
Efficient Data Race Detection
for Async-Finish Parallelism

Raghavan Raman1, Jisheng Zhao1, Vivek Sarkar1, Martin Vechev2, and Eran Yahav2

1 Rice University
2 IBM T. J. Watson Research Center

{raghav,jisheng.zhao,vsarkar}@rice.edu,
{mtvechev,eyahav}@us.ibm.com

Abstract. A major productivity hurdle for parallel programming is the presence of
data races. Data races can lead to all kinds of harmful program behaviors, includ-
ing determinism violations and corrupted memory. However, runtime overheads
of current dynamic data race detectors are still prohibitively large (often incurring
slowdowns of 10× or larger) for use in mainstream software development.

In this paper, we present an efficient dynamic race detector algorithm targeting
the async-finish task-parallel parallel programming model. The async and finish
constructs are at the core of languages such as X10 and Habanero Java (HJ).
These constructs generalize the spawn-sync constructs used in Cilk, while still
ensuring that all computation graphs are deadlock-free.

We have implemented our algorithm in a tool called TASKCHECKER and eval-
uated it on a suite of 12 benchmarks. To reduce overhead of the dynamic analysis,
we have also implemented various static optimizations in the tool. Our experi-
mental results indicate that our approach performs well in practice, incurring an
average slowdown of 3.05× compared to a serial execution in the optimized case.

1 Introduction

Designing and implementing correct and efficient parallel programs is a notoriously
difficult task, and yet, with the proliferation of multi-core processors, parallel program-
ming will need to play a central role in mainstream software development. One of the
main difficulties in parallel programming is that a programmer is often required to ex-
plicitly reason about the inter-leavings of operations in their program. The vast number
of inter-leavings makes this task difficult even for small programs, and intractable for
sizable applications. Unstructured and low-level frameworks such as Java threads allow
the programmer to express rich and complicated patterns of parallelism, but also make
it easy to get things wrong.

Structured Parallelism. Structured parallelism makes it easier to determine the context
in which an operation is executed and to identify other operations that can execute in
parallel with it. This simplifies manual and automatic reasoning about the program, en-
abling the programmer to produce a program that is more robust and often more efficient.

Realizing these benefits, significant efforts have been made towards structuring par-
allel computations, starting with constructs such as cobegin-coend [11] and monitors.
Recently, additional support for fork-join task parallelism has been added in the form

G. Roşu et al. (Eds.): RV 2010, LNCS 6418, pp. 368–383, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Data Race Detection for Async-Finish Parallelism 369

of libraries [15,18] to existing programming environments and languages such as Java
and .NET.

Parallel languages such as Cilk [5], X10 [8], and Habanero Java (HJ) [3] provide
simple, yet powerful high level concurrency constructs that restrict traditional fork-
join parallelism yet are sufficiently expressive for a wide range of problems. The key
restriction in these languages is centered around the flexibility of choosing which tasks
a given task can join to. The async-finish computations that we consider generalize
the more restricted spawn-sync computations of Cilk, and similarly, have the desired
property that the computation graphs generated in the language are deadlock-free [17]
(unlike unrestricted fork-join computations).

Data Race and Determinism Detection. A central property affecting the correctness
of parallel algorithms is data-race freedom. Data-race freedom is a desirable property
as in some cases it can imply determinism [16,7]. For instance, in the absence of data
races, all parallel programs with async and finish, but without isolated constructs, are
guaranteed to be deterministic. Therefore, if we can prove data-race freedom of pro-
grams which do not contain isolated constructs, then we can conclude that the program
is deterministic.

We present an efficient dynamic analysis algorithm that checks the presence of data
races in async-finish style parallel computations. These constructs form the core of the
larger X10, HJ and Cilk parallel languages. Using async, finish and isolated, one can
express a wide range of useful and interesting parallel computations (both regular and
irregular) such as factorizations and graph computations.

Our analysis is a generalization of Feng and Leiserson’s SP-bags algorithm [12]
which was designed for checking determinism of spawn-sync Cilk programs. The reason
why the original algorithm cannot be applied directly to async-finish style of program-
ming is that this model allows for a superset of the executions allowed by the traditional
spawn-sync Cilk programs. Both, the SP-bags algorithm, as well as our extension to it,
are sound for a given input: if a data race exists for that input, a violation will be reported.

Main Contributions. To the best of our knowledge, this is the first detailed study of the
problem of data race detection for async-finish task-parallel programs as embodied in
the X10 and HJ languages. The main contributions of this paper are:

– A dynamic analysis algorithm for efficient data race detection for structured async-
finish parallel programs. Our algorithm generalizes the classic SP-bags algorithm
designed for the more restricted spawn-sync Cilk model.

– An implementation of our dynamic analysis in a tool named TASKCHECKER.
– Compiler optimizations to reduce the overhead incurred by the dynamic analysis

algorithm. These optimizations reduces the overhead by 1.59× on average for the
benchmarks used in our evaluation.

