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ABSTRACT
Coordination and synchronization of parallel tasks is a ma-
jor source of complexity in parallel programming. These
constructs take many forms in practice including mutual
exclusion in accesses to shared resources, termination detec-
tion of child tasks, collective barrier synchronization, and
point-to-point synchronization. In this paper, we introduce
phasers, a new coordination construct that unifies collec-
tive and point-to-point synchronizations. We establish two
safety properties for phasers: deadlock-freedom and phase-
ordering. Performance results obtained from a portable im-
plementation of phasers on three different SMP platforms
demonstrate that phasers can deliver superior performance
to existing barrier implementations, in addition to the pro-
ductivity benefits that result from their generality and safety
properties.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming

General Terms
Languages

1. INTRODUCTION
The computer industry is entering a new era of main-

stream parallel processing in which the need for improved
productivity in parallel programming has taken on a new
urgency. One of the major obstacles to improved productiv-
ity is the complexity of coordination and synchronization of
parallel tasks that is inherent in current parallel program-
ming models. Coordination and synchronization constructs
take many forms in practice such as mutual exclusion in ac-
cesses to shared resources using locks, termination detection
of child threads using join operations, collective synchroniza-
tion using barriers, and point-to-point synchronization using
semaphores. Recent efforts on productivity improvements in
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parallel programming include transactional memory systems
for mutual exclusion [7], work stealing schedulers to support
dynamic nested parallel execution model with lightweight
task creation and termination detection as in Cilk [11], and
deadlock-free barrier synchronizations as in X10’s clocks [2].
These approaches have motivated new research on delivering
efficient parallel performance, while retaining safety guaran-
tees that are important for productivity.

In this paper, we focus on reducing the complexity of col-
lective and point-to-point synchronization, both of which
are used extensively in parallel algorithms. We introduce
phasers, a new coordination construct that unifies collec-
tive and point-to-point synchronization. We establish two
safety properties for phasers: deadlock-freedom and phase-
ordering. Performance results obtained from a portable im-
plementation of phasers on three different SMP platforms
demonstrate that they can deliver superior performance to
existing barrier implementations, in addition to the produc-
tivity benefits that result from their generality and safety
properties.

The rest of the paper is organized as follows. The phaser
construct is introduced in Section 2, and its phase-ordering
and deadlock-avoidance properties are established in Sec-
tion 3. Section 4 presents experimental results to compare
the performance of phasers with other synchronization con-
structs, using an SMP implementation of phasers developed
in the Habanero multicore software research project at Rice
University [6]. Section 5 discusses related work, and Sec-
tion 6 contains our conclusions.

2. OVERVIEW OF PHASERS
In this section, we introduce phasers, a new coordination

construct that unifies collective and point-to-point synchro-
nizations and embodies the following contributions:

1. Integration of producer-consumer with barrier
synchronization. An activity has the option of reg-
istering with a phaser in signal-only mode or wait-only
mode for producer-consumer synchronization, in addi-
tion to signal-wait mode for barrier synchronization.

2. Support for single statements. A next statement
for phasers can optionally include a single statement
which is guaranteed to be executed exactly once during
a phase transition [16].

3. Scalable implementation on multicore SMPs.
By design, phasers are amenable to scalable imple-
mentation on multicore SMPs, as demonstrated in Sec-
tion 4.



int iters = 0; delta = epsilon+1;

while ( delta > epsilon ) {

finish {

for ( jj = 1 ; jj <= n ; jj++ ) {

final int j = jj;

async {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;

diff[j] = Math.abs(newA[j]-oldA[j]);

} // async

} // for

} // finish

delta = diff.sum(); iters++;

temp = newA; newA = oldA; oldA = temp;

}

System.out.println("Iterations: " + iters);

Figure 1: One-Dimensional Iterative Averaging in
X10 using Async and Finish

These properties, along with the generality of dynamic par-
allelism and the phaser-ordering and deadlock-freedom safety
properties, distinguish phasers from synchronization con-
structs in past work including barriers [5, 10], counting sema-
phores [12] and X10’s clocks [2].

Section 2.1 briefly summarizes the async, finish and clock
constructs from X10 [2], which provide the context for our
work on collective and point-to-point synchronization. Sec-
tion 2.2 introduces the phaser construct and the operations
that can be performed on phasers. Though the description
of phasers in this paper may appear to be specific to X10,
they are a general unification of point-to-point and collec-
tive synchronizations that can be incorporated in any paral-
lel programming model with a shared address space such as
OpenMP, Intel’s Thread Building Blocks, Microsoft’s Task
Parallel Library, Java Concurrency Utilities, Unified Parallel
C, Co-Array Fortran and Titanium.

2.1 Async, Finish, Clocks
This section provides a brief summary of the async, fin-

ish, and clock constructs introduced in v0.41 of the X10
programming language [2].

2.1.1 async 〈stmt〉
Async is the X10 construct for creating or forking a new

asynchronous activity. The statement, async 〈stmt〉, causes
the parent activity to create a new child activity to execute
〈stmt〉. Execution of the async statement returns immedi-
ately i.e., the parent activity can proceed immediately to its
next statement.

