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Abstract

The Android operating system builds upon already well established permission systems, but complements
them by allowing application components to be reused within and across applications through a single
communication mechanism, called the Intent mechanism. In this paper we develop techniques for statically
detecting Android application vulnerability to attacks that obtain unauthorized access to permission-protected
information. We address three kinds of such attacks, known as confused deputy, permission collusion, and
Intent spoofing.

We show that application vulnerability to these attacks can be detected using taint analysis. Based
on this technique, we developed PermissionFlow, a tool for discovering vulnerabilities in the bytecode and
configuration of Android applications. To enable the PermissionFlow analysis, we develop a static technique
for automatic identification of permission-protected information sources in permission-based systems. This
technique identifies APIs whose execution leads to permission-checking and considers these APIs to be sources
of taint. Based on this approach, we developed Permission Mapper, a component of PermissionFlow that
improves on previous work by performing fully automatic identification of such APIs for Android Java code.

Our automated analysis of popular applications found that 56% of the top 313 Android applications
actively use inter-component information flows. Among the tested applications, PermissionFlow found four
exploitable vulnerabilities. By helping ensure the absence of inter-application permission leaks, we believe
that the proposed analysis will be highly beneficial to the Android ecosystem and other mobile platforms
that may use similar analyses in the future.

1 Introduction

Users of modern smarphones can install third-party applications from markets that host hundreds of thousands
of applications [26, 2] and even more from outside of official markets. To protect sensitive user information from
these potentially malicious applications, most operating systems use permission-based access-control models
(Android [11], Windows Phone 7 [20], Meego [27] and Symbian [21]).

Permissions are a well known and powerful security mechanism, but - as with any new operating system
- there is the possibility that Android-specific features may reduce the guarantees of the classic permissions
model. One such feature is the new communication mechanism (called Intents), which can be used to exchange
information between components (called Activitys) of the same application or of different applications.

One type of attack that exploits Intents for malicious purposes is permission collusion. In this attack, an
application that individually only has access to harmless permissions augments its capabilities by invoking a
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collaborating application through sending and receiving Intents. To stage this attack, malevolent developers
could trick users into installing such cooperating malicious applications that covertly compromise privacy.

A second type of attack using Intents is the confused deputy attack. Confused deputy attacks rely on
misconfigured applications; components that interact with other applications are invoked by unauthorized callers
and allow them to perform protected actions or access permission-protected information.

A third type of attack, Intent spoofing [5], is an Android-specific form of the confused deputy attack: it affects
applications not meant to communicate with other applications. Even if a developer’s intention was to disallow
external invocation of internal Activitys, other applications may be able to invoke them if the application
does not have the necessary configuration. This is possible because Intents can be used for inter-application
invocations as well as intra-application invocations.

In this paper we focus on the use of the above types of attacks to obtain unauthorized access to permission-
protected information via exploiting the Intent mechanism. We call these attacks permission-leak attacks.

One possible approach for leveraging static analysis to discover these vulnerabilities is to merge the call graph
of each application and to enhance it with edges representing the possible call edges between applications. On
this inter-application call graph, one could check using static taint analysis whether protected information leaks
to applications that do not own the required permissions. However, this approach could be time-consuming
because of the large number of applications that must be analyzed together.

We propose an alternative approach that first summarizes the permission-protected APIs of the Android
libraries. Then, using taint analysis, it tracks the information flow through both the Android libraries and the
application, checking if the information reaches a misconfigured or otherwise vulnerable component that allows
permission-protected information to escape to other applications.

Tested on 313 popular Android Market applications, our tool, PermissionFlow, identified that 56% of them
use inter-component information flows that may require permissions. Four exploitable vulnerabilities were found.
The structure of the paper is the following. The relevant parts of the Android development model and permission
system are described in Section 2. Section 3 illustrates possible attack scenarios.

We express the vulnerabilities as a taint propagation problem in Section 4 and in Section 5 we present
the design of our analysis. Its main components are the Permission Mapper, which summarizes the protected
information sources accessible to any application, and the Rule Generator, which generates taint rules that
specify vulnerable flows; these rules serve as input for our static analysis engine. We experimentally evaluate our
analysis in Section 6. We further discuss our experimental findings, and make recommendations for Android
application security, in Section 7. Section 8 is dedicated to related work, and we conclude in Section 9. Our
contributions are the following:

• We describe a static analysis-based technique that detects permission-leaking Intent vulnerabilities in
Android applications. Based on this technique, we developed PermissionFlow, a tool for discovering
vulnerabilities in the bytecode and configuration of Android applications.

• We propose a static analysis-based technique for automatic identification of permission-protected information
sources in permission-based systems. Our approach consists of identifying APIs whose execution leads to
permission-checking and considering these APIs to be sources of taint. Based on this approach, we developed
Permission Mapper, a component of PermissionFlow that improves on previous work by performing fully
automatic identification of such APIs for Android Java code.

• We evaluate PermissionFlow on leading Android applications and show that a majority (177 out of 313)
applications tested use Intents to invoke Activitys that return information. These applications could
benefit from PermissionFlow to ensure that the use of this feature is secure. PermissionFlow found three
permission-protected leaks in widely used applications and an additional vulnerability that allows leaking
of information that should be protected by custom permissions.

2 Background

The vulnerabilities we identify involve knowledge about the Android development model, the Android inter-
process communication mechanism and its permissions system. These components are the focus of the following
subsections.
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1 <mani fe s t package=”com . android . app . myapp” sharedUid=” u i d I d e n t i f i e r ”>
2 <uses−permis s ion name=” android . permis s ion .VIBRATE” />
3 <a c t i v i t y name=”MyActivity”>
4 <in tent− f i l t e r>
5 <ac t i on name=”com . zx ing .SCAN” />
6 <category name=” category .DEFAULT” />
7 </ intent− f i l t e r>
8 </ a c t i v i t y>
9 </ mani f e s t>

Listing 1: An Activity declaration in AndroidManifest.xml with declarations of used permissions and an
intent-filter.

2.1 Android development

Android applications are typically written in Java using both standard Java libraries and Android-specific
libraries. On Android devices, the Java code does not run on a standard JVM, but is compiled to a different
register-based set of bytecode instructions and executed on a custom virtual machine (Dalvik VM). Android
application packages, also called APK s after their file extension, are actually ZIP archives containing the Dalvik
bytecode compiled classes, their associated resources such as images and the application manifest file.

The application manifest is an XML configuration file (AndroidManifest.xml) used to declare the various
components of an application, their encapsulation (public or private) and the permissions required by each of
them.

Android APIs offer programmatic access to mobile device-specific features such as the GPS, vibrator,
address book, data connection, calling, SMS, camera, etc. These APIs are usually protected by permissions.

