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Allen and Kennedy, Chapter 13 

Compiling Array Assignments 



Fortran 90

•  Fortran 90: successor to Fortran 77 
•  Slow to gain acceptance: 

— Need better/smarter compiler techniques to achieve same level of
 performance as Fortran 77 compilers 

•  This chapter focuses on a single new feature - the array
 assignment statement:    A[1:100] = 2.0 
— Intended to provide direct mechanism to specify parallel/vector

 execution 

•  This statement must be implemented for the specific available
 hardware. In an uniprocessor, the statement must be
 converted to a scalar loop: Scalarization 



Fortran 90

•  Range of a vector operation in Fortran 90 denoted by a triplet:

 <lower bound: upper bound: increment> 
   A[1:100:2] = B[2:51] + 3.0 

•  Semantics of Fortran 90 require that for vector statements, all
 inputs to the statement are fetched before any results are
 stored 



Outline

•  Simple scalarization 
•  Safe scalarization 
•  Techniques to improve on safe scalarization 

— Loop reversal 
— Input  prefetching 
— Loop splitting 

•  Multidimensional scalarization 
•  A framework for analyzing multidimensional scalarization 



Scalarization


•  Replace each array assignment by a corresponding DO loop 
•  Is it really that easy?  
•  Two key issues: 

—   Wish to avoid generating large array temporaries 
—   Wish to optimize loops to exhibit good memory hierarchy  
—     performance 



Simple Scalarization

•  Consider the vector statement: 
   A(1:200) = 2.0 * A(1:200) 

•  A scalar implementation: 
  S1  DO I = 1, 200 

  S2      A(I) = 2.0 * A(I) 

    ENDDO 

•  However, some statements cause problems: 
   A(2:201) = 2.0 * A(1:200) 

•  If we naively scalarize, we get incorrect code: 
   DO i = 1, 200 

    A(i+1) = 2.0 * A(i) 

   ENDDO 



Scalarization Faults

•  Why do scalarization faults occur? 
•  Vector operation semantics: All values from the RHS of the

 assignment should be fetched before storing into the result 
•  If a scalar operation stores into a location fetched by a later

 operation, we get a scalarization fault 

•  Principle 13.1: A vector assignment generates a scalarization
 fault if and only if the scalarized loop carries a true
 dependence. 

•  These dependences are known as scalarization dependences 
•  To preserve correctness, compiler should never produce a

 scalarization dependence 



Safe Scalarization

•  Naive algorithm for safe scalarization: Use temporary storage to make

 sure scalarization dependences are not created 
•  Consider: 
  A(2:201) = 2.0 * A(1:200) 

•  can be split up into: 
  T(1:200) = 2.0 * A(1:200) 

  A(2:201) = T(1:200) 

•  Then scalarize using SimpleScalarize 
  DO I = 1, 200 

   T(I) = 2.0 * A(I) 

  ENDDO 

  DO I = 2, 201 
   A(I) = T(I-1) 

  ENDDO 



Safe Scalarization

•  Procedure SafeScalarize implements this method of

 scalarization 

•  Good news:  
— Scalarization always possible by using temporaries 

•  Bad News: 
— Substantial increase in memory use due to temporaries 
— More memory operations per array element 
— Akin to overheads incurred in implementing functional languages 

•  We shall look at a number of techniques to reduce the effects
 of these disadvantages 



Loop Reversal

  A(2:256) = A(1:255) + 1.0 

•  A scalarization approach using loop reversal that avoids the
 need for a temporary: 

  DO I = 256, 2, -1 

   A(I) = A(I-1) + 1.0 

  ENDDO 



Loop Reversal

•  When can we use loop reversal? 

— Loop reversal maps true dependences into antidependences 
— But may also map antidependences into dependences 

  A(2:257) = ( A(1:256) + A(3:258) ) / 2.0 

•  After scalarization: 
  DO I = 2, 257 
     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

•  Loop Reversal gets us: 
  DO I = 257, 2 

     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

•  Thus, cannot use loop reversal in presence of antidependences 
•  Goal: ensure that scalarized loop has no loop-carried true dependences 



Input Prefetching


  A(2:257) = ( A(1:256) + A(3:258) ) / 2.0 

•  Causes a scalarization fault when naively scalarized to: 
  DO I = 2, 257 

     A(I) = ( A(I-1) + A(I+1) ) / 2.0 

  ENDDO 

•  Problem: Stores into first element of the LHS in the previous
 iteration 

•  Input prefetching: Use scalar temporaries to store elements of
 input and output arrays 



Input Prefetching

•  A first-cut at using temporaries:  
   DO I = 2, 257 

      T1 = A(I-1) 

      T2 = ( T1 + A(I+1) ) / 2.0 

      A(I) = T2 

   ENDDO 

•  T1 holds element of input array, T2 holds element of output
 array 

•  But this faces the same problem. Can correct by moving
 assignment to T1 into previous iteration... 