2.1.2 finish 〈stmt〉
The X10 statement, finish 〈stmt〉, causes the parent activ-

ity to execute 〈stmt〉 and then wait till all sub-activities cre-
ated within 〈stmt〉 have terminated (including transitively
spawned activities). There is an implicit finish statement
surrounding the main program in an X10 application.

Each dynamic instance of a finish statement can be viewed
as being bracketed between matching instances of start-finish
and end-finish instructions. Operationally, each instruction
executed in an X10 activity has a unique Immediately En-
closing Finish (IEF) dynamic statement instance. In the
X10 computation DAG introduced in [1], a dependence edge

finish async { // Outer async for clock allocation

delta.f = epsilon+1; iters.i = 0;

final clock C = clock.factory.clock();

for ( jj = 1 ; jj <= n ; jj++ ) {

final int j = jj;

async clocked(C){

while ( delta.f > epsilon ) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;

diff[j] = Math.abs(newA[j]-oldA[j]);

next; // Barrier

if (j == 1) {

delta.f = diff.sum(); iters.i++;

}

next; // Barrier

temp = newA; newA = oldA; oldA = temp;

} // while

} // async

} // for

} // finish async

System.out.println("Iterations: " + iters.i);

Figure 2: One-Dimensional Iterative Averaging in
X10 using Async, Finish and Clocks

is introduced from the last instruction of an activity to the
end-finish node corresponding to the activity’s IEF.

We use the pedagogical One-Dimensional Iterative Aver-
aging program from [3] as a running example in this paper.
The goal of this program is to perform iterative averaging
on a one-dimensional array, A[0:n+1], initialized with A[0:n]
= 0 and A[n+1] = n+1. A[0] = 0 and A[n+1] = n+1 are
fixed boundary conditions, and a 2-point stencil is used to
iteratively replace A[j] by the average of A[j-1] and A[j+1]
for 1 ≤ j ≤ n. The algorithm terminates when the sum of
element changes from one iteration to the next is less than
a given threshold. Figure 1 contains a simple X10 version of
this example using finish and async constructs. Note that
the async activities created in iterations of the j loop can all
run in parallel, and that the finish statement ensures that
all the async’s have terminated before execution proceeds to
the diff.sum() computation.

2.1.3 Clocks
While the code in Figure 1 is correct, the overhead of

repeatedly spawning and terminating activities in each it-
eration of the while loop and the potential accompanying
loss of locality can be a major performance bottleneck. In-
stead, it would be preferable to perform a ÒbarrierÓ-like
coordination within each iteration of the while loop, with-
out terminating the activities involved. This serves as one
of the motivations for X10’s clocks.

An X10 activity, Ai, can allocate a clock, C, and then
create a child activity Aj registered with C by using the
clocked async construct, “async clocked(C) <stmt>”. Aj

starts executing in the same clock phase as its parent, Ai.
Note that, unlike barriers in standard SPMD models, X10’s
clock construct permits the set of activities registered with
a clock to vary dynamically.

When multiple activities (such as Ai and Aj) registered
with the same clock need to perform a collective barrier
synchronization, they do so by executing a next; statement
which forces the activity to suspend until all clocks with



Figure 3: Capability lattice for phasers

which it is registered can advance. A clock can advance
only when all activities that are registered with it execute
a next; statement. X10 also permits an activity to drop a
clock, which implicitly unregisters it with C. A terminating
activity implicitly drops all clocks with which it is registered.

Figure 2 shows an X10 version of the Iterative Averaging
example that uses clocks. A key difference from the previous
version is that the while loop is now pushed inside the body
of each async, so activities are not created and terminated
in every iteration of the while loop.

2.2 Phasers
A phaser is a synchronization object that supports the

operations described below. At any point in time, an ac-
tivity can be registered in one of four modes with respect
to a phaser: signal-wait-next, signal-wait, signal-only, or
wait-only. The mode defines the capabilities of the activ-
ity with respect to the phaser. There is a natural lattice
ordering of the capabilities as shown in Figure 3.

The phaser operations that can be performed by an ac-
tivity, Ai, are defined as follows:

1. new: When Ai performs a new phaser(MODE) oper-
ation, it results in the creation of a new phaser, ph,
such that Ai is registered with ph according to MODE.
Phaser creation also initializes the phaser to its first
phase (phase 0).

2. phased async: async phased ( mode1(ph1), . . . )Aj

When activity Ai creates an async child activity Aj ,
it has the option of registering Aj with any subset
of phaser capabilities possessed by Ai. The following
constraints are imposed on the transmission of phasers:

(a) Capability rule: Ai can only transmit a capa-
bility on phaser ph to Aj if Ai itself has that ca-
pability or higher (Figure 3). The capability rule
is imposed to avoid race conditions on phaser op-
erations.

(b) IEF Scope rule: Ai can only transmit a capa-
bility on phaser ph to Aj if the creation (new)
instruction for ph has the same Immediately En-
closing Finish (c.f. Section 2.1) as the async state-
ment for Aj i.e., both ph and Aj were created in
the scope of the same dynamic finish statement.
The IEF rule is imposed to avoid a potential dead-
lock between finish operations and wait/next op-
erations on phasers.