Let’s take for example the Vibrator class: to use the
android.os.Vibrator.vibrate(long milliseconds) function, which starts the phone vibrator for a number
of milliseconds, the permission android.permission.VIBRATE must be declared in the application manifest, as
seen on line 2 of Listing 1.

Application signing is a prerequisite for inclusion in the official Android Market. Most developers use
self-signed certificates that they can generate themselves, which do not imply any validation of the identity
of the developer. Instead, they enable seamless updates to applications and enable data reuse among sibling
applications created by the same developer. Sibling applications are defined by adding a sharedUid attribute in
the application manifest of both, as seen in line 1 of Listing 1.

Activitys. The Android libraries include a set of GUI components specifically built for the interfaces of
mobile devices, which have small screens and low power consumption. One type of such component is Activitys,
which are windows on which all visual elements reside. An Activity can be a list of contacts from which the
user can select one, or the camera preview screen from which he or she can take a picture, the browser window,
etc.

Intents. Applications often need to display new Activitys . For example, choosing the recipient of an
SMS message is performed by clicking on a button that spawns a new Activity. This Activity displays the
contacts list and allows the user to select one. To spawn the new Activity, the programmer creates a new
Intent, specifies the name of the target class, and then starts it, as shown in the following snippet:

In tent i = new In tent ( ) ;
i . setClassName ( this , ” package . C a l l e e A c t i v i t y ” ) ;
s t a r t A c t i v i t y ( i ) ;

Usually the parent Activity needs to receive data from the child Activity, such as - in our SMS example
above - the contact phone number. This is possible through the use of Intents with return values, The parent
spawns a child by using startActivityForResult() instead of startActivity() and is notified when the child
returns through a callback (the onActivityResult() function), as shown in Listing 2. This allows the parent to
read the return code and any additional data returned by the child Activity.

As shown in Figure 3, the child Activity needs to call the setResult function, specifying its return status.
If additional data should be returned to the parent, the child can attach an Intent along with the result code
and supply extra key/value pairs, where the keys are Java Strings and the values are instances of Parcelable
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1 void onAct iv i tyResu l t ( int requestCode , int resultCode , In tent data ) {
2 i f ( requestCode == CREATE REQUEST CODE) {
3 i f ( resu l tCode == RESULT OK) {
4 St r ing i n f o = i n t e n t . ge tSt r ingExtra ( ”key” ) ;
5 }
6 }
7 }

Listing 2: Code snipped showing how a caller accesses information returned by a child Activity.

1 In tent i n t e n t = new In tent ( ) ;
2 i n t e n t . putExtra ( ”key” , ”my value ” ) ;
3 this . s e tRe su l t (RESULT OK, i n t e n t ) ;
4 f i n i s h ( ) ;

Listing 3: Code snippet showing how child Activitys can return data to their caller.

types, which are similar to Java Serializable classes and include Strings, arrays and value types.
Sending Intents to explicitly named Activitys , as described above, is called explicit Intent usage. Android

also allows creation of Intents specifying a triple (action, data type, category) and any Activity registered to
receive those attributes through an intent-filter will be able to receive of the Intent. If there are multiple
Activitys that can receive the Intent, the user will be asked to select one.

The explicit Intent feature is mostly used in intra-application communication, as described in the following
section, but can be useful for inter-application communication too and its existence is the root cause of the
vulnerabilities discovered by us.

2.2 Inter-application Intents and data security

Inter-process communication with Intents. Intents can be used for communication between Activitys
of the same application or for inter-application communication. In the second case, Intents are actually
inter-process message-passing primitives. To specify a subset of Intents that an Activity answers to, developers
add to the application manifest an intent-filter associated with the Activity. The intent-filter in Figure
1 specifies that MyActivity can be invoked by sending an Intent with action com.zxing.SCAN; such an Intent

is called an implicit Intent because it does not specify a particular Activity to be invoked. Implicit Intents
are created using the single parameter constructor new Intent(String).

Component encapsulation. Developers enable or disable inter-application invocation of their Activitys
by setting the value of the boolean exported attribute of each Activity in the application manifest. The
behavior of this attribute is a detail that may be a source of confusion, as the meaning depends on the presence
of another XML element, the intent-filter:

• If an intent-filter is declared and the exported attribute is not explicitly set to true or false, its
default value is true, which makes the Activity accessible by any application.

• If an intent-filter is not declared and the exported attribute is not set, by default the Activity is
only accessible through Intents whose source is the same application.

An exception to the above rules is allowed if the developer specifies the attribute sharedUid in the manifest
file. In that case, another application may run in the same process and with the same Linux user ID as the
current application. This addition changes the behavior of Activitys that are not exported: they can be invoked
not only from the same application, but also from the sibling application with the same user ID. Listing 1 shows
the use of the sharedUserId attribute.

It is important to realize that the intent-filter mechanism does not provide any security guarantees and
is meant only as a loose binding between Activitys and Intents; any Activity with an intent-filter can
still be sent an explicit Intent in which case the intent-filter is ignored. The presence of this attribute,
however, changes the behavior of the security-related exported attribute, as detailed above. We found that
many developers overlook the security-related implications when using intent-filters.
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Figure 1: Before installing any application, the user is presented with a list of permissions that the application
needs access to.

2.3 Android permissions system

For the user, Android permissions are just lists of capabilities that he or she has to accept before installing
applications. As seen in Figure 1, when installing an application from the official Android Market, the user is
presented with a list of permission names, each with a short description.

From the point of view of the Android programmer, each permission provides access to one or more
Android Java APIs that would otherwise throw an exception when used. Permissions also protect Android
ContentProviders, which are SQLite databases indexed using a URI. Different URIs mean different permissions
might be needed to access the corresponding data.

To request permissions, the developer needs to declare them in the application manifest, as seen in Listing
1, through an uses-permission attribute that specifies the exact permission as a String value. Users have a
reasonable expectation that if they do not give permission to an application to access information (for example,
their contacts), that application will not have access to that information through some other means.

3 Attacks on permission-protected information

All Android applications with a graphical user interface contain at least one Activity, which means vulnerabilities
related to Activitys can affect a majority of applications. All the vulnerabilities that we identify have in common
the existence of information flows that are meant to allow child Activitys to communicate with authorized
parents, but can instead be used by unauthorized applications to access sensitive information without explicitly
declaring the corresponding permission.

We consider three different attack scenarios, discussed in the following paragraphs and our tool, Permission-
Flow, identifies the flow vulnerabilities that enable all of them. PermissionFlow validation can be used as a
prerequisite for applications before being listed in Android Market and by developers to ensure the security of
their applications or by users.

