
Committing Conflicting Transactions in an STM

Hany E. Ramadan

University of Texas at Austin

ramadan@cs.utexas.edu

Indrajit Roy

University of Texas at Austin

indrajit@cs.utexas.edu

Maurice Herlihy

Brown University

mph@cs.brown.edu

Emmett Witchel

University of Texas at Austin

witchel@cs.utexas.edu

Abstract

Dependence-aware transactional memory (DATM) is a recently
proposed model for increasing concurrency of memory transactions
without complicating their interface. DATM manages dependences
between conflicting, uncommitted transactions so that they commit
safely.
The contributions of this paper are twofold. First, we provide

a safety proof for the dependence-aware model. This proof also
shows that the DATM model accepts all concurrent interleavings
that are conflict-serializable.
Second, we describe the first application of dependence tracking

to software transactional memory (STM) design and implementa-
tion. We compare our implementation with a state of the art STM,
TL2 [5]. We use benchmarks from the STAMP [22] suite, quantify-
ing how dependence tracking converts certain types of transactional
conflicts into successful commits. On high contention workloads,
DATM is able to take advantage of dependences to speed up exe-
cution by up to 4.8×.

Categories and Subject Descriptors C.1.4 [Processor Architec-
tures]: Parallel Architecture; D.1.3 [Programming Techniques]:
Concurrent Programming—Parallel programming; D.4.1 [Oper-
ating Systems]: Process Management—Concurrency; Synchroniza-
tion; Threads

General Terms Algorithms, Design, Performance

Keywords transactional memory, dependence-aware, serializ-
ability, concurrency control

1. Introduction

Interest in programming with transactions has experienced a renais-
sance with the advent of multi-core processors. Transactional mem-
ory [19], whether in software (STM) [31] or hardware (HTM) [16],
replaces locks with transactions, promising an easier programming
model without compromising performance.
Memory transactions provide atomicity: if a transaction fails for

any reason its effects are discarded. Transactions provide isolation:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14–18, 2009, Raleigh, North Carolina, USA.
Copyright c© 2009 ACM 978-1-60558-397-6/09/02. . . $5.00

no transaction sees the partial effects of any other. Transactions are
also linearizable meaning that each committed transaction appears
to take effect instantaneously at some point between when it starts
and when it finishes.
A transactional conflict occurs when one transaction writes data

that is read or written by another transaction. When the order-
ing of all conflicting memory accesses is identical to a serial ex-
ecution order of all transactions, the execution is called conflict-
serializable [8]. There are three kinds of memory conflicts, R→W,
W→R, and W→W, where R is a read, W is a write, and R→W
indicates that a memory location was first read by one transaction
and subsequently written by another.
Most transactional memory systems detect conflicts between

pairs of transactions and respond by delaying or restarting one of
the transactions. The key insight behind DATM is that this policy
restricts concurrency more than is necessary [2]. DATM manages
conflicts by making transactions aware of dependences and, in
the case of a W→R dependence, forwards data values from one
uncommitted transaction to another. Dependence-awareness allows
two conflicting but conflict-serializable transactions to both commit
safely, increasing concurrency and making better use of concurrent
hardware [27].
This paper presents a formal model for dependence-aware trans-

actions, proving them to be safe because transactions remain atomic
and isolated. Moreover, the paper shows that the model allows ev-
ery conflict-serializable schedule to occur.
The paper demonstrates the first application of dependence-

awareness to STMs. Dependence-aware software transactional
memory (DASTM) uses techniques from TL2 [5] that are modi-
fied to support dependences and data forwarding. We implement
DASTM in C and in Java. The C version is word-based and the
Java implementation is object-based. We evaluate DASTM on
high contention workloads—a shared counter micro-benchmark,
three programs from the STAMP benchmark suite [23], and STM-
Bench7 [9]. We show that some STAMP benchmarks benefit from
managing dependences and forwarding data between uncommitted
transactions.
This paper makes the following contributions:

1. It presents a formal model for dependence-aware transactions
and then proves its safety and its ability to accept any interleav-
ing that is conflict-serializable.