– An evaluation of TASKCHECKER on a suite of 12 benchmarks written in the HJ pro-
gramming language1. We show that for these benchmarks, TASKCHECKER is able to
perform data race detection with an average (geometric mean) slowdown of 4.86×
in the absence of compiler optimizations, and 3.05× with compiler optimizations,
compared to a sequential execution.

1 These benchmarks also conform with version 1.5 of the X10 language.

370 R. Raman et al.

2 Background

In this paper we present our approach to data race detection for an abstract language
AFPL, Async Finish Parallel Language. We first present our language AFPL and infor-
mally describe its semantics. To motivate the generalization of the traditional SP-bags
algorithm to our setting, we illustrate where our language allows for broader sets of
computation dags than those expressible with the spawn-sync constructs in the Cilk
programming language.

2.1 Syntax

Fig. 1 shows the part of the language syntax for AFPL that is relevant to parallelism.
The language allows nesting of finish and async statements. That is, any statement
can appear inside these two constructs. However, the language restricts the kind of
statements that can appear inside isolated sections: no synchronization constructs such
as async and finish are allowed inside isolated sections. However, isolated blocks may
contain loops, conditionals, and other forms of sequential control flow.

Program : P ::= main { finish { s } }
Statement : s ::= finish { s }

| async { s }
| isolated { r }
| ST (s)
| s ; s

Restricted r ::= RT (r)
Statement | r ; r

Fig. 1. The syntax of synchronization statements for AFPL

To reflect that, we use the shortcut parametric macros ST and RT (to stand for
standard statements and restricted statements respectively). ST (s) will generate the set
of usual statements and for any statement, it will replace its sub-statement, if necessary,
with s. For instance, one of the several statements in the set for ST (s) will be the
conditional if(b) s else s, while for ST (r), it will be if(b) r else r. The set of statements
generated by RT includes all statements of ST except procedure calls. This restriction
is placed to avoid synchronization constructs in methods called from within isolated
sections.

While languages such as X10 and HJ also allow for more expressive synchronization
mechanisms such as futures, conditional isolated sections, clocks or phasers, the core of
these languages is based around the constructs shown in Fig. 1. We note that a similar
language, called Featherweight X10 (FX10) has been recently considered in [17]. FX10
considers a more restricted calculus (e.g. it has one large one-dimensional array for the
global store) and does not support isolated sections. Our data race detection algorithm
is largely independent of the sequential constructs in the language. For example, the
sequential portion of the language can be based on the sequential portions of C, C++,
Fortran or Java.

Efficient Data Race Detection for Async-Finish Parallelism 371

Fig. 2. An example AFPL program and its computation graph

2.2 Informal Language Semantics

Next, we briefly discuss the relevant semantics of the concurrency constructs. For for-
mal semantics of the async and finish constructs, see FX10 [17]. Initially, the program
begins execution with the main task. When an async { s } statement is executed by
task A, a new child task, B, is created. The new task B can now proceed with executing
statement s in parallel with its parent task A. For example, consider the AFPL code
shown in Fig. 2. Suppose the main task starts executing this piece of code. The async
statement in line 7 creates a new child task, which will now execute the block of code
in lines 7-14 in parallel with the main task. When a finish { s } statement is executed
by task A, it means that task A must block and wait at the end of this statement until all
descendant tasks created by A in s (including their recursively created children tasks),
have terminated. That is, finish can be used to create a join point for all descendant
tasks dynamically created inside its scope. In the example in Fig. 2, the finish in line 15
would wait for the tasks created by asyncs in lines 16 and 17 to complete. The statement
isolated { s } means that the statement s is executed atomically with respect to other
isolated statements2.

2 As advocated in [14], we use the isolated keyword instead of atomic to make explicit the fact
that the construct supports weak isolation rather than strong atomicity.

372 R. Raman et al.

2.3 Cilk vs. AFPL

Our data race detection algorithm, ESP-bags, presented in later sections, is an adap-
tation of the SP-bags algorithm [12] developed for the Cilk programming language.
Unfortunately, the SP-bags algorithm cannot be applied directly to our language and
needs to be extended. The reason is that our language supports a more relaxed concur-
rency model than the spawn-sync Cilk computations. The key semantic relaxation lays
in the way a task is allowed to join with other tasks. In Cilk, at any given (join) point of
the task execution, the task should join with all of its descendant tasks (including all re-
cursive descendant tasks) created in between the start of the task and the join point. The
join is accomplished by executing the statement sync. The sync statement in Cilk can
be directly translated to a standard finish block, where the start of the finish block is the
start of the procedure and the end of the finish block is the label of the sync statement.
For instance, we can translate the following Cilk program:

spawn f1(); sync; spawn f2(); sync; s1;

into the following AFPL program:

finish { finish { async f1(); }; async f2(); }; s1;

That is, each spawn statement is replaced by an async statement and each sync statement
is replaced with a finish block, where the scope of the finish ranges from the start of the
task to the label of the corresponding sync.