An attempt to transmit a phaser that does not obey
the above two rules will result in a PhaserException
being thrown at runtime. We allow the following de-
fault syntax to indicate that Ai is transmitting all its

capabilities on all phasers that it is registered with to
Aj , “Ai : async phased Aj”.

3. drop: There are two ways in which Ai can drop a
registration that it holds with a phaser:

(a) Activity termination. When Ai terminates ex-
ecution, it performs an implicit next operation,
and then completely de-registers from each phaser
that it was registered with.

(b) End-finish. When Ai executes an end-finish in-
struction for finish statement F , it completely de-
registers from each phaser ph created by Ai in
the scope of F i.e., for which F is the IEF for
the creation statement of ph. Thus, the lifetimes
of phasers naturally follow the lexical scoping of
finish constructs.

4. next: The next operation has the effect of advancing
each phaser on which Ai is registered to its next phase,
thereby synchronizing all activities registered on the
same phaser. As indicated in Table 1, the semantics
of next depends on the registration mode that Ai has
with a specific phaser, ph.

5. next with single statement: The next 〈stmt〉 oper-
ation has the semantics of a next statement as defined
above, with the extension of executing stmt as a single
statement. This operation is only permitted if Ai is
registered in signal-wait-next mode on the phaser (see
Table 1). Further, we require all other activities regis-
tered with the phaser in signal-wait-next mode and ex-
ecuting a next with single statement must execute the
same static next 〈stmt〉 statements. These constraints
are imposed to ensure the integrity of the single state-
ment [16].

6. Phaser-specific signal: We permit Ai to perform a
phaser-specific signal operation, ph.signal(), for any
phaser ph on which it is registered with a signal ca-
pability. The operation performed depends on Ai’s
registration mode for ph. If the registration mode is
signal-wait-next or signal-wait, then ph.signal() ef-
fectively converts ph into a fuzzy barrier [5] for Ai

by allowing local work to be performed between the
ph.signal() and next operation.

7. signal: A signal operation performed by Ai is short-
hand for a ph.signal() operation performed on each
phaser ph with which Ai is registered with a signal

capability.

Figure 4 shows the X10 iterative averaging example from
Figure 2 rewritten to use phasers. There are two major dif-
ferences between the phaser version and X10-clock version.
First, the two next statements and their intervening condi-
tional statement that computes diff.sum() in the X10 ver-
sion have been combined into one next-with-single statement
in the phaser version. Not only does this reduce overhead,
but it also lets the runtime take the responsibility for deter-
mining which activity should execute the single statement
i.e., which activity should be the master (using the termi-
nology from Section 4). The second major difference is that
the programmer is not required to insert an additional async
at the outer level, as in the X10 version. X10 prohibits a



Operation Registration Mode Action
next signal-wait-next or signal-wait signal + wait (or just wait if previous operation was signal)

signal-only signal

wait-only wait

next 〈stmt〉 signal-wait-next signal + wait + single execution of stmt
(next w/ (or just wait + single execution of stmt if previous op was signal)

single stmt) signal-wait error
signal-only error
wait-only error

ph.signal() signal-wait-next or signal-wait signal on ph (or error if previous op by activity on ph was signal)
signal-only signal on ph

wait-only no-op
signal ∗ Perform ph.signal() on each phaser that activity has a signal

capability on

Table 1: Semantics of phaser operations as a function of registration modes

finish {

delta.f = epsilon+1; iters.i = 0;

phaser ph = new phaser();

for ( jj = 1 ; jj <= n ; jj++ ) {

final int j = jj;

async phased { // will be registered with ph

while ( delta.f > epsilon ) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;

diff[j] = Math.abs(newA[j]-oldA[j]);

next { // Single statement

delta.f = diff.sum(); iters.i++;

}

temp = newA; newA = oldA; oldA = temp;

} // while

} // async

} // for

} // finish

System.out.println("Iterations: " + iters.i);

Figure 4: One-Dimensional Iterative Averaging us-
ing Phasers for Collective Synchronization

clocked async from being created immediately in the scope
of a finish to avoid a potential deadlock with the end-finish
operation. Phasers instead avoid deadlock by enforcing the
IEF scoping rule on phasers, which ensures that all activ-
ities have de-registered from phaser ph after the end-finish
instruction.