2. It presents the design of a dependence-aware STM system,
which we have implemented in both C and Java.

3. It presents performance data and statistics for our depen-
dence-aware STM system. DASTM shows up to a 4.8× per-
formance improvement on high contention benchmarks from

163

B

begin_tx
load reg1, counter
incr reg1
store reg1, counter

end_tx

W−>R
begin_tx
load reg1, counter
incr reg1

end_tx

store reg1, counter

A

Figure 1. Two transactions increment the same counter, illustrat-
ing an interleaving where two conflicting transactions can both
safely commit.

STAMP. The performance improvement is directly attributable
to DASTM’s ability to manage dependences.
We summarize the dependence-aware model and explain its

benefits in Section 2. Section 3 presents our formal model and
proof. Section 4 describes our dependence-aware STM implemen-
tation, and Section 5 presents performance numbers for the proto-
type implementation and compares it to existing systems. Section 6
discusses related work and Section 7 concludes.

2. Dependence-aware model

The dependence-aware model accepts more concurrent interleav-
ings than current transactional memory safety mechanisms [27].
This section summarizes the most important parts of the model to
keep the paper self-contained, and Section 3 formalizes the model.
The details of the model are available elsewhere [27].

2.1 Safely committing conflicting transactions

In conventional TM systems, if two transactions access the same
datum and at least one of the accesses is a write, then one transac-
tion must either block or restart. Making transactions dependence-
aware removes this restriction, allowing both transactions to com-
mit safely under certain circumstances. Active (in-progress) trans-
actions are coordinated by two mechanisms: ordering and forward-
ing speculative data.
If transaction A reads a datum and then transaction B writes it

(R→W), both transactions can continue so long as transaction A
commits or aborts first. An implementation needs a mechanism to
delay B’s commit. W→W dependences require the same mecha-
nism.
If transaction A writes a datum and then transaction B reads it

(W→R), the system can forward the speculative data from A to B
and make sure that A commits first. An implementation needs a
mechanism to detect if A overwrites the data or restarts, in which
case the runtime system restarts B.

2.2 Example: shared counter

Figure 1 shows two transactions,A andB, both of which increment
a shared counter. A reads the counter value, which is initialized to
0, increments it to 1 and stores it back. B then reads the counter
value. The system establishes the W→R dependence and forwards
the value (1) from A. B increments the value to 2 and stores it.
The system makes sure that B does not commit unless and until
A commits. When both commit successfully, the final value of the
counter is 2.

2.3 Dependence management

The system tracks all dependences at the level of memory bytes
or objects. The dependences are tracked as they arise during trans-
action execution. R→W and W→W dependences restrict commit
order, while W→R restrict commit order and forward data from the

active transaction. When data is forwarded, the destination transac-
tion must restart if the source restarts or overwrites the memory
location whose value was previously forwarded.
Multiple dependences may arise if two transactions conflict on

more than one memory cell. Dependences can form cycles among
transactions, which must be broken by the system to avoid dead-
lock. Once detected, a cycle is resolved by restarting at least one
transaction. A cyclic dependence means that the transactions have
executed in a way that is not conflict serializable (this is formalized
and proved in Section 3). The contention manager for dependence-
aware transactions can break cycles using information from the de-
pendence graph [27]. For example, it is probably advantageous to
restart a transaction that has not forwarded any data, if possible.

2.4 Exceptions and stale data

Because the model forwards data between transactions, transac-
tions that are doomed to restart (zombies) can read invalid or in-
consistent data. Zombies will be restarted by the runtime when their
source transaction either restarts or overwrites the incorrectly for-
warded data. But before the zombie restarts, the runtime must con-
tain the side effects of the zombie having read inconsistent data.
The runtime effectively deals with zombie transactions by restart-
ing them in a mode that prevents W→R dependences, thereby pre-
venting them from reading forwarded data (“no-forward mode,” de-
tails in Section 4.4).