In contrast, with the use of nested finish operations in AFPL, it is possible for a task
to join with some rather than all of its descendant tasks. The way these descendant tasks
are specified at the language level is with the finish construct: upon encountering the
end of a finish block, the task waits until all of the descendant tasks created inside the
finish scope have completed.

The computation graph in Fig. 2 illustrates the differences between Cilk and AFPL.
Each vertical sequence of circles denotes a task. Here we have four sequences for four
tasks. Each circle in the graph represents a program label and an edge represents the
execution of a statement at that label. Note that at label 22, the main task waits only for
T3 and T4 and not for T2, which is not possible using the spawn-sync semantics used
in Cilk.

Further, another restriction in Cilk is that every task must execute a sync statement
upon its return. That is, a task cannot terminate unless all of its descendants have ter-
minated. In contrast, in AFPL, a task can outlive its parents, i.e., a task can complete
even while its children are still alive. For instance, in the example of Fig. 2, in Cilk, T3
would need to wait until T4 has terminated. That is, the edge from node 19 to 22 would
change to an edge from 19 to 21. As we can see, this need not be the case in AFPL: task
T3 can terminate before task T4 has finished.

More generally, the class of computations generated by the spawn-sync constructs is
said to be fully-strict [6], while the computations generated by our language are called
terminally-strict [2]. The set of terminally-strict computations subsumes the set of fully-
strict computations. All of these relaxations mean that it is not possible to directly con-
vert a AFPL program into the spawn-sync semantics of Cilk, which in turn implies that

Efficient Data Race Detection for Async-Finish Parallelism 373

we cannot use its SP-bags algorithm immediately and we need to somehow generalize
that algorithm to our setting. We show how that is accomplished in the next section.

3 ESP-Bags Algorithm

In this section, we briefly summarize the existing SP-bags algorithm used for spawn-
sync computations. Then, we present our extension of that algorithm for detecting
data races in AFPL programs. The original SP-bags algorithm was designed for Cilk’s
spawn-sync computations. As mentioned earlier, we can always translate spawn-sync
computations into async-finish computations. Therefore, we present the operations of
the original SP-bags algorithm in terms of async and finish, rather than spawn and sync
constructs, so that the extensions are easily understood.

3.1 SP-Bags

We assume that each dynamic task (async) instance is given a unique task id. The basic
idea behind the SP-bags algorithm is to attach two “bags”, S and P, to each dynamic
task instance. Each bag contains a set of task id’s. When a statement E that belongs to a
task A is being executed, the S-bag of task A will hold all of the descendant tasks of A
that always precede E in any execution of the program. The S-bag of A will also include
A itself since any statement G in A that executes before E in the sequential depth first
execution will always precede E in any execution of the program. The P-bag of A holds
all descendant tasks of A that may execute in parallel with E.

At any point during the depth-first execution of the program, a task id will always
belong to at most one bag. Therefore, all these bags can be efficiently represented using
a single disjoint-set data structure. The intuition behind the algorithm can be stated
as follows: when a program is executed in depth-first manner, a write W1 to a shared
memory location L by a task τ1 races with an earlier read/write to L by any task τ2

which is in a P-bag when W1 occurs and it does not race with read/write by any task
that is in an S-bag when W1 occurs. A read races with an earlier write in the same way.

Although the program being tested for data races is a parallel program, the SP-bags
algorithm is a serial algorithm that performs a sequential depth-first execution of the
program on a single processor. Each memory location is instrumented to contain two
additional fields: a reader task id and a writer task id. The following table shows the
update rules for the SP-bags algorithm:

Async A : SA ← {A}, PA ← ∅
Task A returns to Task B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅
EndFinish F in a Task B : SB ← SB ∪ PB , PB ← ∅

When a task A is created, its S bag is initialized to contain its own task id, and its P
bag is initialized to the empty set. When a task A returns to a task B in the depth-first
execution, then both of its bags, S and P, are moved to the P bag of its parent, B, and
its bags are reset. When a join point is encountered in a task, the P bag of that task is
moved to its S bag.

374 R. Raman et al.

In addition to the above steps, during the depth-first execution of a program, the
SP-bags algorithm requires that action is taken on every read and write of a shared
variable. Figure 3 shows the required instrumentation for read and write operations.
For each operation on a shared memory location L, we only need to check those fields
of L that could conflict with the current operation.

1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag t h e n Data Race ;
3 I f L . r e a d e r i s i n a S−bag t h e n L . r e a d e r = t ;

1 Wri t e l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 t h e n Data Race ;
4 L . w r i t e r = t ;

Fig. 3. Instrumentation on shared memory access. Applies both to SP-bags and ESP-bags.