Figure 5 shows an alternate version of the iterative av-
eraging example as an illustration of the use of phasers for
point-to-point synchronization instead of barrier synchro-
nization. For simplicity, this version uses a for loop with
a fixed number of averaging iterations in each async activ-
ity, so it will not produce the same output as the version in
Figure 4 which used a while loop to control termination. In
this example, each async is registered with three phasers —
one in signal-only mode and two in wait-only mode. Note
that phasers gracefully handle boundary conditions that of-
ten arise in point-to-point synchronization. For example, it
is not necessary to provide a signal operation to match the
wait on ph[j-1] in the async for the j = 1 iteration or on
ph[j+1] in the async for the j = n iteration.

finish {

phaser[] ph= new phaser[n+2]; // array of phasers

for ( jj = 1 ; jj <= n ; jj++ ) {

final int j = jj;

async phased(signalOnly(ph[j]),

waitOnly(ph[j-1]), waitOnly(ph[j+1]) ) {

for ( int iter=0 ; iter<NUM_ITERS ; iter++ ) {

newA[j] = (oldA[j-1]+oldA[j+1])/2.0f ;

signal; // Signals ph[j]

// Activity can do local work here

next; // Await signals from iters j-1 & j+1

temp = newA; newA = oldA; oldA = temp;

} // for

} // async

} // for

} // finish

Figure 5: Alternative version of One-Dimensional
Iterative Averaging using Phasers for Point-to-Point
Synchronization

3. PHASE-ORDERING AND DEADLOCK-
AVOIDANCE IN PHASERS

In this section we precisely define the guarantees phasers
provide for phase ordering and deadlock avoidance by build-
ing on the the notion of an X10 computation DAG intro-
duced in [1] for finish and async constructs. Due to space
limitations, these safety properties are established by infor-
mal proof sketches rather than formal proofs.

3.1 Phase ordering
We model execution constraints using a Dynamic Compu-

tation DAG (DCD). The DCD has a node for each instance
of an instruction executed during a computation. The edges
in the DCD encode constraints in the execution order. For
the computation to be correct, an instruction may not exe-
cute until all of its predecessors have executed. In addition
to the normal instruction nodes, two special accumulator
nodes are added to model phasers. The begin-accum and
end-accum nodes are used to enforce constraints between
phases so that instructions following a wait will not execute
until all signals for that phase have executed.



The different types of edges in the DCD are discussed
below.

1. continue: A continue edge represents sequential con-
trol flow. There is an edge from node A to B in the
DCD if the computation executes the instruction se-
quence A; B in the same activity.

2. async: An async edge is added from node A to B if
A is an async instruction and B is the first instruction
in the new activity.

3. finish: A finish edge is added from node A to B if
A is the last instruction of an activity and B is the
end-finish instruction for the IEF of that activity.

4. next: A next instruction decomposes into a signal

followed by a wait instruction, with edges added for
both instructions as described below.

5. signal: A signal edge is added from node A to B if
A is a signal instruction and B is the begin-accum

node for the phase of the phaser to which the signal is
sent.

6. wait: A wait edge is added from node A to B if A is
the end-accum node for the phase of the phaser and B
is a wait instruction performed on that phaser.

7. next with single: An edge is added from the signal

node to the begin-accum node as normal. The nodes
in the single section are sequenced with continue edges
starting from the begin-accum node and ending at the
end-accum node. Finally, edges are added from the
end-accum node to all wait nodes in the same manner
as for a standard wait edge.

We annotate each node in the DCD with the current signal
and wait phase for each phaser the activity is registered with.
For each phaser ph with which the activity is registered,
define the functions

• S(ph, i) : P×Insts → N∪{∞} is the number of signal
operations that have been performed on phaser ph by
the current activity (or ancestors) before the activity
executes instruction i

• W(ph, i) : P × Insts → N is the number of wait op-
erations that have been performed on phaser ph by
the current activity (or ancestors) before the activity
executes instruction i

Here, Insts is the set of all instruction instances, P is the
set of all phasers, and N is the set of non-negative integers.
The ancestors of an activity are defined recursively to be
the parent of an activity (i.e. the activity that executed the
async starting the current activity) and any ancestors of the
parent. The main activity has no ancestors.

In addition to the S and W values associated with each
node in the DCD, there are S and W values associated with
each phaser that are independent of any activity. The values
for the S and W functions are defined in Table 2.

Figure 6 shows an example of a DCD and the S andW val-
ues for two activities registered as signal-wait-next on the
phaser ph. The example illustrates several features includ-
ing a fuzzy barrier and next with single.

i0

S

Ab

S

i2 Single section

Ae

W W

SP:   N

WP: N

SP:   N

WP: N

i1

SP:   N+1

WP: N

SP:    N

WP:  N + 1

SP:   N+1

WP: N+1

SP:   N+1

WP: N

After SIG, SP++

After Ab

SP = ph.SP, WP = ++ph.WP

After SIG, SP++

After Ae

SP = ++ph.SP, WP = ph.WP - 1

After WAIT, WP++

i3

ph.SP:   N

ph.WP: N

SP:   N+1

WP: N+1

Figure 6: Example of a Dynamic Computation DAG
and its associated S (SP) and W (WP) values for
the phaser ph. The figure shows two signal nodes
(S), two wait nodes (W), a begin-accum (Ab), and
end-accum (Ae) node.

We can now precisely define the phase-ordering property,
which states how the signal phase and wait phase relate to
the execution order of instructions.

Phase-ordering property: Given two instruction in-
stances i1 and i2 in the DCD, if ∃ a phaser phs.t.S(ph, i1) <
W(ph, i2) then i1 ≺ i2 where i1 ≺ i2 is shorthand for“i1 pre-
cedes i2”.

