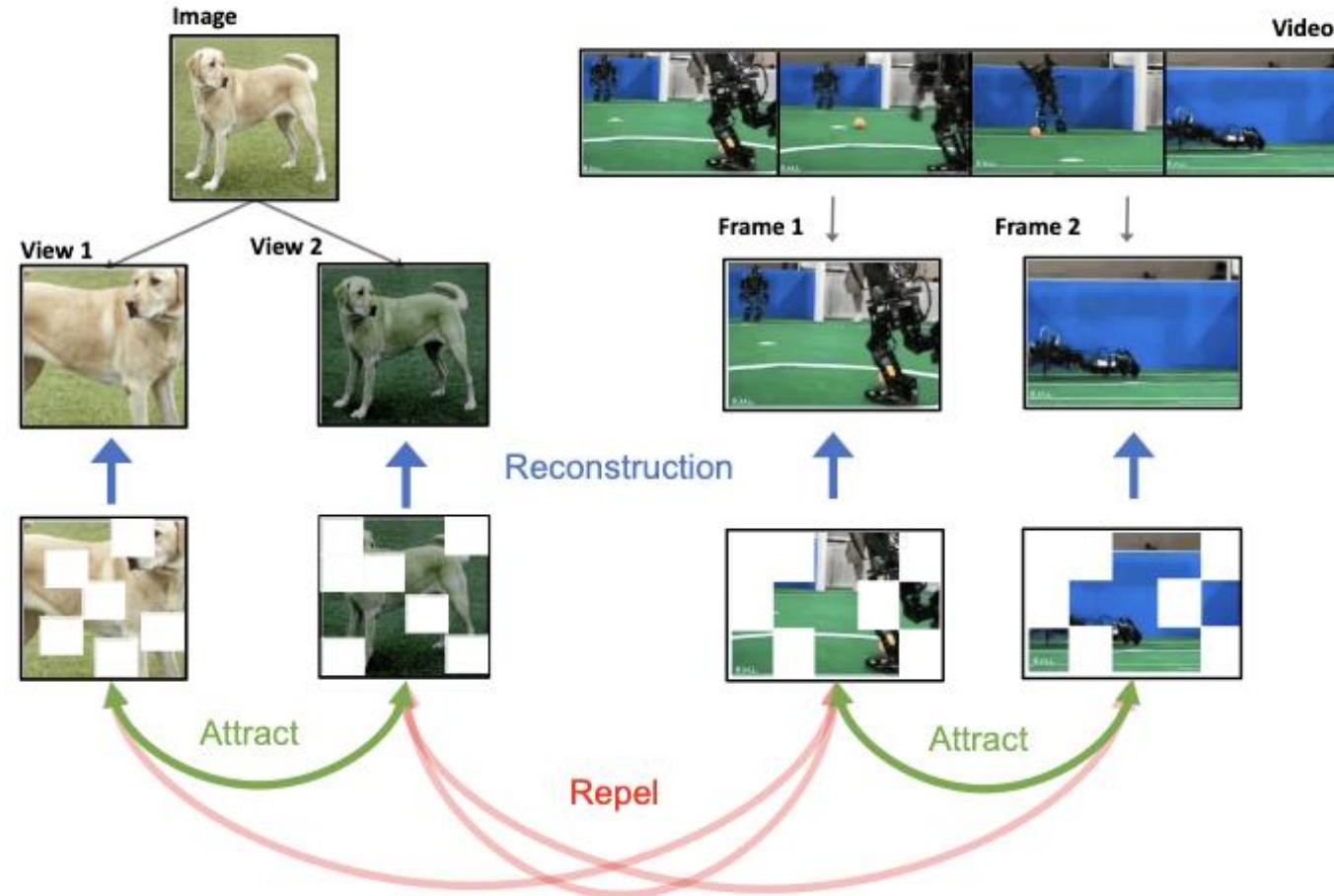
Video MAE



ST MAE



ViC-MAE

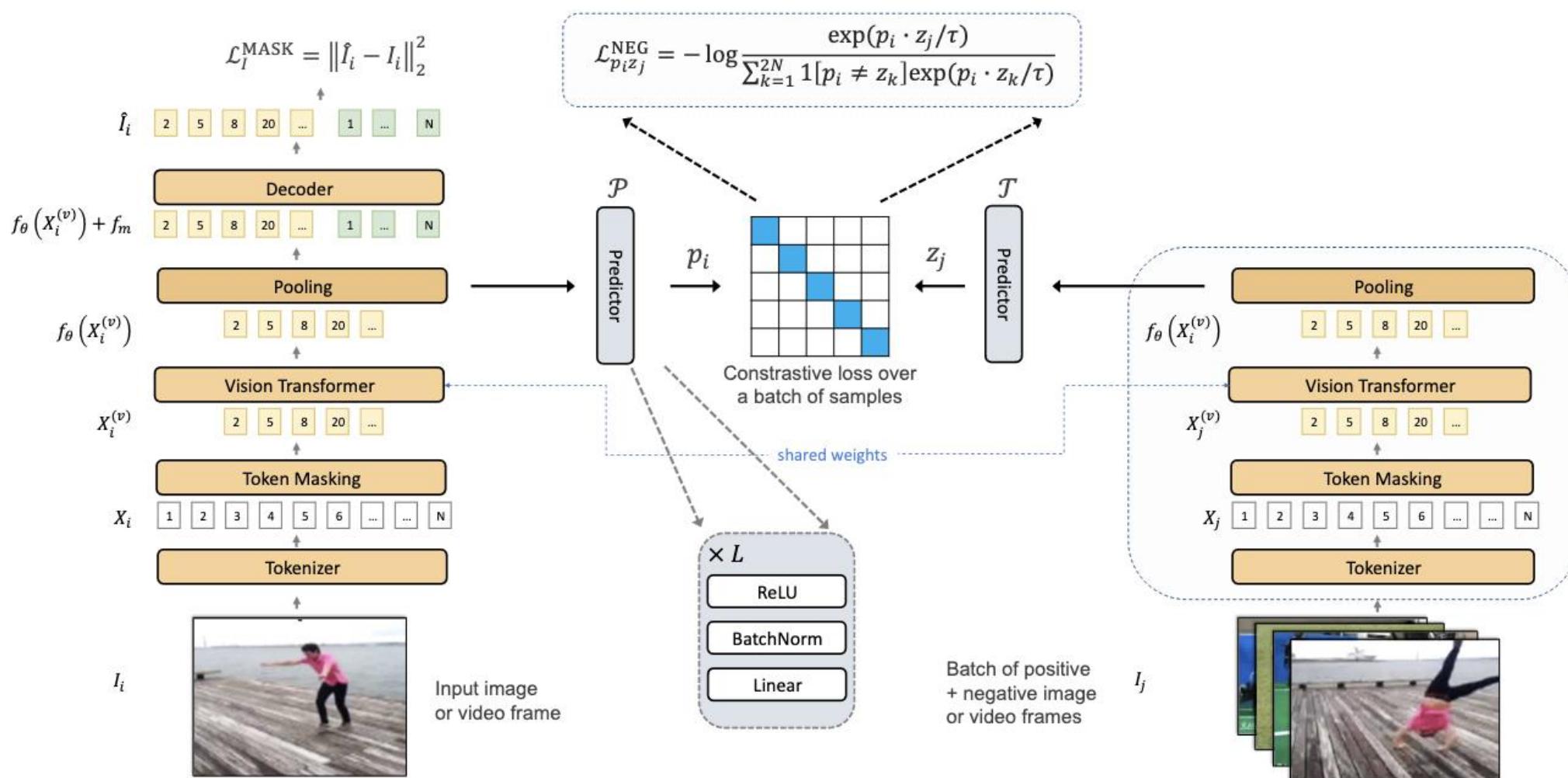


ViC-MAE: Self-Supervised Representation Learning from Images and Video with Contrastive Masked Autoencoders

<https://arxiv.org/abs/2303.12001>

16

ViC-MAE



Results

	Method	Arch.	Pre-training Data	In-Domain		Out-of-Domain	
				IN1K	K400	Places-365	SSv2
Supervised	ViT [22] <i>ICML'20</i>	ViT-B	IN1K	82.3	68.5	57.0	61.8
	ViT [22] <i>ICML'20</i>	ViT-L	IN1K	82.6	78.6	58.9	66.2
	OMNIVORE [27] <i>CVPR'22</i>	ViT-B	IN1K + K400 + SUN RGB-D	84.0	83.3	59.2	68.3
	OMNIVORE [27] <i>CVPR'22</i>	ViT-L	IN1K + K400 + SUN RGB-D	86.0	84.1	—	—
	TubeViT [63] <i>CVPR'23</i>	ViT-B	K400 + IN1K	81.4	88.6	—	—
	TubeViT [63] <i>CVPR'23</i>	ViT-L	K400 + IN1K	—	90.2	—	76.1