Note that other operating systems sandbox applications and do not offer a mechanism for direct inter-
application communication; in spite of this, some of these attacks are still possible. For example, in iOS, the
colluding applications attack can be performed through URL Schemes [1]. For these attacks to be possible, certain
misconfigurations have to exist. These misconfigurations consist of a combination of implicitly public Activitys
(callable by unexpected callers) and misconfiguration of Activity permissions, which consists of failure to enforce
the ownership of permissions on callers for Activitys that return permission-protected information. 1

1. Attacks on misconfigured applications happen when an attacker application installed on the device
can exploit the flows of a misconfigured application. If an application has any one of the configuration parameter
combinations listed in Table 1 as high risk, then any application on the device can spawn it.

1Previous work considered implicitly public Activitys, but did not but did not test if those Activitys check for permissions of
their callers, leading to some trustworthy applications being considered vulnerable (false positives).
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Figure 2: Possible attacks: internal Activity invocation or confused deputy, application sharing user ID with a
compromised application (center) and permission collusion by malevolent applications (right).

If in the application manifest an Activity is listed with an intent-filter and is not accompanied by
a exported= "false" attribute, any other application on the system can invoke it. Then, in the absence of
declarative or dynamic permission checking by the developer, information returned to the caller through the
Intent result may compromise permission-protected information, as no permission is required of the caller.

In the example from Figure 2 (left), the user installed malevolent application B (a music streaming app) with
permission to access the Internet. B can exploit the honest but misconfigured contact manager application A by
invoking Activity A2 that returns the contacts; B can then send the contacts to a remote server. If A2 is built to
reply to external requests and it just failed to check that B has the proper permission, then the attack is a classic
confused deputy attack. However, because in Android Intents are also used as an internal (intra-application)
communication mechanism, it is possible that A2 is not built for communicating with another application and
is just misconfigured. This Intent spoofing is a more powerful attack than confused deputy for two reasons.
First, it targets internal APIs, not just public entry points. These internal APIs are generally not regarded as
vulnerable to confused deputy and so not they are not secured against it. By increasing the number of APIs
that can be targeted, this attack increases the likelihood that the returned information is permission protected.
(Protected information tends to flow between internal components such as A1 and A2, even when it does not
leave the application.) Second, the problem in this attack is not that the deputy performs a protected operation,
but that it sends protected information to the callee. PermissionFlow allows developers to identify the existence
of permission-protected information flowing between components and use this information to properly configure
their applications.

For Activitys that are designed to be invoked by unknown applications, developers can ensure that callers
own a set of permissions in one of two ways: declaratively (in the manifest file, using the permission attribute
of the Activity) or dynamically (by calling the function checkCallingPermission( String permission)).
Note that the permission attribute can only be used to enforce a single permission and is different from the
uses-permission node in Listing 1, which controls what permissions the application needs in order to function.

The safest approach is to completely disable outside access to internal Activitys that may leak protected
information. Table 1 shows the combinations of configuration parameters that may lead to information leaks.
Each of the combinations also lists if any callers are allowed for that Activity or if the Activity restricts access
to only applications from the same developer.

2. Collusion attacks obtain permission-protected information without requesting the permission, by
exploiting the combination of assignment of Android permissions on a per-application basis and the exchange of
applications information without making this explicit to the user.

In Figure 2 (right), we show a scenario in which a user is tricked by a malevolent developer MD into installing
two separate applications, that seem to have little risk associated with them. For example, a camera application
that does not require the Internet permission seems safe, as it cannot upload the pictures to the Internet.
Similarly, a music streaming application that does not request the Camera permission would be acceptable.
However, if the two applications are malicious, the music streaming application can invoke the camera application
and send the pictures obtained from it remotely. The Android security system does not inform the user of this
application collusion risk.

Note that the camera application can include checks on the identity of the caller, such that it returns the
pictures only to its musing streaming collaborator, which allows colluding applications to pass a dynamic security
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Activity configuration Application configuration Consequence
Exported Intent-filter SharedUid Callers accepted Risk level
exported=“true“ present any any HIGH
exported=“true“ absent any any HIGH
exported=“false“ present set from same developer LOW
exported=“false“ absent set from same developer LOW
default present any any HIGH
default absent set from same developer LOW

Table 1: Different configurations lead to different levels of vulnerability.

analysis that invokes all possible Activitys and checks the returned information.
3. Attack on applications sharing the user ID. We have not yet discussed an additional type of attack

that our approach can recognize, but is improbable in practice because of its narrow applicability. This type of
attack is on sibling applications.

The attack targets honest developers who had one of their applications compromised through methods
unrelated to our work, such as by obtaining the developer’s certificate2 or by exploiting application N (compromised
directly through some other vulnerability). The vulnerability in this case allows an attacker to access the
permission-protected information of applications sharing the user ID with the already compromised N. If N is
configured to have the same user ID as application M (as shown in Figure 2 center), it can then obtain the
information from M. To set up this attack, an attacker would need to control application N of developer D, N
should have any exfiltration permission (sending short messages, accessing the Internet, etc.) and N should
share user ID with an application by D that returns permission-protected information. Then, N can invoke most
Activitys of M, even if M is configured according to the rows with low risk level in Table 1. PermissionFlow
can detect this vulnerability too.

4 Taint propagation

We express the problem of leaking permission-protected information to other applications by tracking flows of
sensitive information (taints) inside each application from information sources protected by permissions to values
that these applications return to callers.

The taint analysis uses the following sources and sinks:

• Sources: the permission-protected APIs in the Android libraries. Additionally, there may be other sources,
such as callbacks registered by the application to be called when some events occur, for example when a
picture is taken using the phone camera.

• Sink: Activity.setResult(int code, Intent intent). The Intent parameter of calls to this function
is accessible to the caller of the current Activity, so any data attached needs to be protected.

From a confidentiality perspective, applications must also protect other types of sources that are not protected
by any of the standard permissions defined by Android, for example credit card numbers, account information,
etc. This is done by using custom permissions that protect the invocation of their Activitys. The relationship
between the custom permission and the data or API it protects is not obvious, so there is no way to automatically
generate taint rules checking for custom permissions. PermissionFlow can track these flows only through
additional rules that apply to application-specific sources of taint.

5 System description

PermissionFlow has two main parts. The first one is a general, reusable taint analysis framework; the second
consists of all other components, which are Android-specific.

2Android developers use self-signed certificates, vulnerable to exploitation since they cannot be revoked [15]). The certificate can
be used to sign and publish a malevolent update to an application N of that developer.
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To analyze real Android Market applications, whose source code is usually not available, we support input in
the form of Android binary application packages (APK files). This means PermissionFlow can also be used by
Android users, developers and security professionals.
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Figure 3: The components of PermissionFlow

The system design (Figure 3) consists of the following components:

• The Permission Mapper (labelled 1 in the Figure 3) builds a list of method calls in the Android API
that require the caller to own permissions. Its inputs are Android classes obtained by building the Android
source code, with any modifications or additions performed by the device manufacturer. Having the
complete system code as input allows the mapper to extract all the permissions-protected APIs that will
be present on the device. It builds a permissions map, which maps permission-protected methods to their
required permissions.