We now establish that the definitions of S and W given in
Table 2 satisfy the phase-ordering property. Consider four
cases:

• The activity executing i1 is registered on phaser ph as
wait-only. Then S(ph, i1) = ∞, and the S(ph, i1) <
W(ph, i2) precondition will be false.

• The activity executing i1 is registered on phaser ph as
signal-only. If S(ph, i1) < W(ph, i2) then i2 is being
executed by an activity that has waited on the phaser
more times than the activity executing i1 has signaled.
It must be that i1 is executed before i2, because i2
could not be executed without at least one more signal
from the activity executing i1.

• The activity executing i1 is registered on phaser ph
as signal-wait. If S(ph, i1) < W(ph, i2) then the same
argument follows as in the signal case above. If i1
occurs in a split phase then we cannot establish any
order on the activities executing in the next wait phase
W(ph, i1) + 1 because we have signaled that they may
continue on to phase W(ph, i1) + 1. The inequality
will only hold for instructions two wait phases ahead,
W(ph, i1) + 2.

• i1 occurs in a next with single section. When i1 occurs
in the next with single section, it is executed with S



Registration Mode
signal-wait-next

Operation or signal-wait signal-only wait-only

create S= 0 S= 0 S= ∞
W= 0 W= 0 W= 0

async S= p.S S= p.S S= ∞
W= p.W W= p.W W= p.W

signal S= S+1 S= S+1 ERROR
W= W W= W ERROR

wait S= S ERROR S= ∞
W= W+1 ERROR W= W+1

begin-accum S= ph.S S = S S = S
W= ++ph.W W = W W = W

end-accum S= ++ph.S S = S S = S
W= ph.W − 1 W = W W = W

Table 2: Definition of the functions S and W. Here,
p.S is the value of S for the parent activity that
executed the async and ph.S is the private value of
the signal phase for the phaser ph.

and W values taken from the phaser itself. The ac-
tivity executing in the single block is executing in the
next wait phase, allowing it to bound the execution
of instructions occurring before the single block. It is
also executing in the current signal phase, allowing in-
structions occurring in the next wait phase to bound
its execution. Finally, its wait phase will be the same
as the signal phase of an instruction executed in the
fuzzy phase of the barrier. Thus there is no order en-
forced between instructions in the single section and
those executed in a fuzzy phase.

3.2 Deadlock avoidance
We use the same DCD to provide guarantees about the

deadlock-avoidance property of phasers. An instruction in-
stance in the DCD will not execute until all its predecessors
have executed. Logical deadlock can only occur if there is
a cycle in the DCD. This result does not address deadlock
due to limited physical resources [1].

Deadlock results when the instruction i1 has a predecessor
in the DCD, i2, such that there is a path from i1 to i2. In
other words, if there is a cycle in the DCD then there is a
deadlock situation because the instruction i1 cannot execute
until i2 executes, but i2 cannot execute until i1 executes.

Deadlock-avoidance property: Phasers introduce no
cycles into the DCD.

The semantics of phaser operations ensure that no cycle
will be created in the DCD. There are two cases to consider
where phasers might possibly introduce a cycle, but we will
show that the semantics of phasers prevent any such cycles
from being created.

First, a cycle could be created if an activity A1 is waiting
on a phaser that another activity A2 is signaling on, and
A2 is waiting on a phaser for a signal from A1. For this to
happen, it must be the case that A1 is waiting on a phaser
but has not yet signaled on all the phasers it is registered
with, preventing A2 from proceeding. We can see from Ta-
ble 1 that there is no way for an activity to wait on a phaser
without first signaling on all of its phasers. There is no ex-
plicit wait in the programming model. The only way for an

Data
Benchmark Size Description

BarrierBench From JGF thread v1.0 Section 1
(Data size is fixed in program)

LUFact C From JGF thread v1.0 Section 2
(single) (Size C is its largest size)
MolDyn B From JGF thread v1.0 Section 3
(single) (Size B is its largest size)
SOR C From JGF thread v1.0 Section 2

(pt-to-pt) (Size C is its largest size)
CG A From NAS Parallel Benchmarks

(single) (A is in between sizes S,W,A,B,C)
MG A From NAS Parallel Benchmarks

(single) (A is in between sizes S,W,A,B,C)
BarrierJacobi From JCIP code examples

(single) (2048×2048 matrix for 512 steps)

Table 3: Benchmark programs and their data sizes.
SOR used point-to-point synchronization in the Java
and phaser versions. All benchmarks labeled with
(single) used a single statement.

activity to perform a wait operation is by using next which
explicitly signals all of an activity’s phasers before waiting
on them. Thus all signals are performed before all waits and
no cycle will be introduced into the DCD.

The second case to consider is the interaction between
phasers and the finish construct. A cycle could be created
if an activity A1 is waiting at a finish node for a spawned
activity A2 to complete, and the activity A2 is waiting for
a signal from A1 on a shared phaser. The IEF Scope rule
described in Section 2 prevents this situation from occur-
ring. An activity can only transmit a phaser to another
activity with the same IEF, and upon reaching a finish node
the activity automatically drops all phasers created in the
scope of that finish. The above two rules ensure that no cy-
cle is created in the DCD between finish nodes and phaser
synchronization nodes.