2.5 Cascading aborts

Cascading aborts happen when one transaction’s abort causes other
transactions to abort. In DATM, cascading aborts arise only from
W→R dependences, where the source aborts or overwrites for-
warded data. This data sharing pattern, with one transaction up-
dating a variable multiple times while other transactions read it, is
not conflict serializable. Any safe transactional system will serial-
ize such transactions, either by stalling or aborting.

3. Formal model

This section introduces our formal model. For the first time, it
proves that the DATMmodel is safe and that it accepts any conflict-
serializable schedule.

3.1 Intuitions

Informally, one can think of a concurrency control mechanism as
an automaton that accepts concurrent schedules of events. We prove
two properties of DATM. First, DATM is an automaton that accepts
only those schedules of transactions that preserve serializability.
Second, DATM accepts all conflict-serializable schedules. Con-

trast this with other TM systems that accept only a subset of the
schedules because they either explicitly use two-phase locking or
effectively have the same behavior as two-phase locking. We prove
that all schedules are accepted by showing that DATM tracks read-
/write dependences and aborts transactions only if there are cycles
in the underlying serialization graph.
The formal model is adapted from Lynch et al. [20]. The model

uses non-deterministic transitions to avoid constraining implemen-
tations. For example, when a transaction reads a variable, it can
read either that variable’s committed value or a value written by an
uncommitted transaction.

3.2 Safety

A computation is modeled as a history, that is, a sequence of
instantaneous events of the form:

• 〈T, x.read(v) 〉: T reads v from variable x.

• 〈T, x.write(v) 〉: T writes v to variable x.

• 〈T commit〉: T commits

164

• 〈T abort〉: T aborts

For example, here is a history in which transaction TA reads 0
from x, writes 1 to y, and commits.

〈TA, x.read(0) 〉 · 〈TA, y.write(1) 〉 · 〈TA commit〉

A history is well-formed if no transaction both commits and aborts,
and if no transaction takes any steps after it commits or aborts.
Without loss of generality, values read to and written from variables
are unique.
A history is failure-free if all transactions commit, and it is

serial if steps of distinct transactions are not interleaved. A serial
failure-free history is legal if each value read from a variable is the
value most recently written.
A subhistory of a history h is a sub-sequence of the events of h.

If h is a history and S a set of transactions, h|S is the sub-sequence
of events labeled with transactions in S. Two histories, h and h′,
are equivalent if for every transaction TA, h|TA = h′|TA. If h
is a history, committed(h) is the sub-sequence of h consisting of
all events of committed transactions, and active(h) is the set of
active (not committed or aborted) transactions. If x is a variable,
prior(x , h) is the set of active transactions that have read or written
x in h, writer(x , h) is the active or committed transaction that
most recently wrote x in h, and value(x, h) is the value written.

Definition 3.1. A history h is atomic if committed(h) is equiva-
lent to a legal failure-free serial history.

Let serial(h) be the serial history equivalent to committed(h),
in which transactions appear in the order of their commit events in
h.
A concurrency control mechanism can be thought of as an au-

tomaton that accepts concurrent histories. The mechanism is cor-
rect if those histories are atomic. We now define dependence-aware
transactional memory as an automaton that accepts atomic histo-
ries. The automaton keeps the following state. The history h is the
history accepted so far. For each T , we keep track of earlier(T),
the set of transactions that must commit before T can commit.
We also keep track of notLater(T), the set of transactions that
must commit or abort before T can commit. Intuitively, earlier(T)
tracks the write-read dependence while notLater(T) tracks all the
remaining types of dependences. Transitions are given by pre- and
post-conditions, whereX ′ denotes the new state of componentX .
An active transaction can always abort:

• Pre: T ∈ active(h)
• Post: h′ = h · 〈T abort〉
This transition captures the effects of deadlock detection, either
exact or inexact (that is, timeouts).
When a transaction T reads, we track the write-read dependence

on the transaction whose value it read.
• Pre: T ∈ active(h)
• Post:

h′ = h · 〈T, x.read(value(x, h)) 〉
earlier ′(T) = earlier(T) ∪ {writer(x , h)}.