• The permissions map is passed to the Rule Generator, which builds the taint analysis rules relating the
sources in the map with their corresponding sinks. In our case, the only sink is the Activity.setResult

method with an Intent parameter.

• Our taint analysis engine, (labelled 3) reads the generated rules and any extra rules manually added
for detecting application-dependent private information. It outputs the flows that take the protected
information from sources to sinks. For this it needs access to the application classes and the Android
library classes. The taint analysis engine also needs access to the Android library, in order to track flows
that go through it, for example callbacks that get registered, Intents that get passed to the system, etc.

• The dex2jar decompiler [25] (labelled 4) is used to extract from the application APK a JAR archive
containing the application bytecode.

• To extract the binary application manifest from the application package we use the ApkTool [23] (labelled
5); the decompilation step needed to get the textual XML representation is performed by AXMLPrinter2
[24] (labelled 6).

• The taint analysis engine outputs the flows from sources to sinks if there are any, but the presence of flows
does not in itself imply that the application is vulnerable. The Decision Maker (labelled 7) looks for the
patterns identified in Table 1 in the application manifest file - these patterns correspond to misconfigurations
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that allows successful attacks to take place. If an application contains a vulnerable information flow and is
improperly configured, only then is it vulnerable. It is improperly configured if it is public (as shown in
Table 1) and fails to enforce on its callers the permissions protecting the information it returns.

Currently, all the described components are implemented, except the decision maker, whose role was performed
through manual inspection.

5.1 The Permission Mapper

The Permission Mapper matches function calls used for permission enforcement in the Android libraries to
Android library functions that use these calls. In short, it uses static analysis to identify permission-protected
methods and to map them to their required permissions; this analysis is independent of any application analysis
and needs to be performed only once for each input Android configuration.

Identifying sources of permission-protected information is challenging because of a phenomenon known as the
Android version and capability fragmentation. Android has undergone a quick succession of 15 API improvements,
some with multiple revisions, most of which are still in active use today. Relying on the documentation to find
which APIs require permissions would bind our analysis to a particular version of Android whose documentation
we used as input. Even more differences between Android APIs are introduced by hardware manufacturers such
as Samsung and HTC who build their own additions to Android (Sense and Touchwiz, respectively). These
add-ons include everything from drivers and libraries to user interface skins and new system applications, which
leads to capability fragmentation. Because of fragmentation, when an application performs a call to a library
that is not distributed with the application, Android fragmentation makes identifying which permissions are
needed for that call very difficult, as the exact permissions may be different depending on the exact Android
version and add-ons. Identifying sources of permission-protected information could also be attempted by crawling
the documentation. However, it is incomplete even for public, documented classes and does not include public,
but non-documented methods and does not account for Java reflection on non-public methods. It also does not
account for any modifications and additions to the Android API performed by the phone manufacturer. Felt
et al. [9] showed that it is possible to identify which API calls require permissions though a combination of
automated testing and manual analysis, but they use techniques that allow false negatives, need partial manual
analysis and do not handle the version and feature fragmentation problem of Android.

For these reasons, we built the Permissions Mapper, a reliable and automatic tool for identifying permission-
protected APIs and their required permissions. The Permissions Mapper takes as input the JAR archives of
the Android distribution that needs to be summarized, including any additional code added by the hardware
manufacturer. This allows for a complete analysis that works without user input and can reliably deal with API
differences between various versions of the OS.

In the Android libraries, several mechanisms are used to enforce permissions:

• Calls to the checkPermission function located in the
Context and PackageManager classes or
checkCallingOrSelfPermission function located in the Context class;

• Linux users and groups (used, for example when enforcing the WRITE_EXTERNAL_STORAGE and BLUETOOTH

permissions);

• From native code (such as the RECORD_AUDIO or CAMERA permissions).

Our work targets complete coverage of APIs enforced through the first category, which includes the majority
of Android permissions.

To illustrate how permission checks work, we can use for example the VIBRATE permission. To use the phone
vibrator, an application needs to own the VIBRATE permission; all functions that require this permission check
for it. One such function is Vibrator.vibrate, whose source code is shown in Figure 4.

When this function is called, the Android API forwards the call to a system service instance mService (line
8), which executes in a different process from the application. The mService instance is returned by a stub of
the vibrator service:

mService = I V i b r a t o r S e r v i c e . Stub . a s I n t e r f a c e ( ServiceManager . g e t S e r v i c e ( ” v i b r a t o r ” ) ) ;
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1 public void v i b r a t e ( long time ) {
2 i f ( mService == null ) {
3 Log .w(TAG, ” S e r v i c e not found . ” ) ;
4 return ;
5 }
6 try {
7 mService . v i b r a t e ( time , mToken ) ;
8 } catch ( RemoteException e ) {
9 Log .w(TAG, ” Fa i l ed to v i b r a t e . ” , e ) ;

10 }
11 }

Listing 4: Code snippet showing how API calls use services to perform protected functionality.

1 public class Vibra to rSe rv i c e extends I V i b r a t o r S e r v i c e . Stub {
2 public void v i b r a t e ( long m i l l i s e c o n d s , b inder ) {
3 i f ( context . checkCa l l ingOrSe l fPermi s s i on (VIBRATE) ) != PackageManager .PERMISSION GRANTED){
4 throw new Secur i tyExcept ion ( ” Requires VIBRATE permis s ion ” ) ;
5 }
6 }
7 }
8
9 public class ContextImple extends Context {

10 public int checkCa l l ingOrSe l fPermi s s i on ( S t r ing permis s ion ) {
11 return checkPermiss ion ( permiss ion , Binder . g e tCa l l i ngP id ( ) , Binder . ge tCa l l ingUid ( ) ) ;
12 }
13 }

Listing 5: Code snippet showing how services check the permissions of the application.

This is because in Android, developers build Android Interface Definition Language (AIDL) interfaces, from
which remote invocation stubs are automatically generated [12], similar to Java RMI development. The service
process is the one that makes the actual permission checks, before performing any protected operation, as shown
in Listing 5. The proxy for the service performs the inter-process communication and because of this it appears
as a leaf in the call graph. In our analysis, we automatically fill in the missing edges between proxies and their
corresponding services (relying on the name correspondence between the two, which is enforced by the Android
AIDL code generation).