A combination of static and dynamic properties is suffi-
cient to establish the deadlock-freedom and phase-ordering
safety properties. An example of a static property is that an
activity is prohibited from performing a wait operation on a
specific phaser. Examples of dynamic properties include the
Capability and IEF Scope rules described in Section 2, and
ensuring that an activity does not perform two consecutive
signals on a phaser on which it is registered in signal-wait
mode. The advantage of runtime checks is that an exception
is thrown at the point at which an error occurs, which helps
in diagnosing the source of the error (analogous to runtime
checks for null pointers and index-out-of-bounds).

4. EXPERIMENTAL RESULTS
In this section, we present experimental results using an

SMP implementation of phasers developed in the Habanero
multicore software research project at Rice University [6].
Sections 4.1, 4.2 and 4.3 contain the results obtained on an
8-CPU AMD Opteron 8347 SMP with 2 quad-core proces-
sor chips, a 64-CPU IBM Power5+ SMP with 32 dual-core
processor chips, and a 64-way Sun UltraSPARC T2 system
with 8 eight-core chips and 8 threads per core.



The results were obtained for the following versions of the
seven benchmarks shown in Table 3:

1. Sequential Java. This version was used as the base-
line for all speedup results except BarrierBench. For
the Java Grande Forum benchmarks, this version was
taken from version v2.0 of the JGF benchmark re-
lease [9] with one exception — the sequential version
of SOR was obtained by serializing the parallel version
in threadv1.0 because the v2.0 version uses a different
algorithm from the threadv1.0 version. For NAS par-
allel benchmarks, this version was obtained by using
the “serial” option, and for BarrierJacobi, this version
was obtained by removing all parallel constructs from
the JUC version [4].

2. Threaded Java. For the Java Grande benchmarks,
this version was taken from version threadv1.0 of the
JGF benchmark release [9]; for NAS parallel bench-
marks, this version was obtained by using the paral-
lel option, and for BarrierJacobi; this version was ob-
tained from the JUC version [4].

3. X10 with clocks. This version represents the per-
formance that is obtained from an X10 version im-
plemented with standard clocks. As in [13] we use
a “lightweight” X10 version with regular Java arrays
to avoid the large overheads incurred on X10 arrays
in the current X10 implementation. However, all the
other characteristics of X10 (e.g., non-null used as the
default type declaration and forbidden use of non-final
static fields) are preserved faithfully in all the X10 ver-
sions.

4. X10 with tournament barriers. This version re-
places clock operations by tournament barriers [9] ev-
erywhere in the X10 program. Tournament barriers
are not a standard construct in Java, but a hand im-
plementation of a static synchronization pattern avail-
able with the JGF benchmarks – they do not provide
any of the safety and dynamic features of phasers.

5. X10 with phasers (unfixed master) This version
measures the performance of the SMP phaser imple-
mentation with the unfixed master option which en-
ables the runtime to change the “master” activity for
each phaser during any phase transition, thereby pro-
viding an opportunity for adapting to load imbalances.

6. X10 with phasers (fixed master) This version mea-
sures the performance of the SMP phaser implemen-
tation with the fixed master option which keeps the
“master” activity fixed for each phaser i.e., the master
can only be changed when the current master activity
drops its registration with phj .

For all runs, the main program was extended with a three-
iteration loop within the same Java process, and the best of
the three times was reported in each case. This configuration
was deliberately chosen to reduce/eliminate the impact of
JIT compilation time in the performance comparisons.

In an effort to reduce the number of variables that differ
between the two platforms, we used the same X10 version
in both cases (version 1.5 [15]) modified to optionally use
tournament barriers or phasers in lieu of clocks. All X10 runs
were performed with the following common X10 options:

-BAD_PLACE_RUNTIME_CHECK=false

-NUMBER_OF_LOCAL_PLACES=1

-PRELOAD_CLASSES=true -BIND_THREADS=true

In addition, -INIT_THREADS_PER_PLACE was always set to
the number of CPUs for which the measurement was being
performed.

4.1 8-way Opteron SMP
All results in this subsection were obtained on a Quad-

Core AMD Opteron Processor 8347 1.9 GHz SMP server
with 4GB main memory running Fedora Linux release 8.
The execution environment used for all Java runs is the Iced-
Tea Runtime Environment (build 1.7.0-b21) with IcedTea
64-Bit Server VM (build 1.7.0-b21, mixed mode) and the
“-Xms1000M -Xmx1000M” options. In addition, Intel’s icc
OpenMP compiler was used to measure the performance of
the OpenMP version of BarrierBench.