3.2 ESP-Bags

Next, we present our extensions to the SP-bags algorithm. Recall that the key difference
between AFPL and spawn-sync lays in the flexibility of selecting which of its descen-
dent tasks a parent task can join to. The following table shows the update rules for the
ESP-bags algorithm. The extensions to SP-bags are highlighted in bold.

Async A - fork a new task A : SA ← {A}, PA ← ∅
Task A returns to Parent B : PB ← PB ∪ SA ∪ PA, SA ← ∅, PA ← ∅
StartFinish F : PF ← ∅
EndFinish F in a Task B : SB ← SB ∪ PF , PF ← ∅

The key extension lays in attaching P bags, not only to tasks, but also to identifiers
of finish blocks. At the start of a finish block F, the bag PF is reset. Then, when a
finish block ends in a task, the contents of its P bag are moved to the S bag of that task.
Further, when during the depth-first execution a task returns to its parent, say B, B may
be both a task or a finish scope. The actual operations on the S and P bags in that case
are identical to SP-bags.

The need for this extension comes from the fact that at the end of a finish block,
only the tasks created inside the finish block are guaranteed to complete and therefore
will precede the tasks that follow the finish block. Therefore, only the tasks created
inside the finish block need to be added to the S-bag of the parent task when the finish
completes and those tasks created before the finish block began need to stay in the P-bag
of the parent task.

This extension generalizes the SP-bags presented earlier. This means that the ESP-
bags algorithm can be applied directly to spawn-sync programs as well by first trans-
lating then to async-finish as shown earlier, and the applying the algorithm. Of course,
if we know that the finish blocks have a particular structure, and we know that trans-
lated spawn-sync programs do, then we can safely optimize away the P bag for the
finish id’s and directly update the bag of the parent task (as done in the original SP-bags
algorithm).

Efficient Data Race Detection for Async-Finish Parallelism 375

3.3 Discussion

In summary, the ESP-bags algorithm works by updating the reader and writer fields of
a shared memory location whenever that memory location is read or written by a task.
On each such read/write operation, the algorithm also checks to see if the previously
recorded task in these fields (if any) can conflict with the current task, using the S and
the P bags of the current task. We now show an example of how the algorithm works
for the AFPL code in Fig. 2. Suppose that the main task, T1, starts executing that code.
We refer to the finish in line 4 by F1 and the first instance of the finish in line 15 by F2.
Also, we refer to the first instance of the tasks generated by the asyncs in lines 7, 16,
and 17 by T2, T3, and T4 respectively.

Table 1. ESP-bags Example

PC T1 F1 T2 F2 T3 T4 B[0]
S P S P P S S Writer

1 {T1} - - - - - - -
4 {T1} ∅ - - - - - -
7 {T1} ∅ {T2} - - - - -
8 {T1} ∅ {T2} - - - - T2

14 {T1} {T2} ∅ - - - - T2

15 {T1} {T2} ∅ ∅ - - - T2

16 {T1} {T2} ∅ ∅ ∅ {T3} - T2

17 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T2

*18 {T1} {T2} ∅ ∅ ∅ {T3} {T4} T4

19 {T1} {T2} ∅ ∅ {T4} {T3} ∅ T4

21 {T1} {T2} ∅ {T4,T3} ∅ ∅ ∅ T4

22 {T1,T4,T3} {T2} ∅ ∅ ∅ ∅ ∅ T4

Table 1 shows how the S and P bags of the tasks (T1, T2, T3, and T4) and the P
bags of the finishes (F1 and F2) are modified by the algorithm as the code in Fig. 2
is executed. Each row shows the status of these S and P bags after the execution of a
particular statement in the code. The PC refers to the statement number (from Fig. 2)
that is executed. This table only shows the status corresponding to the first iteration of
the for loop in line 5. The table also tracks the contents of the writer field of the memory
location B[0]. The P bags of the tasks T1, T2, and T4 are omitted here since they remain
empty through the first iteration of the for loop.

In the first three steps in the table, the S and P bags of T1, F1, and T2 are initialized
appropriately. When the statement in line 8 is executed, the writer field of B[0] is set
to the current task, T2. Then, on completion of T2 in line 14, the contents of its S and
P bags are moved to the P bag of F1. When the write to B[0] in line 18 (in Task T4)
is executed, the algorithm finds the task in its writer field, T2, in a P bag (P bag of
F1). Hence this is reported as a data race. Further, when T4 completes in line 19, the
contents of its S and P bags are moved to the P bag of its parent T3. Similarly, when
T3 completes in line 21, the contents of its S and P bags are moved to the P bag of its

376 R. Raman et al.

parent F2. When the finish F2 completes in line 22, the contents of its P bag are moved
to the S bag of its parent T1.

4 Handling Isolated Blocks

In this section, we briefly describe an extension to the ESP-bags algorithm to accom-
modate handling of isolated sections. Isolated sections are useful since they allow the
programmer to write data-race-free parallel programs in which multiple tasks interact
and update shared memory locations.