When a transaction writes, we track its read-write and write-
write dependences on the active transactions that read or wrote that
variable.
• Pre: T ∈ active(h)
• Post:

h′ = h′ · 〈T, x.write(v) 〉
notLater ′(T) = notLater(T) ∪ prior(x , h).

A transaction can commit only if every value it read was written
by a now-committed transaction, and every value overwritten was
previously read or written by a now-committed or now-aborted
transaction.
• Pre:

T ∈ active(h)
earlier(T) ⊂ committed(h) ∪ {T}
notLater(T) ⊂ committed(h) ∪ aborted(h) ∪ {T}

• Post: h′ = h · 〈T commit〉
The dependence-aware algorithm satisfies this simple invariant: for
committed transactions, serialization does not reorder reads and
writes to the same variable.

Lemma 3.1. Let w0 be a write event by T0, and e1 either a read
or write event by T1, both to a variable x in h. If w0 precedes e1 in
serial(h), then w0 precedes e1 in h.

Proof. Suppose instead that e1 precedes w0 in h. Because they
were reordered, T0 and T1 were both active when w0 was ap-
pended to history h. It follows that T1 ∈ prior(x , h), so T1 ∈
notLater(T0), implying that T1 must commit before T0, ordering
e1 before w0 in serial(h), a contradiction.

Lemma 3.2. Let h be a history containing w0, a write event by T0,
r1, a read event by T1 that returns the value written by w0, and w2,
a write event by T2 that follows w0 in h.
We claim that T1 ∈ notLater(T2).

Proof. Because r1 returns the value written by w0, there are no
writes between w0 and r1. Therefore w2 follows r1 in h, and the
claim is established when w2 is appended to the history.

If r is a read event in h, let readsFrom(r , h) be the write event
whose value r returns. That is, for every read event r in serial(h),

readsFrom(r , serial(h)) = readsFrom(r , h). (1)

The property holds vacuously in the original state. Suppose, by
way of contradiction, the property becomes violated at some step.
That step must be the commit of a transaction T0, because the other
steps leave serial(h) unchanged. Let r0 be a read step in h|T0 that
violates the property, let w1 = readsFrom(r , h ′), and let T1 be
the transaction that executed w1.
First, w1 must be in serial(h) because T1 ∈ earlier(T0), and

a precondition for T0 to commit is that T1 be committed. Second,
there can be no w2 by T2 between w0 and r1 in serial(h). If w2

comes after w1 in serial(h), then by Lemma 3.1, w2 comes after
w1 in h, so by Lemma 3.2, T1 ∈ notLater(T2), implying that T1

could not have committed after T2.
It follows that when a transaction commits, the new serial his-

tory is legal, because every read event returns the value written by
the most recent write event in serial(h ′).

3.3 Accepting all conflict-serializable histories

We have shown that our implementation is safe: all histories ac-
cepted are atomic. We now focus on a stronger claim, that this au-
tomaton accepts all conflict-serializable [8] histories. By contrast,
most TM systems, whether hardware or software, accept only those
histories admitted by two-phase locking, a strictly smaller set.
Some care is needed when interpreting this claim. As noted, an

active transaction can be aborted at any time, for any reason. In
practice, an implementation will abort a transaction only if it de-
tects, or suspects, a deadlock resulting from a cyclic dependence.
Our automaton accepts all conflict-serializable histories, but an ac-
tual implementation may reject some as a result of imprecise dead-
lock detection (for example, premature timeouts). Our implemen-
tation also turns off forwarding when it appears to be ineffective,
for example, when restarting a transaction aborted by a cyclic de-
pendence.
Any history has an associated serialization graph. Each node

is labeled with a committed transaction, and there is a directed
edge from T0 to T1, if first T0 and then T1 apply conflicting
operations (at least one write) to the same object. A history is