The interprocedural dataflow analysis is built using IBM WALA[29] and starts by building the call graph of the
Android libraries, including all methods as entry points. All call chains containing a Context.checkPermission(String)
method call are then identified. To find the actual permission string that is used at a checkPermission call site,
we follow the def-use chain of the string parameter. Once found, we label all callers upstream in the call chain
as requiring that permission. Note that different call sites of checkPermission will have different permission
strings - each such string needs to be propagated correctly upstream, building set of required permissions for
each function.

For the vibrate() example, the permission enforcement call chain is in Figure 4. The string value of the
vibrate permission is located by following the def-use chain of the checkPermission parameter (dashed lines)
until the source String constant is found. Once the constant is found, we need to identify which functions on the
call chain need this permission. We start by labeling the function that contains the first (“most downstream”)
call site through which the def-use chain flows. In our case, the def-use chain goes first though the call site
of checkCallingAndSelfPermission in IVibratorService.vibrate (line 4 in Figure 5), where the VIBRATE

variable is specified as a parameter, so IVibratorService is labeled with “android.permission.VIBRATE”.
After labeling IVibratorService.vibrate, the same label must be propagated to callers of that function,

but in our case there are no callers except the proxy stub.
Because the communication between Android proxy stubs and their corresponding services (shown as dotted
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Vibrator.vibrate(1000)

IVibratorService.vibrate(long millis)

Context.checkCallingOrSelfPermission(VIBRATE)

Context.checkPermission(String s)

String permissions.VIBRATE =
      “android.permission.VIBRATE”

IVibratorService.Stub.Proxy.vibrate(long millis)

Figure 4: The permission analysis exemplified on the vibrate() call. The call graph edge from the proxy to its
corresponding service is automatically added before the analysis.

edges in Figure 4) is done through message passing, it does not appear in the actual call chain built by WALA.
To work around this problem we add the permissions labels of the service methods to the corresponding proxies;
the labels are then propagated to any callers of those methods.

5.2 Taint Rule Generator

The output of the Permission Mapper is a hash table mapping each Android API function that needs permissions
to the set of one or more permissions that it requires. The taint rule generator turns that information into rules
usable by the taint analysis engine.

The rules specify the tracked taint flows: from the sources in the permissions map to the Activity.setResult
function. The set of rules automatically generated in this way can be manually augmented by providing additional
rules describing what application data should be private (protected by custom application permissions).

5.3 Taint Analysis Engine

For the taint analysis engine, we used Andromeda [28], which is highly scalable and precise as well as sound;
it builds on IBM WALA [29]. Andromeda uses as input rules composed of two sets: sources and sinks. The
sources are parameters and return values of functions that are the origin of tainted data and the sinks are
security-critical methods. The engine tracks data flow from the source through assignments, method calls, and
other instructions, until the data reaches a sink method. If the taint analysis engine discovers that tainted data
reaches a sink method, the flow is included in the taint analysis engine output. We discuss the soundness of the
complete PermissionFlow analysis in Section 6.2).

6 Experimental results

6.1 Evaluation of the permissions map

We evaluated the Android API Permissions Mapper by directly comparing its output permissions map with that
of previous work. The two approaches considered are that of Felt et al. [9], based on automated testing, and
that of Bartel et al.[4], based on static analysis. To perform the comparison with the work by Felt et al. we
eliminated permissions from their map that are enforced through mechanisms other than the checkPermissions

calls, because our analysis only targets checkPermissions-enforced permissions.
Comparing the size of their reference map (which includes 1311 calls that require permissions) with ours

(4361 calls with permissions) shows that our tool finds more functions that require permissions. The larger size
of our map is partly explained by the lack of false negatives for the analyzed Java APIs. However, a direct
comparison is not possible as the input classes on which Felt et al. ran their analysis is not specified in their
paper. Our input was the full set of classes in the android.* and com.android.* packages, as well as Java
standard classes that are used inside those (a total of 40,600 methods). Our map also includes functions in
internal and anonymous classes, which partially explains the higher number of methods in the permissions map.
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Through manual comparison, we identified one false negative in their map (probably due to the auto-
mated testing not generating a test and the subsequent analysis not detecting the omission). The function
is MountService.shutdown, which usually needs the SHUTDOWN permission, but if the media is shared it also
needs the MOUNT_UNMOUNT_FILESYSTEMS permission. The existence of missing permissions in the testing-based
methods shows that testing methods, even if party automated and enhanced by manual analysis, cannot offer
guarantees with respect to false negatives.

Another reason for the higher number of methods found in our map is the existence of false positives:
permissions that are reported as required but are not. We have identified the following sources of false positives,
all of which are known weaknesses of static taint analysis:

• Checking for redundant permissions. For example checking for ACCESS_FINE_LOCATION or ACCESS_COARSE_LOCATION
in
TelephonyManager.getCellLocation(), where either one is sufficient for enforcement; our method reports
both, because it is oblivious to control flow.

• Data dependent checks. For example, a check for the VIBRATE permissions depends on the value of a
parameter such as in NotificationManager.notify().

• Android provides the pair of functions clearIdentity and restoreIdentity that are used to change all
checks so that they are performed on the service instead of the application using the service.

Another advantage of testing-based analysis is that it can cover areas, such as the permissions enforced in
native code, which static analysis does not target (such as RECORD_AUDIO).

To perform a more detailed comparison of our approach with the work by Felt et al., we compared results
obtained for a simple security analysis, identification of overprivileged applications, based on the permission map.
This analysis consists of identifying Android applications that request in their manifest more permissions than
they actually need to perform their functions. The results are used to reduce the attack surface of applications
by removing unused permissions from the manifest. To perform this analysis, we built another static analysis
tool based on IBM WALA, which records the API calls that can be performed by an application and computes,
based on the permissions map, the permissions required by that application. The set of discovered permissions is
then compared to the set of permissions obtained from the application manifest ( obtained from the compiled
application package through the use of the Android SDK tool aapt).

We used both permission maps as input for the analysis of the Top Android Market Free Applications (crawled
in December 2011) that were compatible with Android 2.3 and available in the US (354 applications). For a fair
comparison, we removed from Felt et al.’s reference map the parts that relates content provider databases to
their permissions, as these were outside the scope of our work. After eliminating applications that crashed the
dex2jar [25] decompiler or generated incorrect bytecode, we were left with 313 applications. Of these, both our
analysis and theirs found 116 to be overpriviledged. No permissions identified as unused by us were identified as
used by Felt et al., which is consistent with the lack of false negatives expected from a static analysis approach.
However, 47 permissions were identified as used by us and as unused by Felt et al. - a false positive rate of 4.8%.

