COMP 515: Advanced Compilation for
Vector and Parallel Processors

Vivek Sarkar

Department of Computer Science
Rice University
vsarkar@rice.edu

N COMP 515, Lecture 24 21 April 2009

Review: How do set-associative caches
work?

Address of word to be accessed

NN Set Index | Block offset

* b 2d cache blocks per set
2b words 2b words
Set #0 | Data | . e o | Data |
|Valid| | Tag | |Valid| | Tag |
.
L]
2b words 2b words
Set #
25_1 | . Data | | e e o | Data | |
Valid N Valid
[e] [[N

s
2 : 1 Multiplexer

| I Word accessed from cache

Acknowledgments

* Slides from previous offerings of COMP 515 by Prof. Ken
Kennedy

—http://www.cs.rice.edu/~ken/comp515/

Compiling Array Assignments

Allen and Kennedy, Chapter 13

Fortran 90

* Fortran 90: successor to Fortran 77

* Slow to gain acceptance:

—Need better/smarter compiler techniques to achieve same level of
performance as Fortran 77 compilers

* This chapter focuses on a single new feature - the array
assignment statement: A[1:100] = 2.0

—Intended to provide direct mechanism to specify parallel/vector
execution

* This statement must be implemented for the specific available
hardware. In an uniprocessor, the statement must be
converted to a scalar loop: Scalarization

Fortran 90

* Range of a vector operation in Fortran 90 denoted by a triplet:
<lower bound: upper bound: increment >

A[1:100:2] = B[2:51] + 3.0

* Semantics of Fortran 90 require that for vector statements, all
inputs to the statement are fetched before any results are
stored

Outline

Simple scalarization
Safe scalarization

Techniques to improve on safe scalarization
—Loop reversal

—Input prefetching

—Loop splitting

Multidimensional scalarization
A framework for analyzing multidimensional scalarization

Scalarization

* Replace each array assignment by a corresponding DO loop
* Is it really that easy?

* Two key issues:
— Wish to avoid generating large array temporaries
— Wish to optimize loops to exhibit good memory hierarchy
— performance

Simple Scalarization

Consider the vector statement:
A(1:200) = 2.0 * A(1:200)
A scalar implementation:
s, DO I =1, 200
S, A(I) = 2.0 * A(I)
ENDDO

However, some statements cause problems:
A(2:201) = 2.0 * A(1:200)
If we naively scalarize, we get incorrect code:
DO i = 1, 200
A(i+l) = 2.0 * A(i)
ENDDO

Scalarization Faults

* Why do scalarization faults occur?

* Vector operation semantics: All values from the RHS of the
assignment should be fetched before storing into the result

* If a scalar operation stores into a location fetched by a later
operation, we get a scalarization fault

* Principle 13.1: A vector assignment generates a scalarization
fault if and only if the scalarized loop carries a true
dependence.

* These dependences are known as scalarization dependences

* To preserve correctness, compiler should never produce a
scalarization dependence

Safe Scalarization

* Naive algorithm for safe scalarization: Use temporary storage to make
sure scalarization dependences are not created

* Consider:
A(2:201) = 2.0 * A(1:200)
* can be split up into:
T(1:200) = 2.0 * A(1:200)
A(2:201) = T(1:200)

* Then scalarize using SimpleScalarize
DO I =1, 200
T(I) = 2.0 * A(I)
ENDDO
DO I = 2, 201
A(I) = T(I-1)
ENDDO

Safe Scalarization

* Procedure SafeScalarize implements this method of
scalarization

* Good news:
— Scalarization always possible by using temporaries

* Bad News:
— Substantial increase in memory use due to temporaries
— More memory operations per array element
— Akin to overheads incurred in implementing functional languages

* We shall look at a number of techniques to reduce the effects
of these disadvantages

Loop Reversal

A(2:256) = A(1:255) + 1.0

* A scalarization approach using loop reversal that avoids the
need for a temporary:

DO I = 256, 2, -1
A(I) = A(I-1) + 1.0
ENDDO

Loop Reversal

When can we use loop reversal?
— Loop reversal maps true dependences into antidependences
— But may also map antidependences into dependences

A(2:257) = (A(1:256) + A(3:258)) / 2.0
After scalarization:
DO I = 2, 257
A(I) = (A(I-1) + A(I+1l)) / 2.0
ENDDO

Loop Reversal gets us:
DO I = 257, 2
A(I) = (A(I-1) + A(I+l)) / 2.0
ENDDO
Thus, cannot use loop reversal in presence of antidependences

Goal: ensure that scalarized loop has no loop-carried true dependences

Input Prefetching

A(2:257) = (A(1:256) + A(3:258)) / 2.0
* Causes a scalarization fault when naively scalarized to:
DO I = 2, 257
A(I) = (A(I-1) + A(I+l)) / 2.0
ENDDO

* Problem: Stores into first element of the LHS in the previous
iteration

* Input prefetching: Use scalar temporaries to store elements of
input and output arrays

Input Prefetching

* A first-cut at using temporaries:
DO I = 2, 257
Tl = A(I-1)
T2 = (T1 + A(I+1)) / 2.0

A(I) = T2
ENDDO
* T1 holds element of input array, T2 holds element of output

array

* But this faces the same problem. Can correct by moving
assignment to T1 into previous iteration...

