COMP 322: Principles of Parallel Programming

Vivek Sarkar
Department of Computer Science
Rice University
vsarkar@rice.edu
Course Information

• Meeting time: TTh 10:50am - 12:05pm
• Meeting place: Hertzstein Hall 119
• Instructor: Vivek Sarkar (vsarkar@rice.edu)
• Teaching Assistant: Sanjay Chatterjee (cs20@rice.edu)
• Software Assistant: Vincent Cave (vincent.cave@rice.edu)
• Web site: http://www.cs.rice.edu/~vsarkar/comp322
• Prerequisites: COMP 314 or equivalent
• Text: Lin & Snyder, Principles of Parallel Programming
• Course Requirements:
 — Midterm Exam 20%
 — Final Exam 20%
 —Homeworks 10% (short written assignments --- total of 2)
 —Projects 50% (larger programming assignments --- total of 2)
Scope of Course

- Foundations of parallel algorithms
- Foundations of parallel programming
 - Task creation and termination
 - Mutual exclusion and isolation
 - Collective and point-to-point synchronization
 - Data parallelism
 - Task and data distribution
- Habanero-Java (HJ) language, developed in the Habanero Multicore Software Research project at Rice
- Abstract executable performance model for HJ programs
- Hands-on programming projects
 - Abstract metrics
 - Real parallel systems (8-core Intel, 64-node Sun Niagara, Nvidia GPGPU’s with 100+ cores)
- Beyond HJ: introduction to parallel programming in the real world e.g., Java Concurrency, .Net Task Parallel Library & PLINQ, Intel nodeing Building Blocks, CUDA
Acknowledgments for Today’s Lecture

• Keynote talk on “Parallel Thinking” by Prof. Guy Blelloch, CMU, PPoPP conference, February 2009
 —http://ppopp09.rice.edu/PPoPP09-Blelloch.pdf

• CS 194 course on “Parallel Programming for Multicore” taught by Prof. Kathy Yelick, UC Berkeley, Fall 2007
 —http://www.cs.berkeley.edu/~yelick/cs194f07/

• Cilk lectures by Profs. Charles Leiserson and Bradley Kuszmaul, MIT, July 2006
 —http://supertech.csail.mit.edu/cilk/

• Course text: Lin & Snyder, Principles of Parallel Programming
What is Parallel Computing?

• **Parallel computing:** using multiple processors in parallel to solve problems more quickly than with a single processor, or with less energy

• Examples of parallel machines (see pages 4-5 of textbook)
 - A computer **Cluster** that contains multiple PCs with local memories combined together with a high speed network
 - A **Symmetric Multi-Processor (SMP)** that contains multiple processor chips connected to a single shared memory system
 - A **Chip Multi-Processor (CMP)** contains multiple processors (called cores) on a single chip, also called **Multi-Core Computers**

• The main motivation for parallel execution historically came from the desire for improved performance
 - Computation is the third pillar of scientific endeavor, in addition to Theory and Experimentation

• But parallel execution has also now become a ubiquitous necessity due to power constraints, as we will see …
Why Parallel Computing Now?

• Researchers have been using parallel computing for decades:
 — Mostly used in computational science and engineering
 — Problems too large to solve on one computer; use 100s or 1000s

• There have been higher level courses in parallel computing (COMP 422, COMP 522) at Rice for several years

• Many companies in the 80s/90s “bet” on parallel computing and failed
 — Sequential computers got faster too quickly for there to be a large market for specialized parallel computers

• Why is Rice adding a 300-level undergraduate course on parallel programming now?
 — Because the entire computing industry has bet on parallelism
 — There is a desperate need for all computer scientists and practitioners to be aware of parallelism
Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra
Microprocessor Transistors and Clock Rate

Growth in transistors per chip

Increase in clock rate

Old view: why bother with parallel programming for performance? Just wait a year or two...
Limit #1: Power density

Can soon put more transistors on a chip than can afford to turn on.

-- Patterson '07

Source: Patrick Gelsinger, Intel®
Parallelism Saves Power

• Exploit explicit parallelism for reducing power

 \[
 \text{Power} = \frac{C \times V^2 \times F}{4} \quad \text{Performance} = (Cores \times F) \times 1
 \]

 Capacitance Voltage Frequency

• Using additional cores

 - Increase density (= more transistors = more capacitance)
 - Can increase cores (2x) and performance (2x)
 - Or increase cores (2x), but decrease frequency & voltage (1/2): same performance at \(\frac{1}{4}\) the power

• Additional benefits

 - Small/simple cores \(\rightarrow\) more predictable performance
Limit #2: Speed of Light (Fundamental)

Consider the 1 Tflop/s sequential machine:

- Data must travel some distance, \(r \), to get from memory to CPU.

- To get 1 data element per cycle, this means \(10^{12} \) times per second at the speed of light, \(c = 3 \times 10^8 \) m/s. Thus \(r < \frac{c}{10^{12}} = 0.3 \) mm.

Now put 1 Tbyte of storage in a 0.3 mm \(\times \) 0.3 mm area:

- Each bit occupies about 1 square Angstrom, or the size of a small atom.