PScout [3] is a permission mapper built through static analysis based on Soot. The number of overpriviledged
applications found by PScout is consistent with both Felt et al. and our tool. If we compare the number of
entries in the map, PScout finds 17,218 APIs, we find 4,361 and Felt et al. list 1311. This inconsistency comes
from four sources. First, different versions of Android are analyzed by each. Second, different subsets of classes
may be selected as input from the Android code. Third, the tools have different levels of false positives (Felt
has none, because it is a dynamic analysis, but PScout and our mapper may have some). Fourth, there are
different levels of false negatives (Felt may have missing permissions listed because of incomplete coverage).
PScout reports a false positive rate of 7% on real applications whereas we have a rate of 4.8%3. Just like our
analysis, this tool omits permissions enforced through non-Java mechanisms. It includes permissions required
for ContentProvider access, which we do not consider in our mapper (Section 6.2 explains how to include
ContentProviders and Services in the PermissionFlow analysis).

Comparison with Bartel et al. [4] was more difficult as their results are not publicly available. Their analysis
focused on Android 2.2, which has a slightly lower number of APIs and so a lower number of permission checks.
Their results identify a much smaller number of overprivileged applications: 12% of applications are identified as

3The false positive rate is not a clear indicator, as the input applications used for the two systems were not the same, but it is
consistent with the difference in the map sizes.
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vulnerable by Bartel et al., but the ratio, as identified by Felt et al. is closer to 30%. We obtain a 37% rate,
which is explained by our not considering native code permissions. Bartel et al. have a similar disadvantage,
which should have skewed the rate towards higher values. This inconsistency may have been caused either by
their use of a call graph that is too imprecise or by using a different set of applications as input. Our analysis
yields a result similar to Felt et al. and uses a similar input (Android Market applications), whereas Bartel et al.
used an alternative application store.

Regarding the performance of the tool, the Permissions Mapper runs in under two minutes on our dual core
i5 (2.4GHz, 8GB RAM) whereas their map takes two hours to build on a quad core (2.4GHz, 24GB RAM). The
performance difference can be explained in part by their trying to eliminate false positives by ignoring permission
checks between clearIdentity and restoreIdentity calls in the kernel; however this technique does not seem
to improve accuracy for their experimental results and considerably increases execution time.

6.2 Evaluation of PermissionFlow

We tested PermissionFlow on the same applications used to evaluate the permission map. To confirm the
correctness of the results we manually inspected all applications. Out of the 313 applications, 177 use the
Activity.setResult with an Intent parameter to communicate between components (both internal or external).
These 56% of the applications may be vulnerable if they also contain flows from taint sources to sinks and are
not configured properly. They can use PermissionFlow to check that they are secure.

To check for correctness, we ran PermissionFlow with our permissions map and the one produced by Felt.
Using the map from Felt, PermissionFlow correctly identified two applications as vulnerable and had no false
positives. With the permissions map built by our analysis, PermissionFlow outputs a larger set of vulnerable
applications, but the additional applications are all false positives. As we saw in the previous section both
permissions maps are incomplete: ours does not track permissions enforced through non-Java mechanisms and
Felt’s allows the possibility of missing permission checks. Choosing one of the two maps amounts to either
using a possibly incomplete map (Felt, et al.) and finding no false positives, or identifying the complete set of
Java-based flows and accepting some false positives but missing flows based on native code or Linux permissions
checks.

Our analysis may have false negatives for applications that pass protected information between components
before returning it; for example, Activity A may return protected information to Activity B, which is
improperly secured. We cannot guarantee the identification of such cases because the use of implicit Intents
prevents identification of the class names for invoked Activitys. For implicit Intents, the receiving class
depends on the manifest configuration of all applications installed on the system and may depend on user
preferences (if there are multiple Activitys with the same intent-filter the user is asked to select one that
should be invoked). If one requires an analysis without false negatives, our analysis can convert the possible
false negatives to possible false positives, by adding, as an additional source for the taint analysis, the Intent

parameter of the onActivityResult callback.
Our analysis is sound with respect to the subset of Android which we consider, which includes Activitys. To

maintain soundness with respect to chains of communicating Activitys (from the same or different applications),
we taint the information returned by the Intent.getExtra family of calls with the set of permissions owned
by the current application4. We need to guarantee that the incorporation of other Android components does
not break the soundness of our analysis. To ensure security, these components should individually maintain the
following invariant: if any information protected by permission P flows into the component, then the component
must enforce permission P , through its manifest, on any components that read that information. This invariant
can be checked in the same manner that PermissionFlow checks Activitys (on each component individually). To
support Services more sinks need to be considered other than Activity.setResult(). For inter-application
ContentProviders, we need access to the manifest that declares them, but we still do not need to analyze the
source code of both simultaneously5. None of these changes alters the dataflow analysis itself, only its input and
output. Thus we maintain soundness when using a sound taint analysis engine such as Andromeda.

In the following subsections we present the three vulnerable applications discovered by our analysis that leak
Android permission-protected information. Section 6.2.4 describes one more vulnerable application that leaks
information which should be protected with custom permissions.

4If the invoked Activity is from a different application, that application is assumed to be validated with PermissionFlow, so that
it enforces the correct permissions on the current (caller) application.

5PermissionFlow already batches applications. This would be sufficient for a safe ContentProvider analysis.
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6.2.1 Case Study: Adobe Photoshop Express

Adobe Photoshop Express contains an interesting vulnerable flow. The application has an Activity that displays
a list of Contacts and allows the user to pick one. The flow starts from getContentResolver().query(

Contacts.CONTENT_EMAIL_URI), and reaches the user interface; from there, the handler for the Click operation
builds an Intent containing the email of the selected contact and returns it to the caller. In Android, read
access to the Contacts database is protected by the READ_CONTACTS permission and callers of this Activity

work around this restriction.
The exported attribute is not set and, because an intent-filter is present, the Activity is callable from

any application. It seems the developer used the intent-filter as a security mechanism, which it is not. After
disassembling the application and finding the appropriate category attribute for the Intent and the Activity

class name, any malevolent developer can exploit it. Even if the user is required to click a contact, there is no
way for the user to identify whether the Activity returns the information to the legitimate caller (the Photoshop
application) or some other application. Because the attack can be performed by any application, the risk in this
case is high.

6.2.2 Case Study: SoundTracking

The popular SoundTracking application allows users to share a message to their social networks with the name
of a song they are listening to and their geo-location. PermissionFlow finds that it is vulnerable to leaking users’
geo-location to other applications: the Activity responsible is marked with an intent-filter, so any other
application can invoke it. Manual analysis showed that no fewer than 43 different Activitys of this application
have intent-filters, and there is no evidence of dynamic or declarative permission checking, suggesting that
the developers are confused as to the proper use of the intent-filters. The risk level is high.