Input Prefetching

T1 = A(1)
DO I = 2, 256
T2 = (T1 + A(I+1)) / 2.0
T1 = A(I)
A(I) = T2
ENDDO
T2 = (Tl + A(257)) / 2.0
A(I) = T2

* Note: We are using scalar replacement, but the motivation for
doing so is different than in Chapter 8

Input Prefetching

* Already seen in Chapter 8, * Can be changed to:
we need as many T1 = A(1)
temporaries as the T2 = A(2)
dependence threshold + 1. DO I = 2, 255

+ Example: T3 = T1 + 1.0

T1 = T2
DO I = 2, 257 T2 = A(I+2)
A(I+2) = A(I) + 1.0 A(I+2) = T3
ENDDO
ENDDO
T3 = T1 + 1.0
T1 = T2

A(258) = T3
T3 =T1 + 1.0
A(259) = T3

Input Prefetching

* Can also unroll the loop and eliminate register to register copies

* Principle 13.2: Any scalarization dependence with a threshold
known at compile time can be corrected by input prefetching.

Input Prefetching

* Sometimes, even when a scalarization dependence does not have a
constant threshold, input prefetching can be used effectively

A(1:N) = A(1:N) / A(1)
* which can be naively scalarized as:
DO i =1, N
A(i) = A(1) / A1)
ENDDO
* true dependence from first iteration to every other iteration
* antidependence from first iteration to itself
* Via input prefetching, we get:
tAl = A(1)
DO i =1, N
A(i) = A(i) / tal
ENDDO

Multidimensional Scalarization

* Vector statements in Fortran 90 in more than 1 dimension:
A(1:100, 1:100) = B(1:100, 1, 1:100)
* corresponds to:
DO J = 1, 100
A(1:100, J) = B(1:100, 1, J)
ENDDO
* Scalarization in multiple dimensions:
A(1:100, 1:100) = 2.0 * A(1:100, 1:100)
* Obvious Strategy: convert each vector iterator into a loop:
DO J =1, 100, 1
DO I =1, 100
A(I,J) = 2.0 * A(I,J)
ENDDO
ENDDO

Multidimensional Scalarization

* What should the order of the loops be after scalarization?
—Familiar question: We dealt with this issue in Loop Selection
/Interchange in Chapter 5

* Profitability of a particular configuration depends on target
architecture

—For simplicity, we shall assume shorter strides through memory are
better

— Thus, optimal choice for innermost loop is the leftmost vector
iterator

Multidimensional Scalarization

* Extending previous results to multiple dimensions:

— Each vector iterator is scalarized separ'a'reIK, starting from the leftmost
vector iterator in the innermost loop and the rest of the iterators from
left to right

* Once the ordering is available:

1. Test to see if the loop carries a scalarization dependence. If not, then
proceed to the next loop.

2. If the scalarization loop carries only true dependences, reverse the loop
and proceed to the next loop.

3. Apply input prefetching, with loop splitting where appropriate, to eliminate
dependences to which it applies. Observe, however, that in outer loops,
prefetching is done for a single submatrix (the remaining dimensions).

4. Otherwise, the loop carries a scalarization fault that requires temporary
storage. Generate a scalarization that utilizes temporary storage and
terminate the scalarization test for this loop, since temporary storage will
eliminate all scalarization faults.

Outer Loop Prefetching

A(1:N, 1:N) =
(A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0
* If we try to scalarize this (keepin? the column iterator in the
innermost loop) we get a true scalarization dependence (<, >)

involving the second input and an antidependence (>, <)
involving the first input

* Cannot use loop reversal...