Figure 7 contains two charts that use the BarrierBench
microbenchmark introduced in [14] to calibrate the perfor-
mance of the different versions of barriers and phasers listed
at the start of this section. No results are provided for the
serial or 1-CPU case because the only “useful” work done
by this microbenchmark is to coordinate synchronization
among multiple threads. As shown in the top chart, the bar-
rier overhead associated with phasers is significantly lower
than that of X10’s clocks (up to 30.7×), Java’s notify-wait as
implemented in the SimpleBarrier class in [9] (up to 28.2×),
and JUC’s cyclic barrier (up to 27.7×). In addition, the
“fixed master” mode is a better choice than “unfixed mas-
ter”, since there is little load imbalance among the threads
in these benchmarks. Finally, even though the gap with the
TournamentBarrier version (as implemented in [9]) is small,
phasers with “fixed master” was still 1.4× faster than Tour-
namentBarrier for 8 threads.

The second chart in Figure 7 compares the performance of
phasers with “fixed master” with that of OpenMP barriers
using the Intel icc implementation, and shows that OpenMP
was faster with 2, 4, and 8 threads and phasers were faster
in the remaining configurations. The difference in perfor-
mance is fairly small and it is nice to see that phasers can be
competitive with the OpenMP native code implementation.
Our initial experiments used gcc’s OpenMP implementation
and found that phasers were up to 30.4× faster. The large
difference in performance underscores the importance of us-
ing a proprietary vendor implementation of OpenMP as the
baseline for experimental results.

Figure 8 shows the performance comparison for the six
other benchmarks listed in Table 3 in the form of speedup
relative to the serial Java version. We see that the phaser
runtime (with or without a fixed master) delivers the best
average speedup, and is also remarkable in its consistency
(unlike the TournamentBarrier which gave good speedups in
many cases, but led to significant degradation for MG). It
is worth noting that we obtained larger speedups (closer to
8 for 8 CPUs) when running these benchmarks with smaller
data sizes than those used for Figure 8.

4.2 64-way Power5+ SMP
The results in this subsection were obtained on a p595+

64-way Power5+ 2.3GHz SMP server with 512GB main mem-
ory running AIX5.3 TL5. All runs were performed with
SMT turned off, and with a large page size of 256GB. The
execution environment used for all Java runs was IBM’s J9



2 3 4 5 6 7 8 

X10 w/ clocks 10.27 19.13 26.49 37.69 46.40 53.16 58.68 

Java notify&wait 7.92 15.16 19.91 30.15 33.37 39.61 53.78 
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Figure 7: BarrierBench microbenchmark results on 8-CPU AMD Opteron 8347 SMP
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Figure 8: Speedup relative to serial Java version on 8-CPU AMD Opteron 8347 SMP



2 4 8 16 32 64 

X10 w/ clocks 19.89 63.37 145.65 315.02 667.60 1506.80 

Java notify&wait 8.27 43.42 91.37 226.24 473.63 984.00 

Java w/ Cyclic Barrier 8.49 26.22 64.44 142.04 310.78 676.40 

Java w/ Tournament Barrier 0.61 1.35 4.63 13.75 27.39 53.78 

X10 w/ phasers (unfixed master) 1.45 2.03 2.88 4.94 8.60 15.32 

X10 w/ phasers (fixed) 1.04 1.69 2.30 3.84 6.88 11.21 
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Figure 9: BarrierBench microbenchmark results on 64-CPU Power5+ SMP
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Figure 10: Speedup relative to serial Java version on 64-CPU Power5+ SMP



VM (build 2.4, J2RE 1.6.0) with the following options, “-
Xjit:count=0,optLevel=veryHot, ignoreIEEE -Xms1000M -
Xmx1000M”. IBM’s xlc OpenMP compiler (XL C/C++ En-
terprise Edition V8.0 for AIX) was used to measure the per-
formance of the OpenMP version of BarrierBench.

As shown in the top chart of Figure 9, the barrier over-
head associated with phasers is significantly lower than that
of X10’s clocks (up to 134.5×), Java’s notify-wait (up to
87.8×), and JUC’s cyclic barrier (up to 60.4×). In addi-
tion, the gap with the TournamentBarrier version (as im-
plemented in [9]) was 2× with 8 threads and 4.8× with 64
threads.

The second chart in Figure 9 compares the performance of
phasers with “fixed master” with that of OpenMP barriers
using the xlc implementation. It shows that the phaser im-
plementation is still faster than OpenMP for 2, 4, 8, 16 and
32 threads, while a cross-over was observed at 64 threads.

Moving to Figure 10, we see that the phaser runtime (with
or without a fixed master) obtains significantly better av-
erage speedup (45.7×) compared to parallel Java (22.0×)
or current X10 (14.3×). The TournamentBarrier version
yielded a speedup of 39.1×, which is closer to but still less
than the speedup obtained by phasers. However, it’s possi-
ble that some of the lessons learned from the Tournament-
Barrier implementation will become relevant to implemen-
tation of phasers on larger-scale SMPs in the future.

4.3 64-way UltraSPARC T2 SMP
All results in this subsection were obtained on a 64-way (8-

core × 8 threads/core) 1.2 GHz UltraSPARC T2 (Niagara 2)
with 32 GB main memory running Solaris 10. The execu-
tion environment used for all Java runs is the Java(TM) 2
Runtime Environment (build 1.5.0 12-b04) with Java Hot-
Spot(TM) Server VM (build 1.5.0 12-b04, mixed mode) and
the “-Xms1000M -Xmx1000M” options. Sun’s C compiler
5.9 was used for the OpenMP version of BarrierBench.