6.2.3 Case Study: Sygic GPS Application

The Sygic GPS application allows users to take pictures using an Activity developed in house, instead of reusing
the regular Android camera application. To do this, the Activity CameraActivity registers a callback using
the Camera.takePicture function. The system invokes the callback when the picture is taken and attaches the
actual byte array representing the image to it. It then calls setResult and finish, sending the raw picture
to the caller. However, the Activity has no intent-filter. Because the exported attribute is not set, the
default value is false. The Activity could only be exploited by another application signed by the same developer,
so we classify it as low risk. For now, none of the other applications of the same developer currently in the
market seem to invoke this Activity, but this may change in the future. This vulnerability is difficult to detect
statically because the source is not in the application code; the application passes a function to the camera API
and the operating system calls that function with tainted parameters (the picture array). The Intent passes
through a message queue, from where it is forwarded to the correct application handler. Identification of this
vulnerability was possible because we analyze the application together with the Android libraries and manually
added a rule to PermissionFlow that marks the function that distributes the Intents to handlers as having a
tainted Intent parameter.

6.2.4 Sensitive-information flows

Many applications have access to other types of sensitive information that are not protected by standard Android
permissions. For example, a banking application needs to protect credit card information and a social networking
application needs to protect family-related and location information. To protect this kind of information,
developers should define custom permissions, but because of the coarse-grained nature of the custom permissions
(assigned to applications as opposed to APIs) it is not possible to automatically identify the taint sources for such
information. For this reason, PermissionsFlow allows specification of additional rules to be used for identifying
such vulnerabilities.

Through manual inspection of the market applications we found proof that sensitive information often crosses
inter-component boundaries. The existence of these flows shows that PermissionFlow would be a useful tool for
developers in configuring their application to not be vulnerable to leaking data protected by either standard or
custom permissions.

Some applications fail to protect this information properly. For example, Go Locker has a lockscreen

passcode selection Activity that can leak the phone lockscreen password. The Go SMS application from the
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same developer has a similar flow, but the manifest contains the sharedUserId attribute, so it is exploitable.
An attacker that can control another application with the same user ID can access the password. Because of the
shared user ID restriction, we consider GO SMS as low risk.

Some of the inter-component flows of sensitive information that are not protected using standard permissions
are described next. These applications are correctly configured, so they are not vulnerable, but their developers
could benefit from using our tool because they can easily check if their applications are protected. If the
developers took steps to protect sensitive information, these are listed in parentheses after the description of the
flows.

• The WeatherChannel application contains an Activity that can leak the name of the last recorded video
or picture from the camera.

• The Accuweather application can leak the location as selected by the user. Because the string representation
of the location does not come from permission protected APIs, the automatically generated rules to not
recognize it. However, adding a rules manually is possible and enables detection of this kind of information
flow violations.

• Adobe Reader contains an ARFileList Activity that returns the absolute path to a file selected by the
user (not exported, no intent-filter).

• The Facebook application and Facebook Messenger allow the user to select friends from the friends
list and returns their profiles, which contain their names, links to their image, etc. (not exported, no
intent-filter).

• HeyZap Friends has a TwitterLoginActivity that returns information received from the server after login
(including username) that may contain information that can be used to compromise the privacy of the
users’ Twitter account (not exported, no intent-filter).

• The mobile CNN application has a similar Activity that can leak the user postal code, after he selects it
from a list (not exported, no intent-filter).

• The Kayak application leaks the user login email if the user logins with the Login screen that the vulnerable
application displays (not exported, no intent-filter).

• Launcher EX contains an Activity that returns the name of an installed application (not exported, no
intent-filter).

• The GoContactsEX and the FunForMobile applications, contain Activitys that return contact information
(no intent-filter, not exported).

• Google Translate has a flow that involves returning the text of a user selected SMS message (not exported,
no intent-filter) after the user selects one contact.

• The official Twitter application uses an Activity return value to return the Twitter OAuth token that
allows access to the twitter API as the user that generated it. The Activity is meant to be invoked
by other applications (has an intent-filter ) and is safely configured through declarative permission
enforcement. Two other web-related apps, PicsArt Photo Studio and IMDB, contain Activitys that
return OAuth tokens, but are correctly protected.

• The official Hotmail app contains an Activity that returns the URI of an email, but the actual content
has to be fetched from a Content Provider that declaratively enforces read and write permissions.

• The Walgreens application returns the path and name to the picture taken by the camera. (no intent-filter,
not exported).
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7 Discussion of findings

We discovered three vulnerable permissions-leaking applications that may compromise information protected by
the CAMERA, READ_CONTACTS and either ACCESS_COARSE_LOCATION or ACCESS_FINE_LOCATION permissions.

We also found 70 applications containing flows that need protection but are correctly configured; around 23%
of the Android Market applications could use our analysis to confirm proper configuration. As 177 applications
had Activitys that returned extra information, 56% of the applications could use our tool to pinpoint if
they need to secure their protected information against such attacks. PermissionFlow identified all vulnerable
applications correctly and had one false positive (because of a bug we are currently investigating); however it
reached the 30 minutes time-out on 4 (non-vulnerable) applications.

All the vulnerabilities discovered require the user to perform some action using the GUI of an application
that was not explicitly started. This should look highly suspicious to a security-conscious user, making successful
attacks less likely to succeed. However, it is easy to perform a similar attack that does not require user intervention
and regular users may be easily tricked.

During our manual analysis we paid special attention to applications that handle financial information such
as credit card information and online shopping account details and found that these application generally use
Intents only for confirmation and not for communication of sensitive information such as PINs, credit card
numbers or passwords. Other applications, such as the ones in the case studies above are indeed vulnerable.

We did not find any trace of malevolent attacks performed by the top Android Market applications; most
applications correctly configure internal Activitys by not supplying an exported="true" attribute or an
intent-filter.

We believe that part of the cause of the vulnerabilities is the complexity of properly configuring an Android
application, as three attributes are involved: exported, intent-filter and sharedUid are not easy to get
right.

The complexity involved increases the need for safe defaults. Our recommendation is that Android should
require, by default, that any caller of a third-party application must own the permissions required by the callee.
This would mean that any Intent invocation loses any possible permission collusion capability and only serves
as a code reuse mechanism.

For applications such as Barcode Reader that effectively sanitize their data, the developer could add permission
attributes to the manifest that lists permissions that should not be needed from callers (whitelist instead of
blacklist).

Another helpful but larger change would be for inter- and intra-application Intent flows to use separate
APIs; this would reduce developer confusion and split a large attack surface into smaller chunks that can be
protected each with appropriate tools.

7.1 Recommendations for secure applications

The first and most important advice for security-aware Android developers is to pay close attention to the
configuration of their application (specifically, any combination of parameters listed in Table 1 is, without
additional checks, vulnerable). If such a parameter combination is needed for functionality reuse or other
constraints, here are some ways of maintaining security:

• A safe approach is to always request explicit user confirmation for the invocation of any Activity that
may be part of an inter-application flow. The user should be informed to which caller the information will
be sent. This method has the disadvantage that it decreases the ease-of-use of the application.