Outer Loop Prefetching

A(1:N, 1:N) =
(A(0O:N-1, 2:N+1) + A(2:N+1, O:N-1)) / 2.0

* We can use input prefetching on the outer loop. The
temporaries will be arrays:

TO(1:N) = A(2:N+1, O0)
DO j = 1, N-1
T1(1:N)=(A(0:N-1, j+1) + TO(1l:N)) / 2.0
TO(1:N) = A(2:N+1, 3j)
A(1:N, j) = T1(1:N)
ENDDO
T1(1:N) = (A(0:N-1, N) + TO(1l:N)) / 2.0
A(1:N, N) = T1(1:N)
* Total temporary space required = 2 rows of original matrix
* Better than storage required for copy of the result matrix

Loop Interchange

* Sometimes, there is a tradeoff between scalarization and
optimal memory hierarchy usage

A(2:100, 3:101) = A(3:101, 1:201:2)
* If we scalarize this using the prescribed order:
DO I =3, 101
DO 100 g = 2, 100
A(J,I) = A(J+1,2*I-5)
ENDDO
ENDDO
* Dependences (<, > (T=3,4)and (>, > (I =6, 7)
* Cannot use loop reversal, input prefetching
* Can use temporaries

Loop Interchange

* However, we can use loop interchange to get:

DO J = 2, 100
DO I = 3, 101
A(J,I) = A(J+1,2*I-5)
ENDDO
ENDDO

* Not optimal memory hierarchy usage, but reduction of
temporary storage

* Loop interchange is useful to reduce size of temporaries
* It can also eliminate scalarization dependences

General Multidimensional Scalarization

* Goal: To vectorize a single statement which has m vector

dimensions
—Given an ideal order of scalarization (I, |5, ..., |.)
—(d,. d,, ..., d,) be direction vectors for all true and

antidependences of the statement upon itself

— The scalarization matrix is a n x m matrix of these direction
vectors

* For instance:

A(1:N, 1:N, 1:N) = A(0O:N-1, 1:N, 2:N+1) +
A(1:N, 2:N+1, O0:N-1)

General Multidimensional Scalarization

* If we examine any column of the direction matrix, we can
immediately see if the corresponding loop can be safely
scalarized as the outermost loop of the nest:

—If all entries of the column are = or >, it can be safely scalarized
as the outermost loop without loop reversal.

—If all entries are = or <, it can be safely scalarized with loop
reversal.

—If it contains a mixture of < and >, it cannot be scalarized by
simple means.

- Loop skewing could work

General Multidimensional Scalarization

* Once a loop has been selected for scalarization, the dependences
carried by that loop, any dependence whose direction vector does not
contain a = in the position corresponding to the selected loop may be
eliminated from further consideration.

* In our example, if we move the second column to the outside, we get:

4)

>=i>><

v

I
A
I
v
A

* Scalarization in this way will reduce the matrix to:

SN

Scalarization Example

DO J = 2, N-1
A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) + &
A(2:N-1,J-1) + A(2:N-1,J+1)/4.
ENDDO
* Loop carried true dependence, antidependence

* Naive compiler could generate:
DO J = 2, N-1
DO i = 2, N-1
T(i-1) = (A(i-1,J) + A(i+l,J) + A(i,J-1) + A(i,J+1))/4
ENDDO
DO i = 2, N-1
A(i,J) = T(i-1)
ENDDO
ENDDO

* 2 x (N-2)? accesses to memory due to array T

Scalarization Example

* However, can use input prefetching to get:
DO J = 2, N-1
tA0 = A(1, J)
DO i = 2, N-2
tAl = (tAO+A(i+l1,J)+A(i,J-1)+A(i,J+1))/4
tA0 = A(i-1, J)
A(i,J) = tal

ENDDO
tAl = (tAO+A(N,J)+A(N-1,J-1)+A(N-1,J+1)) /4
A(N-1,J) = tAl

ENDDO

If temporaries are allocated to registers, no more memory accesses
than original Fortran 90 program

Post Scalarization Issues

* Issues due to scalarization:
—Generates many individual loops

— These loops carry no dependences. So reuse of quantities in
registers is not common

* Solution: Use loop interchange, loop fusion, unroll-and-jam, and
scalar replacement

Announcements

* Schedule for take-home final exam
— Scope of exam: Chapters 1 - 11
— Will be handed at last class, on April 215
— Due by 5pm on April 29th

* Lecture by Prof. Sadayappan on Friday, April 24

— "A polyhedral loop transformation framework for automatic parallelization
and data locality optimization”

— 11am - 12noon, DH 1049
* Today is the last lecture!

* Additional references for today's lecture

— Scalarization using loop alignment and loop skewing, Yuan Zhao, Ken Kennedy.
The Journal of Supercomputing, Volume 31, Issue 1 (January 2005).

— Optimized Execution of Fortran 90 Array Language on Symmetric Shared
-Memory Multiprocessors. Vivek Sarkar. Eleventh Workshop on Languages
and Compilers for Parallel Computing (LCPC), August 1998.