The results for the barrier micro-benchmark are shown in
Figure 11. The results for the standard benchmark suite
are shown in Figure 12. Figure 11 shows the barrier over-
head of phasers is significantly lower than X10’s clocks (up to
85.36×), Java’s notify-wait (up to 81.89×) and cyclic barrier
(up to 75.76×). Another observable point is that Tourna-
mentBarrier shows better performance than phasers on the
T2 processor, suggesting that it may have an advantage on
processors with simultaneous multithreading.

Figure 12 also shows that the performance of phasers
is better than others and almost equal to that of Tourna-
mentBarrier. Though the overhead of TournamentBarrier is
smaller than that of phasers, the single statements in phasers
reduce the number of barriers for LUFact, MolDyn, CG, MG
and BarrierJacobi. Also, phasers provide efficient support
for point-to-point synchronization in SOR.

5. RELATED WORK
There is an extensive literature on barrier and one-way

(point-to-point) synchronization. In this section, we focus
on key comparable work. Like barriers, condition variables,
and semaphores, phasers are used for coordinating the flow
and execution of threads and processes; this is in contrast to
mutual exclusion (locks) and transactional memories, which
are more typically oriented towards preserving the consis-
tency of data in (potentially) concurrent environments.

The JUC CyclicBarrier class [4] supports periodic bar-
rier synchronization among a set of threads. Unlike Phasers,
however, CyclicBarriers do not support the dynamic ad-
dition or removal of threads; nor do they support one-way
synchronization or split-phase operation.

OpenMP provides directives for barrier synchronization
and single-thread execution regions [10]. The single and
master directives are used to mark regions that should only
be executed by a single thread. The main difference be-
tween the two is that the single region may be executed by
any one thread in a thread group, but the master region
is always executed by the master thread. The single con-
struct presented in this paper serves a purpose similar to
the OpenMP single directive, but we require that the single
section be executed only after all threads have reached the
single statement. The master directive in OpenMP is used
to force only the master thread to execute a block of code
in a parallel region, and there are no barriers on entry to or
exit from the master region. We do not differentiate between
single and master regions. Our implementation of phasers
allows the master thread (i.e. the thread executing the sin-
gle statement) to either be fixed for the life of the phaser
or to change at each encounter of a single section. Also, in
OpenMP, the master and single directives cannot be directly
nested under work-sharing constructs (e.g. parallel for), but
no such restriction exists for phasers. Perhaps the most im-
portant difference between OpenMP single directive and the
phaser single statements is that threads can be dynamically
added to the group of threads participating in a phaser with
a single statement, but the number of threads participating
in an OpenMP single section is fixed on entry to a parallel
region.

Titanium is a dialect of Java for SPMD parallelism [8].
The language has a notion of single values which are the
values used to ensure coherence of synchronization points.
The designers want to statically ensure that the sequence of
global synchronizations is identical across all processors so
they make a conservative check to ensure that the statements
with global effects is coherent across all processors. They
define specific rules for constructing expressions that may
have global effects to ensure that the coherence condition
can be checked statically. Our phasers do not require all
activities to reach the same synchronization point except in
the case of next-with-single barriers. The runtime performs
a dynamic check that all activities execute the same next-
with-single, rather than the conservative static check used
in Titanium.

Gupta’s work on fuzzy barriers [5] introduces the con-
cept of overlapping synchronization with “real” work in a
model that is now widely known as a split-phase barrier. In
this paradigm, a region of instructions is targeted for exe-
cution between the point when a processor enters the bar-
rier and when is waits for all other processors to also enter.
When processors enter the barrier synchronization region,
they signal to the other processors that they are ready to
synchronize. They may continue to execute any instruc-
tions in the synchronization region; but before a processor
leaves the synchronization region, it must receive a notifica-
tion from all processors indicating that they have entered the
synchronization region. Unlike Gupta’s work, in which com-
piler analysis uses low-level code motion to select a region
of code for execution after signaling the barrier, the signal
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X10 w/ clocks 33.26 85.92 192.86 413.43 858.60 1777.60 
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Figure 11: BarrierBench microbenchmark results on 64-way Sun UltraSPARC T2
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Figure 12: Speedup relative to serial Java version on 64-way Sun UltraSPARC T2



and next operations in Phasers allow explicit programmer
control over when code is executed.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced phasers, a new coordination

construct that unifies collective and point-to-point synchro-
nizations. We established two safety properties for phasers:
deadlock-freedom and phase-ordering. Performance results
obtained from a portable implementation of phasers on two
different SMP platforms demonstrate that they can deliver
superior performance to existing barrier implementations, in
addition to the productivity benefits that result from their
generality and safety properties. Opportunities for future
research related to phasers include extensions for reduction
and collective operations, implementations on heterogeneous
multicore processors (such as the Cell) and on distributed-
memory clusters, and new compiler analyses and optimiza-
tions for phaser operations. We also believe that the ability
for a thread to mark completion of multiple phases via a
single signal statement could further reduce runtime over-
heads for certain workload scenarios.
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