• To enforce that callers of your Activitys own certain permissions, developers can use either declarative
permission requirements in the application manifest and dynamic permission checks using checkPermission

calls. (both are shown in Section 3)

• Developers should consider using work-arounds for sending sensitive information over inter-component
boundaries. For example, several of the applications analyzed leak information from an ordered set of items
such as contact names/phone number or zip code. For these applications there is no need for complex
mechanisms to avoiding the vulnerability; it may be sufficient to return an integer index to the information
database, instead of the actual information; the caller would need to query the database to obtain the
actual information.
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• Passing sensitive information over inter-component boundaries of the same application in an encrypted form
is recommended to protect against unintended callers, but does not help if an attacker has compromised
another application with which the current application shares the user id.

8 Related Work

Privilege escalation attacks on Android applications have been previously mentioned in literature [6]. However,
such an attack requires usage of native code, careful identification of buffer overflow vulnerabilities and high
expertise. We focus only on vulnerabilities specific to Android and help protect the information before such
attacks happen.

Michael Grace et al. [13] focused on static analysis of stock Android firmware and identified confused deputy
attacks that enable the use of permission-protected capabilities. Our analysis is complementary in that it
identifies not actions that are performed, but information that flows to attackers. Also we focus not on stock
applications, but third-party applications.

TaintDroid [7] uses dynamic taint tracking to identify information flows that reach network communication
sinks. Both PermissionFlow and TaintDroid can potentially support other sinks, and their dynamic approach is
complementary to our static approach because it can better handle control flow (for example, paths that are
never taken in practice are reported as possible flows by our tool). It can also enforce only safe use of vulnerable
applications by denying users the capability to externalize their sensitive information.

SCanDroid [10] is the first static analysis tool for Android and can detect information flow violations. The
tool needs to have access to both the vulnerable application and the exploitable application. To the best of our
knowledge, SCanDroid is not easily extensible with new taint propagation rules.

CHEX [17], a system developed concurrently with our work, relies on static analysis to discover permission
leaks in Android applications. CHEX uses an IR similar to the one used by WALA, but does not use WALA
dataflow analysis. For efficiency, they use a graph reachability analysis. Andromeda, our taint analysis engine,
achieves efficiency through use of a demand-driven taint analysis. CHEX detects several types of vulnerabilities
affecting Android applications, including permission-protected information leaks. However, CHEX does not
check the application manifest to identify if Activitys are exported or if Activitys use the manifest to enforce
permissions from their callers. CHEX requires a permissions map as input, in that it does not automatically
generate it.

ComDroid [5] is a tool that analyses inter-application communication in Android. ComDroid does not track
permission-leak vulnerabilities. None of the vulnerabilities described pertain to permission-protected information.
ComDroid does emit misconfiguration warnings, but these are not necessarily vulnerabilities (some applications
offer public services that need no checking). Permission-leak attacks are a special case of Intent spoofs in that
they imply permission-protected information flow, not only control flow and misconfiguration. Contributions
such as automatic rule generation and automatic permission map building separate our work from theirs.

Kirin [22, 8] is a tool based on a formal representation of the Android security model that checks if applications
meet security policies. It can check for confused deputy vulnerabilities (”unchecked interface”), Intent spoofing
(”intent origin”) and other attacks by using a powerful Prolog-based security policy enforcement mechanism,
which takes into consideration the set of applications already installed on a device. The authors point out several
difficulties with creating information flow policies in Android and discuss the future possibility of including
source code analysis to make information flow policies for Android practical. If we consider the PermissionFlow
rules as information flow security policies, then PermissionFlow is a step in the right direction for such a tool. It
would solve the problem they mention of information flowing into any application with a user interface.

Felt et al. [9] perform a similar analysis to our PermissionMapper. Their work is based on automated
testing rather than static analysis, which means incomplete coverage and the possibility of false negatives in the
permissions map. They do not use the map to check for information flow-based vulnerabilities in applications.
Their work is discussed further in Section 4.1. PScout [3] builds a permission mapper through static analysis
based on Soot. Their approach is discussed in detail in Section 5.1.

Kantola et al. [16] propose to modify Android configuration semantics to implicitly mark fewer Activitys as
public. Their heuristic-based approach fixes most vulnerabilities and maintains backwards compatibility with
applications written for the current Android semantics. The cost is the continuing reliance on heuristics, and
vulnerabilities are still possible. A cleaner approach would be to disallow inter-application invocations if the
caller does not own the permissions required by the callee. Such an approach prevents these vulnerabilities by
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correctly configuring applications, but breaks backwards compatibility. Another solution is to emit warnings
based on the configuration and static analysis, which PermissionFlow would be well-suited for.

Mann and Starostin [18] propose a wider analysis based on typing rules that can discover flow vulnerabilities.
They have no experimental results on applications and did not realize that private components are vulnerable to
inter-application attacks. With additional rules, PermissionFlow can analyze all vulnerabilities suggested by
them.

A different aspect of the inter-application flow vulnerabilities is described by Claudio Marforio et al. whose
work focused on colluding applications[19]; they identified several possible covert channels through which
malevolent applications can communicate sensitive information, for example by enumerating processes using
native code or files. Most of them however are not Android-specific, no tool was built to prevent them, and no
vulnerable or malevolent application was found. The contribution of the work consists of identification of the
danger of colluding applications for modern permission-based operating systems. Hornyack et al. [14] describe a
tool that can be used to complement ours. Mann and Starostin [18] propose a wider analysis based on typing
rules that can discover flow vulnerabilities.

9 Conclusion

This paper proposes a solution for the problem of checking for leaks of permission-protected information; this is
an important security problem as such leaks compromise users’ privacy. Unlike previous work, our method is
completely automated; it is based on coupling rule-based static taint analysis with automatic generation of rules
that specify how permissions can leak to unauthorized applications. We demonstrate the benefits of this analysis
on Android, and identify the Intent mechanism as a source of permission leaks in this operating system; we
found that permissions can leak to other applications even from components that are meant to be private: i.e.,
accessed only from inside the application.

Our automated analysis of popular applications found that 56% of the top 313 Android applications actively
use inter-component information flows. Among the tested applications, PermissionFlow found four exploitable
vulnerabilities. Because of the large scale usage of these flows, PermissionFlow is a valuable tool for security-aware
developers, for security professionals and for privacy-conscious users. Our approach extends beyond Android,
to permission-based systems that allow any type of inter-application communication or remote communication
(such as Internet access). Most mobile OSes are included in this category and can benefit from the proposed new
application of taint analysis. By helping ensure the absence of inter-application permission leaks, we believe that
the proposed analysis will be highly beneficial to the Android ecosystem and other mobile platforms that may
use similar analyses in the future.
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