1 I s o l a t e d Read of l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag t h e n Data Race ;
3 I f L . i s o l a t e d R e a d e r i s i n a S−bag t h e n L . i s o l a t e d R e a d e r = t ;

1 I s o l a t e d Wri t e o f l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 t h e n Data Race ;
4 I f L . i s o l a t e d W r i t e r i s i n a S−bag t h e n L . i s o l a t e d W r i t e r = t ;

1 Read l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . i s o l a t e d W r i t e r i s i n a P−bag
3 t h e n Data Race ;
4 I f L . r e a d e r i s i n a S−bag t h e n L . r e a d e r = t ;

1 Wri t e l o c a t i o n L by Task t :
2 I f L . w r i t e r i s i n a P−bag or L . r e a d e r i s i n a P−bag
3 or L . i s o l a t e d W r i t e r i s i n a P−bag or L . i s o l a t e d R e a d e r i s i n a P−bag
4 t h e n Data Race ;
5 L . w r i t e r = t ;

Fig. 4. ESP-bags algorithm for AFPL, with support for isolated blocks

The extension to handle isolated sections includes checking that isolated and non-
isolated accesses that may execute in parallel do not interfere. For this, we extend
ESP-bags as follows: two additional fields are added to every memory location, iso-
latedReader, and isolatedWriter. These fields are used to hold the task that performs
an isolated read or write on the location. We need to handle reads and writes from iso-
lated blocks differently as compared to non-isolated operations. Fig. 4 shows the steps
needed to be performed during each of the operations: read, write, isolated-read, and
isolated-write.

5 Compiler Optimizations

The ESP-bags algorithm is implemented as a Java library. Recall that the ESP-bags
algorithm requires that action is taken on every read and write to a shared memory
location. To test a given program for data-race freedom using the ESP-bags algorithm,
we need a compiler transformation pass that instruments read and write operations on
shared memory locations in the program with appropriate calls to the library. In this

Efficient Data Race Detection for Async-Finish Parallelism 377

section, we describe the static analyses that we used to reduce the instrumentation and
hence improve the runtime performance of the instrumented program.

Main Task Check Elimination in Sequential Code Regions. A parallel program will
always start and end with sequential code regions and will contain alternating parallel
and sequential code regions in the middle. There is no need to instrument the operations
in such sequential code regions. In an AFPL program, the sequential code regions are
executed by the main task. Thus, in an AFPL program, there is no need to instrument
the read and write operations in the sequential code regions of the main task.

Read-only Check Elimination in Parallel Code Regions. The input program may have
shared memory locations that are written by the sequential regions of the program and
only read within parallel regions of the program. Such read operations within parallel
regions of the program need not be instrumented because parallel tasks reading from
the same memory location will never lead to a conflict. To perform this optimization,
the compiler implements an inter-procedural side-effect analysis [4] to detect potential
write operations to shared memory locations within the parallel regions of the given
program. If there is no possible write to a shared memory location M in the parallel
regions of the program, that clearly shows that all accesses to M in the parallel regions
must be read-only and hence the instrumentations corresponding to these reads can be
eliminated.

Escape Analysis. The input program may include many parallel tasks. A race occurs
in the program only when two or more tasks access a shared memory location and at
least one of them is a write. Suppose an object is created inside a task and it never
escapes that task, then no other task can access this object and hence it cannot lead to a
data race. To ensure the task-local attribute, the compiler performs an inter-procedural
escape analysis [10] that identifies if an object is shared among tasks. This also requires
an alias analysis to ensure that no alias of the object escapes the task. Thus, if an object
O is proven to not escape a task, then the instrumentations corresponding to all accesses
to O can be eliminated.

Loop Invariant Check Optimization. If there are multiple accesses of the same type
(read or write) to M by a task, then it is sufficient to instrument one such access be-
cause other instrumentations will only add to the overhead by unnecessarily repeating
the steps. Suppose the input program accesses a shared memory location M uncondi-
tionally inside a loop, the instrumentation corresponding to this access to M can be
moved outside the loop to prevent multiple calls to the instrumented function for M . In
summary, given a memory access M that is performed unconditionally on every itera-
tion of a sequential loop, the instrumentation for M can be hoisted out of the loop by
using classical loop-invariant code motion.

Read/Write Check Elimination. In this optimization, we claim that if there are two ac-
cesses M1 and M2 to the same memory location in a task, then we can use the following
rules to eliminate one of them.
1. If M1 dominates M2 and M2 is a read operation, then the instrumentation for M2

can be eliminated (since M1 is either a read or write operation).
2. If M2 post-dominates M1 and M1 is a read operation, then the check for M1 can

be eliminated (since M2 is either a read or write operation). This rule tends to be

378 R. Raman et al.

applicable in fewer situations than the previous rule in practice, because computa-
tion of post-dominance includes the possibility of exceptional control flow.