    



Input Prefetching

    

   T1 = A(1) 

   DO I = 2, 256 

      T2 = ( T1 + A(I+1) ) / 2.0 

      T1 = A(I) 

      A(I) = T2 

   ENDDO 

   T2 = ( T1 + A(257) ) / 2.0 

   A(I) = T2 

•  Note: We are using scalar replacement, but the motivation for
 doing so is different than in Chapter 8 



Input Prefetching

•  Already seen in Chapter 8,

 we need as many
 temporaries as the
 dependence threshold + 1. 

•  Example: 
   DO I = 2, 257 

      A(I+2) = A(I) + 1.0 

     ENDDO 

•  Can be changed to: 
   T1 = A(1) 
   T2 = A(2) 
   DO I = 2, 255 
      T3 = T1 + 1.0  
      T1 = T2 
      T2 = A(I+2)  
      A(I+2) = T3  
   ENDDO 
   T3 = T1 + 1.0 
   T1 = T2 
   A(258) = T3 
   T3 = T1 + 1.0 
   A(259) = T3 



Input Prefetching

•  Can also unroll the loop and eliminate register to register copies 

•  Principle 13.2: Any scalarization dependence with a threshold
 known at compile time can be corrected by input prefetching. 



Input Prefetching

•  Sometimes, even when a scalarization dependence does not have a

 constant threshold, input prefetching can be used effectively 
   A(1:N) = A(1:N) / A(1) 

•  which can be naively scalarized as: 
   DO i = 1, N 

      A(i) = A(i) / A(1) 

   ENDDO 

•  true dependence from first iteration to every other iteration 
•  antidependence from first iteration to itself 
•  Via input prefetching, we get: 
   tA1 = A(1) 

   DO i = 1, N 

      A(i) = A(i) / tA1 
   ENDDO 



Multidimensional Scalarization

•  Vector statements in Fortran 90 in more than 1 dimension: 
  A(1:100, 1:100) = B(1:100, 1, 1:100) 

•  corresponds to: 
  DO J = 1, 100 

    A(1:100, J) = B(1:100, 1, J) 

  ENDDO 

•  Scalarization in multiple dimensions: 
  A(1:100, 1:100) = 2.0 * A(1:100, 1:100) 

•  Obvious Strategy: convert each vector iterator into a loop: 
  DO J = 1, 100, 1 
    DO I = 1, 100 

      A(I,J) = 2.0 * A(I,J) 

    ENDDO 

  ENDDO 



Multidimensional Scalarization

•  What should the order of the loops be after scalarization? 

— Familiar question: We dealt with this issue in Loop Selection
/Interchange in  Chapter 5 

•  Profitability of a particular configuration depends on target
 architecture 
— For simplicity, we shall assume shorter strides through memory are

 better 
— Thus, optimal choice for innermost loop is the leftmost vector

 iterator 



Multidimensional Scalarization

•  Extending previous results to multiple dimensions: 

—  Each vector iterator is scalarized separately, starting from the leftmost
 vector iterator in the innermost loop and the rest of the iterators from
 left to right 

•  Once the ordering is available: 
1. Test to see if the loop carries a scalarization dependence. If not, then

 proceed to the next loop. 
2.  If the scalarization loop carries only true dependences, reverse the loop

 and proceed to the next loop. 
3.  Apply input prefetching, with loop splitting where appropriate, to eliminate

 dependences to which it applies. Observe, however, that in outer loops,
 prefetching is done for a single submatrix (the remaining dimensions).  

4. Otherwise, the loop carries a scalarization fault that requires temporary
 storage. Generate a scalarization that utilizes temporary storage and
 terminate the scalarization test for this loop, since temporary storage will
 eliminate all scalarization faults. 



Outer Loop Prefetching

  A(1:N, 1:N) =  

    (A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0 

•  If we try to scalarize this (keeping the column iterator in the
 innermost loop) we get a true scalarization dependence (<, >)
 involving the second input and an antidependence (>, <)
 involving the first input 

•  Cannot use loop reversal... 



Outer Loop Prefetching

  A(1:N, 1:N) =  

   (A(0:N-1, 2:N+1) + A(2:N+1, 0:N-1)) / 2.0 
•  We can use input prefetching on the outer loop. The

 temporaries will be arrays: 
  T0(1:N) = A(2:N+1, 0) 

  DO j = 1, N-1 

    T1(1:N)=( A(0:N-1, j+1) + T0(1:N) ) / 2.0 

    T0(1:N) = A(2:N+1, j) 

    A(1:N, j) = T1(1:N) 

  ENDDO 

  T1(1:N) = ( A(0:N-1, N) + T0(1:N) ) / 2.0 

  A(1:N, N) = T1(1:N) 

•  Total temporary space required = 2 rows of original matrix 
•  Better than storage required for copy of the result matrix 