No choice but parallelism.
Revolution is Happening Now

- Chip density is continuing increase ~2x every 2 years
 - Clock speed is not
 - Number of processor cores may double instead

- There is little or no hidden parallelism (ILP) to be found

- Parallelism must be exposed to and managed by software

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)
Multicore in Products

- “We are dedicating all of our future product development to multicore designs. ... This is a sea change in computing”

 Paul Otellini, President, Intel (2005)

- All microprocessor companies switch to MP (2X CPUs / 2 yrs)

<table>
<thead>
<tr>
<th>Manufacturer/Year</th>
<th>AMD/’05</th>
<th>Intel/’06</th>
<th>IBM/’04</th>
<th>Sun/’07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processors/chip</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>nodes/Processor</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>nodes/chip</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>128</td>
</tr>
</tbody>
</table>

- The STI Cell processor (PS3) has 8 cores
- The latest NVidia Graphics Processing Unit (GPU) has 128 cores
- Intel has demonstrated an 80-core research chip
Implications

• These arguments are no long theoretical

• All major processor vendors are producing multicore chips
 — Every machine will soon be a parallel machine
 — All programmers will be parallel programmers??

• Some may eventually be hidden in libraries, compilers, and high level languages
 — But a lot of work is needed to get there

• Big open questions:
 — What will be the killer apps for multicore machines?
 — How should the chips be designed?
 — How will they be programmed?
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

Computation graph abstraction:
- Node = arbitrary sequential computation
- Edge = dependence (successor node can only execute after predecessor node has completed)
- Directed acyclic graph (dag)

Processor abstraction:
- \(P \) identical processors
- Each processor executes one node at a time
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]

\[T_\infty = \text{span}^* \]

Also called critical-path length or computational depth.
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]

\[T_{\infty} = \text{span} \]

LOWER BOUNDS

\[T_P \geq T_1 / P \]

\[T_P \geq T_{\infty} \]
Speedup

Definition: \(T_1 / T_P = \text{speedup on } P \text{ processors.} \)

If \(T_1 / T_P = \Theta(P) \), we have **linear speedup**;
= \(P \), we have **perfect linear speedup**;
> \(P \), we have **superlinear speedup**.

Superlinear speedup is not possible in this model because of the lower bound \(T_P \geq T_1 / P \), but superlinear speedup can be possible in practice (as we will see later in the course).
Parallelism ("Ideal Speedup")

T_P depends on the schedule of computation graph nodes on the processors

\Rightarrow Two different schedules can yield different values of T_P for the same P

For convenience, define parallelism (or ideal speedup) as the ratio T_1/T_∞.

Parallelism is independent of P, and only depends on the computation graph.

Also define parallel slackness as the ratio, $(T_1/T_\infty)/P$.

Example 1: Array Sum (sequential version)

- Problem: compute the sum of the elements $X[0] \ldots X[n-1]$ of array X

- Sequential algorithm
 - $\text{sum} = 0; \; \text{for} \; (i=0 \; \text{to} \; n) \; \text{sum} += X[i];$

- Computation graph

 - Work = $O(n)$, Span = $O(n)$, Parallelism = $O(1)$

- How can we design an algorithm (computation graph) with more parallelism?
Example 1: Array Sum
(parallel iterative version)

- Parallel algorithm (iterative version, assumes n is a power of 2)

  ```java
  for ( step = 1; step < n ; step *= 2 ) {
    final int size = n / (2*step);
    final int step_f = step;
   forall ( point [i] : [0:size-1] ) X[2*i*step_f] += X[(2*i+1)*step_f];
  }
  sum = X[0];
  ```

- HJ forall construct executes all iterations in parallel
 - forall body can only access outer local variables that are final

- This algorithm overwrites X (make a copy if X is needed later)

- Work = O(n), Span = O(log n), Parallelism = O(n / (log n))

- NOTE: this and the next parallel algorithm can be used for any associative operation on array elements (need not be commutative) e.g., multiplication of an array of matrices
Example 1: Array Sum (parallel iterative version)

- Computation graph for $n = 8$

 ![Computation graph](image)

 - Extra dependence edges due to `forall` construct

- Work = $O(n)$, Span = $O(\log n)$, Parallelism = $O(\frac{n}{\log n})$
Example 1: Array Sum (parallel recursive version)

- Parallel algorithm (recursive version, assumes n is a power of 2)
  ```java
  sum = computeSum(X, 0, n-1);
  int computeSum(final int[] X, final int lo, final int hi) {
    if ( lo > hi ) return 0;
    else if ( lo == hi ) return X[lo];
    else {
      final int mid = (lo+hi)/2;
      final future<int> sum1 =
        async<int> { return computeSum(X, lo, mid); }
      final future<int> sum2 =
        async<int> { return computeSum(X, mid+1, hi); }
      return sum1.force() + sum2.force();
    }
  } // computeSum
  ```

- HJ "async future" executes child expression in parallel with parent — force() causes the parent to wait for the child.
Example 1: Array Sum
(parallel recursive version)

- **Computation graph for n = 8**

 ![Computation graph for n = 8](image)

- **Work = O(n), Span = O(log n), Parallelism = O(n / (log n))**

- **No extra dependences as in forall case**
Summary of Today’s Lecture

• Introduction to Parallel Computing
• Algorithmic Complexity Measures
• Reading list for next lecture
 — Chapter 1, Introduction
 — Especially, Parallel Prefix Sum on page 13
• Reading list for following lecture (Chapter 2 will be covered later in the semester)
 — Chapter 3, Reasoning about Performance