165

Figure 2. Key data structures in DASTM.

conflict-serializable if and only if the associated serialization graph
is acyclic [8].
We define a directed wait-graph for a history h as G(h) =

(V, E) where V = {T : T ∈ active(h)} and E = {(T1, T2) :
T1 ∈ earlier(T2) ∪ notLater(T2) ∧ T1, T2 ∈ V }. Note that
according to this wait-graph a transaction T commits iff it has no
incoming edges.
To prove that the automaton accepts all conflict-serializable

histories, we change the abort rule to reflect precise detection. A
transaction is aborted if it has read a value from a transaction that
later aborted or if it is part of a cycle in the wait-graph.
• Pre:

T ∈ active(h)
(∃T1 ∈ earlier(T) ∧ T1 ∈ aborted(h))

W

(T ∈ cycle in
G(h))

• Post: h′ = h · 〈T abort〉
Observe that according to this new abort rule the first transac-

tion abort will occur because of a cycle in the wait-graph. Subse-
quent aborts may occur due to the dependences tracked by the set
earlier(T) or other cycles in the graph.

Lemma 3.3. If an input history H is conflict-serializable then
G(H) is acyclic.

Proof. Let h be the earliest subhistory of H such that there is
a cycle in G(h). Let 〈T1, T2, .., Tk〉 denote the cycle. Consider
the nodes T1 and Tk. By definition the edge (Tk, T1) exists
because Tk ∈ earlier(T1) ∪ notLater(T1). Using the tran-
sitive property, the chain of edges from T1 to Tk imply that
T1 ∈ earlier(Tk) ∪ notLater(Tk). Using the definitions of
earlier(T) and notLater(T), there are 9 possible combinations
of dependence between T1 and Tk. Each of these combinations re-
sult in a cycle between T1 and Tk in the serializability graph of h.
This is a contradiction, because a cycle in the serializability graph
of h impliesH is not conflict-serializable.

Lemma 3.4. If an input history is conflict-serializable, then it is
accepted by the automaton.

Proof. By Lemma 3.3, the wait-free graph for the input history
is acyclic. According to the abort rule, no transaction would have
aborted as the first abort is triggered by a cycle. Hence, the given
history is accepted as-is by the automaton.

4. Design

This section introduces our prototype implementation of dependence-
aware software transactional memory (DASTM). It presents the key
data structures and the basic steps transactions follow. Finally, we
discuss some of the more interesting optimizations.

4.1 Data structures

Each thread maintains transaction-specific information in thread-
local storage. Each transaction has a read-set and a write-set, im-
plemented as linked lists with bloom filters to reduce list searches
(like TL2 [5]). There is a single shared global-clock vector Each
transaction also has a wait-vector to manage dependences.
The primary shared data structure is a global hashtable that

contains the system metadata, shown in Figure 2. Active transac-
tions hash memory addresses to look up memory metadata struc-
tures (MDs) in the hashtable. Each address requires a unique MD,
so hashtable collisions are resolved using a linked list of entries.
DASTM uses the same addressing interface as the STAMP TL2 im-
plementation, where load and store addresses are to 4-byte, aligned
data units. Each MD contains the following fields.
• lock
• ro-flag
• ro-version
• accessors, a sequence of 4-tuples, each comprised of:
[transaction-id, flags, receivedValue, writtenValue]
For efficiency, all addresses that hash to the same value share the

same lock ro-flag and ro-version. The lock is a recursive spinlock
that protects access to the MD structure. The ro-flag and the ro-
versionenable an optimization for memory locations that are only
read during a transaction (see Section 4.3.2).
The core of the MD structure is the accessors list, an ordered