Loop Interchange

•  Sometimes, there is a tradeoff between scalarization and

 optimal memory hierarchy usage 
 A(2:100, 3:101) = A(3:101, 1:201:2) 

•  If we scalarize this using the prescribed order: 
  DO I = 3, 101 

    DO 100 J = 2, 100 

      A(J,I) = A(J+1,2*I-5) 

    ENDDO 

  ENDDO 
•  Dependences (<, >) (I = 3, 4) and (>, >) (I = 6, 7) 
•  Cannot use loop reversal, input prefetching 
•  Can use temporaries 



Loop Interchange

•  However, we can use loop interchange to get: 

  DO J = 2, 100 

    DO I = 3, 101 

      A(J,I) = A(J+1,2*I-5) 

    ENDDO 

  ENDDO 

•  Not optimal memory hierarchy usage, but reduction of
 temporary storage 

•  Loop interchange is useful to reduce size of temporaries 
•  It can also eliminate scalarization dependences 



General Multidimensional Scalarization

•  Goal: To vectorize a single statement which has m vector

 dimensions  
— Given an ideal order of scalarization (l1, l2, ..., lm)  
— (d1, d2, ..., dn) be direction vectors for all true and

 antidependences of the statement upon itself 
— The scalarization matrix is a n × m matrix of these direction

 vectors 

•  For instance: 
   A(1:N, 1:N, 1:N) = A(0:N-1, 1:N, 2:N+1) +  

            A(1:N, 2:N+1, 0:N-1) 
      
           >      =      < 
             <       >   = 



General Multidimensional Scalarization

•  If we examine any column of the direction matrix, we can

 immediately see if the corresponding loop can be safely
 scalarized as the outermost loop of the nest: 
— If all entries of the column are = or >, it can be safely scalarized

 as the outermost loop without loop reversal. 
— If all entries are = or <, it can be safely scalarized with loop

 reversal. 
— If it contains a mixture of < and >, it cannot be scalarized by

 simple means. 
–  Loop skewing could work 



•  Once a loop has been selected for scalarization, the dependences
 carried by that loop, any dependence whose direction vector does not
 contain a = in the position corresponding to the selected loop may be
 eliminated from further consideration. 

•  In our example, if we move the second column to the outside, we get: 

       >    =    <      =    >    <  

      <    >    =        >    <    = 

•  Scalarization in this way will reduce the matrix to: 
                   >   < 

General Multidimensional Scalarization




Scalarization Example

  DO J = 2, N-1 

     A(2:N-1,J) = A(1:N-2,J) + A(3:N,J) + & 

     A(2:N-1,J-1) + A(2:N-1,J+1)/4. 

  ENDDO 
•  Loop carried true dependence, antidependence 
•  Naive compiler could generate: 
  DO J = 2, N-1 
    DO i = 2, N-1 
      T(i-1) = (A(i-1,J) + A(i+1,J) + A(i,J-1) + A(i,J+1) )/4 
    ENDDO 
    DO i = 2, N-1 
      A(i,J) = T(i-1) 
    ENDDO 
  ENDDO 

•  2 × (N-2)2 accesses to memory due to array T 



Scalarization Example

•  However, can use input prefetching to get: 
  DO J = 2, N-1 

    tA0 = A(1, J) 

    DO i = 2, N-2 

      tA1 = (tA0+A(i+1,J)+A(i,J-1)+A(i,J+1))/4 

      tA0 = A(i-1, J) 

      A(i,J) = tA1 

    ENDDO 

    tA1 = (tA0+A(N,J)+A(N-1,J-1)+A(N-1,J+1))/4 

    A(N-1,J) = tA1 

  ENDDO 

•  If temporaries are allocated to registers, no more memory accesses
 than original Fortran 90 program 



Post Scalarization Issues

•  Issues due to scalarization: 

— Generates many individual loops 
— These loops carry no dependences. So reuse of quantities in

 registers is not common 

•  Solution: Use loop interchange, loop fusion, unroll-and-jam, and
 scalar replacement 



Announcements

•  Schedule for take-home final exam 

— Scope of exam: Chapters 1 - 11 
— Will be handed at last class, on April 21st 
— Due by 5pm on April 29th 

•  Lecture by Prof. Sadayappan on Friday, April 24th 
— “A polyhedral loop transformation framework for automatic parallelization

 and data locality optimization” 
— 11am – 12noon, DH 1049 

•  Today is the last lecture! 
•  Additional references for today’s lecture 

— Scalarization using loop alignment and loop skewing, Yuan Zhao, Ken Kennedy. 
 The Journal of Supercomputing, Volume 31, Issue 1 (January 2005). 

— Optimized Execution of Fortran 90 Array Language on Symmetric Shared
-Memory  Multiprocessors. Vivek Sarkar. Eleventh Workshop on Languages
 and Compilers  for Parallel Computing (LCPC), August 1998.  