6 Evaluation

We report the performance results of our experiments on a 16-way (quad-socket, quad-
core per socket) Intel Xeon 2.4GHz system with 30 GB memory, running Red Hat
Linux (RHEL 5). The JVM used is the Sun Hotspot JDK 1.6. We applied the ESP-
bags algorithm to a set of 8 Java Grande Forum (JGF) benchmarks shown in Table 2.
Though we performed our experiments on different sizes of the JGF benchmarks, we
only report the results of the maximum size in each case. We were unable to get the
results of size B for MolDyn since the both the versions (original and instrumented)
runs out of memory. We also evaluated our algorithm on 3 Shootout benchmarks and 1
EC2 challenge benchmark. All the benchmarks used were written in HJ using only the
AFPL constructs and are available from [1].

Table 2. List of Benchmarks Evaluated

Source Benchmark Description

JGF (Section 2)

Series Fourier coefficient analysis
LUFact LU Factorisation
SOR Successive over-relaxation
Crypt IDEA encryption
Sparse Sparse Matrix multiplication

JGF (Section 3)
MolDyn Molecular Dynamics simulation
MonteCarlo Monte Carlo simulation
RayTracer 3D Ray Tracer

Shootout
Fannkuch Indexed-access to tiny integer-sequence
Fasta Generate and write random DNA sequences
Mandelbrot Generate Mandelbrot set portable bitmap file

EC2 Matmul sMatrix Multiplication (two 1000*1000 double matrix)

Results of ESP-bags algorithm. Table 3 shows the results of applying the ESP-bags
algorithm on our benchmarks. This table gives the original time taken for each bench-
mark, i.e., the time taken to execute the benchmark without any instrumentation. It also
shows the slowdown of the benchmark when instrumented for the ESP-bags algorithm
with and without the optimizations described in Section 5. The outcome of the ESP-
bags algorithm is also included in the table, which clearly shows there are no data races
in any of the benchmarks. The same was observed for all the input sizes. Hence all the
benchmarks are free of data races for the inputs considered. Note that though RayTracer
has some isolated conflicts, it is free of data races since there were no conflicts between
isolated and non-isolated accesses.

Efficient Data Race Detection for Async-Finish Parallelism 379

Table 3. Slowdown of ESP-bags Algorithm

Benchmark Number Time ESP-bags Result
of (s) Slowdown Factor

asyncs w/o opts w/ opts

Crypt - C 1.3e7 15.24 7.63 7.29 No Data Races
LUFact - C 1.6e6 15.19 12.45 10.08 No Data Races

MolDyn - A 5.1e5 45.88 10.57 3.93 No Data Races
MonteCarlo - B 3.0e5 19.55 1.99 1.57 No Data Races

RayTracer - B 5.0e2 38.85 11.89 9.48 No Data Races
(Isolated conflict)

Series - C 1.0e6 1395.81 1.01 1.00 No Data Races
SOR - C 2.0e5 3.03 14.99 9.05 No Data Races

Sparse - C 6.4e1 13.59 12.79 2.73 No Data Races
Fannkuch 1.0e6 7.71 1.49 1.38 No Data Races

Fasta 4.0e0 1.39 3.88 3.73 No Data Races
Mandelbrot 1.6e1 11.89 1.02 1.02 No Data Races

Matmul 1.0e3 19.59 6.43 1.16 No Data Races

Geo Mean 4.86 3.05

ESP-bags slowdown. On an average, the slowdown of the benchmarks with the ESP-
bags algorithm is 4.86× without optimization. When all the static optimizations are
applied, the average slowdown drops to 3.05×. The slowdown of all the benchmarks
except LUFact is less than 10×. The slowdown for benchmarks like MolDyn, Monte-
Carlo and Sparse are less than 5×. There is no slowdown in the case of Series because
most of the code uses stack variables. In HJ none of the stack variables can be shared
across tasks and hence we do not instrument any access to these variables. On the other
hand, the slowdown for SOR and RayTracer benchmarks are around 9×.

Performance of Optimizations. We now discuss the effects of the compiler optimiza-
tions on the benchmarks. The static optimizations that were performed include check
elimination in sequential code regions in the main task, read-only check elimination
in parallel code regions, escape analysis, loop invariant check motion, and read/write
check elimination. As is evident from the table, some of the benchmarks like SOR,
Sparse, MolDyn, and Matmul benefit a lot from the optimizations, with a maximum
reduction in slowdown of about 78% for Sparse. On the other hand, for other bench-
marks the reduction is relatively less. The optimizations does not reduce the slowdown
much for Crypt and LUFact because in these benchmarks very few instrumentations are
eliminated as a result of the optimizations. In the case of MonteCarlo and RayTracer,
though a good number of instrumentations are eliminated, a significant fraction of them
still remain and hence there is not much performance improvement in these benchmarks
due to optimizations. On an average, there is a 37% reduction in the slowdown of the
benchmarks due these optimizations.