Self-Supervised	MAE [35] <i>CVPR'22</i>	ViT-B	IN1K	83.4	—	57.9	59.6
	MAE [35] <i>CVPR'22</i>	ViT-L	IN1K	85.5	82.3	59.4	57.7
	ST-MAE [26] <i>NeurIPS'22</i>	ViT-B	K400	81.3	81.3	57.4	69.3
	ST-MAE [26] <i>NeurIPS'22</i>	ViT-L	K400	81.7	84.8	58.1	73.2
	VideoMAE [68] <i>NeurIPS'22</i>	ViT-B	K400	81.1	80.0	—	69.6
	VideoMAE [68] <i>NeurIPS'22</i>	ViT-L	K400	—	85.2	—	74.3
	OmniMAE [29] <i>CVPR'23</i>	ViT-B	K400 + IN1K	82.8	80.8	58.5	69.0
	OmniMAE [29] <i>CVPR'23</i>	ViT-L	K400 + IN1K	84.7	84.0	59.4	73.4
ViC-MAE	ViC-MAE	ViT-L	K400	85.0	85.1	59.5	73.7
	ViC-MAE	ViT-L	MiT	85.3	84.9	59.7	73.8
	ViC-MAE	ViT-B	K400 + IN1K	83.0	80.8	58.6	69.5
	ViC-MAE	ViT-L	K400 + IN1K	86.0	86.8	60.0	75.0
	ViC-MAE	ViT-B	K400 + K600 + K700 + MiT + IN1K	83.8	80.9	59.1	69.8
	ViC-MAE	ViT-L	K400 + K600 + K700 + MiT + IN1K	87.1	87.8	60.7	75.9

Questions