380 R. Raman et al.

Fig. 5. Breakdown of static optimizations

Breakdown of the Optimizations. We now describe the effects of each of the static
optimizations separately on the performance of the benchmarks. Figure 5 shows the
breakdown of the effects of each of the static optimizations. The graph also shows the
slowdown without any optimization and with the whole set of optimizations enabled.
The Main Task Check Elimination optimization described in Section 5 is applied to
all the versions included here, including the unoptimized version. This is because we
consider that optimization as a basic step without which there could be excessive in-
strumentations.

The read-only check elimination performs much better than the other optimizations
for most of the benchmarks, like MolDyn, SOR, and SparseMatmult. This is because
in these benchmarks the parallel regions include reads to many arrays which are writ-
ten only in the sequential regions of the code. Hence, this optimization eliminates the
instrumentation for all these reads. It contributes the most to the overall performance
improvement in the full optimized version. The read-write optimization works well in
the case of SOR, but does not have much effect on other benchmarks. The Loop invari-
ant code motion helps improve the performance of Montecarlo the most and the Escape
analysis does not seem to help any of these benchmarks to a great extent.

Note that the performance of these four static optimizations do not directly add up
to the performance of the fully optimized code. This is because some of these opti-
mizations creates more chances for other optimizations. Hence their combined effect is
much more than their sum. For example, the loop invariant code motion creates more
chances for the Read-only and Read-Write optimization. So, when these two optimiza-
tions are performed after loop invariant code motion their effect would be more than that
is shown here. Finally, we only evaluated the performance of these optimizations on the
set of benchmarks shown here. For a different set of benchmarks, their effects could be
different. But we believe that these static optimizations, when applied in combination,
are in general good enough to improve the performance of most of the benchmarks.

Efficient Data Race Detection for Async-Finish Parallelism 381

7 Related Work

The original Cilk paper [12] introduces SP-bags for spawn-sync computations. We ex-
tend that algorithm to the more general setting of async-finish computations. An ex-
tension to SP-bags was proposed by Cheng et al. [9] to handle locks in Cilk programs.
Their approach includes a data race detection algorithm for programs that satisfy a par-
ticular locking discipline. However, the slowdown factors reported in [9] were in the
33× - 78× range for programs that follow their locking discipline, and upto 3700×
for programs that don’t. In this work, we detect data races in programs with async, fin-
ish, and isolated constructs.We outline and implement a range of static optimizations to
reduce the slowdown factor to just 3.05× on average.

A recent result on detecting data races by Flanagan et al. [13] (FastTrack) reduces the
overhead of using vector clocks during data race detection. Their technique focuses on
the more general setting of fork-join programs. The major problem with using vector
clocks for race detection is that the space required for vector clocks is linear in the
number of threads in the program and hence any vector clock operation also takes time
linear in the number of threads. In a program containing millions of tasks that can run in
parallel it is not feasible to use vector clocks to detect data races (if we directly extend
vector clocks to tasks). Though FastTrack reduces this space (and hence the time for any
vector clock operation) to a constant by using epochs instead of vector clocks, it needs
vector clocks whenever a memory location has shared read accesses. Even one such
instance would make it infeasible for programs with millions of parallel tasks. On the
other hand, our approach requires only a constant space for every memory location and
a time proportional to the inverse Ackerman function. Also, FastTrack just checks for
data races in a particular execution of a program, whereas our approach can guarantee
the non-existence of data races for all possible schedules of a given input. The price we
have to pay for this soundness guarantee is that we have to execute the given program
sequentially. But given that this needs to be done only during the development stage we
feel our approach is of value.

Sadowski et al. [20] propose a technique for checking determinism by using inter-
ference checks based on happens before relations. This involves detecting conflicting
races in threads that can run in parallel. Though they can guarantee the non-existence
of races in all possible schedules of a given input, the fact that they use vector clocks
makes these infeasible in a program with millions of tasks that can run in parallel.

The static optimizations that we use to eliminate the redundant instrumentations and
hence reduce the overhead is similar to the compile-time analyses proposed by Mellor-
Crummey [19]. His technique is applicable for loop carried data dependences across
parallel loops and also for data dependences across parallel blocks of code. In our ap-
proach, we concentrate on the instrumentations within a particular task and try to elim-
inate redundant instrumentations for memory locations which are guaranteed to have
already been instrumented in that task.

8 Conclusion

In this paper, we proposed a sound and efficient dynamic data-race detection algorithm
called ESP-bags. ESP-bags targets the async-finish parallel programming model, which
generalizes the spawn-sync model used in Cilk.

382 R. Raman et al.

We have implemented ESP-bags in a tool called TASKCHECKER and augmented it
with a set of static compiler optimizations that reduce the incurred overhead by 1.59×
on average. Evaluation of TASKCHECKER on a suite of 12 benchmarks shows that the
dynamic analysis introduces an average slowdown of 4.86×without compiler optimiza-
tions, and 3.05×with compiler optimizations, making the tool suitable for practical use.

In future work, we plan to investigate the applicability of ESP-bags to the fork-join
concurrency model.

Acknowledgements

We would like to thank Jacob Burnim and Koushik Sen from UC Berkeley, Jaeheon
Yi and Cormac Flanagan from UC Santa Cruz, and John Mellor-Crummey from Rice
University for their feedback on an earlier version of this paper.

References

1. Habanero Java, http://habanero.rice.edu/hj
2. Agarwal, S., Barik, R., Bonachea, D., Sarkar, V., Shyamasundar, R.K., Yelick, K.: Deadlock-

free scheduling of X10 computations with bounded resources. In: SPAA 2007: Proceed-
ings of the 19th symposium on Parallel algorithms and architectures, pp. 229–240. ACM,
New York (2007)

3. Barik, R., Budimlic, Z., Cave, V., Chatterjee, S., Guo, Y., Peixotto, D., Raman, R., Shi-
rako, J., Tasirlar, S., Yan, Y., Zhao, Y., Sarkar, V.: The habanero multicore software research
project. In: OOPSLA 2009: Proceeding of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, pp. 735–736. ACM,
New York (2009)

4. Barik, R., Sarkar, V.: Interprocedural Load Elimination for Dynamic Optimization of Parallel
Programs. In: PACT 2009, Proceedings of the 18th International Conference on Parallel Ar-
chitectures and Compilation Techniques, Washington, DC, USA, pp. 41–52. IEEE Computer
Society, Los Alamitos (September 2009),
http://dx.doi.org/10.1109/PACT.2009.32

5. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
an efficient multithreaded runtime system. In: Proceedings of the Fifth ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP, pp. 207–216 (October
1995)

6. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing. J.
ACM 46(5), 720–748 (1999)

7. Bocchino, R., Adve, V., Adve, S., Snir, M.: Parallel programming must be deterministic by
default. In: First USENIX Workship on Hot Topics in Parallelism, HOTPAR 2009 (2009)

8. Charles, P., Grothoff, C., Saraswat, V.A., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: Pro-
ceedings of the Twentieth Annual ACM SIGPLAN Conference on Obj ect-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA, pp. 519–538 (October 2005)

9. Cheng, G.-I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data races in
cilk programs that use locks. In: Proceedings of the Tenth Annual ACM Symposium on Par-
allel Algorithms and Architectures (SPAA 1998), Puerto Vallarta, Mexico, June 28–July 2,
pp. 298–309 (1998)

http://habanero.rice.edu/hj
http://dx.doi.org/10.1109/PACT.2009.32

Efficient Data Race Detection for Async-Finish Parallelism 383

10. Choi, J.-D., Gupta, M., Serrano, M.J., Sreedhar, V.C., Midkiff, S.P.: Stack allocation and
synchronization optimizations for Java using escape analysis. ACM Trans. Program. Lang.
Syst. 25(6), 876–910 (2003), http://doi.acm.org/10.1145/945885.945892

11. Dijkstra, E.W.: Cooperating sequential processes, 65–138
12. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs. In:

SPAA 1997: Proceedings of the ninth annual ACM symposium on Parallel algorithms and
architectures, pp. 1–11. ACM, New York (1997)

13. Flanagan, C., Freund, S.N.: Fasttrack: efficient and precise dynamic race detection. In:
PLDI 2009: Proceedings of the 2009 ACM SIGPLAN conference on Programming language
design and implementation, pp. 121–133. ACM, New York (2009)

14. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan and Claypool (2006)
15. Lea, D.: A java fork/join framework. In: JAVA 2000: Proceedings of the ACM, conference

on Java Grande, pp. 36–43. ACM, New York (2000)
16. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006)
17. Lee, J.K., Palsberg, J.: Featherweight x10: a core calculus for async-finish parallelism. In:

PPoPP 2010: Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice
of parallel computing, pp. 25–36. ACM, New York (2010)

18. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:
OOPSLA 2009: Proceeding of the 24th ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, pp. 227–242. ACM, New York (2009)

19. Mellor-Crummey, J.: Compile-time support for efficient data race detection in shared-
memory parallel programs. In: PADD 1993: Proceedings of the 1993 ACM/ONR workshop
on Parallel and distributed debugging, pp. 129–139. ACM, New York (1993)

20. Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: A dynamic determinism checker for
multithreaded programs. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 394–409.
Springer, Heidelberg (2009)

http://doi.acm.org/10.1145/945885.945892

	Efficient Data Race Detection for Async-Finish Parallelism
	Introduction
	Background
	Syntax
	Informal Language Semantics
	Cilk vs. AFPL

	ESP-Bags Algorithm
	SP-Bags
	ESP-Bags
	Discussion

	Handling Isolated Blocks
	Compiler Optimizations
	Evaluation
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