sequence of 4-tuples. Each tuple has a transaction-id that identifies
the transaction accessing this memory location. The flags field con-
tains four bits, Received, Written, Forwarded, and Doomed. The
first three bits indicate whether the tuple has received, written, or
forwarded a value. The Doomed flag indicates that the transaction
accessing the address will have to abort. The receivedValue field
holds the memory value retrieved from memory or the forwarded
value from another in-progress transaction. The writtenValue field
records updates to the memory location made by the transaction.

4.2 Basic transaction execution

The following steps summarize transaction execution. Transactions
end either in commit or abort (where aborted transactions restart).

1. Transaction initialization. Transactions begin by clearing the
thread-local read and write sets. As described below, they obtain
a transaction-id and initialize their wait-vector to all zeros.

2. Transactional accesses. Memory reads and writes add the ad-
dress to the transaction’s thread-local read or write set (respec-
tively). They then look up and create, if necessary, the MD
structure corresponding to the memory address in the global
hashtable. The lock protecting the MD structure is held for the
duration of servicing the memory operation. If this access is the
first access to the address by the transaction, a new 4-tuple is
appended to the accessors sequence in the MD.

a Reads. If this is the first access to the memory location, the
value is read either from an active transaction or from mem-
ory, and is then stored in the recievedValue field. Forward-
ing happens by having the transaction scan the accessors list
backwards from the end for previous tuples. If it finds a tuple
that does not have the Doomed flag set and has its Written
flag set, the transaction copies the writtenValue, sets the For-
warded flag, and sets the Received flag in the receiving trans-
action’s accessor tuple. If no such tuple exists, then the trans-
action initializes the receivedValue directly from the memory.
The value returned for the read operation is the value in the
receivedValue field, or, if the written flag is set, the value in
the writtenValue field.

166

b Writes. The Written flag in the MD accessor flags field is
turned on and the writtenValue field is updated with the new
value being stored. If the memory address is previously read
but not written (Written flag is not set), then it turns on the
Doomed flag of all tuples that are later in the sequence.

3. Transaction commit.

a Resolve dependences. Wait until all dependences are re-
solved, i.e., all transactions this one depends on (earlier(T)∪
notLater(T)) must commit or abort (see Section 4.3.3 for
details).

b Write-set locking. Acquire and hold the MD structure locks
for all addresses in the write-set. If any write-set tuples for
this transaction have the Doomed flag set, release all the locks
and abort.

c Read-set validation. Validate the read-set by ensuring that
none of the MD accessor tuples for this transaction have the
Doomed flag set. The MD structure is locked only for the
duration of the check. If the validation fails, the transaction
releases all held locks and aborts. The read set does not
need to be locked for the duration of commit because any
subsequent writer will form a dependence and wait for this
transaction to commit.

d Write-back. Write back the value of each element in the
write-set to main memory, and release the MD lock. If the
Forwarded flag of the transaction’s tuple is set, the transaction
dooms any dependent transaction that has received a stale
value for this memory address. The transaction scans the
dependents, dooming any entry that has its Received flag
set if the receivedValue is different from the committing
transaction’s writtenValue. This check terminates at the end
of the sequence, or at a non-doomed tuple that does not have
the Received flag set.

The start of write-back is the transaction’s linearization
point [17]—any transaction that starts write-back will suc-
cessfully commit, with any contending transaction serializing
afterwards.

4. Transaction abort. A transaction that aborts must ensure that
all transactions dependent on it also abort. For all addresses in
the write-set with the Forwarded flag set, the transaction sets
the Doomed flag for all subsequent accesses by transactions that
have the Received flag set. The transaction stops at the first non-
doomed tuple that has the Written flag set and the Received flag
clear. Each MD structure is locked only for the time it takes to
perform this check.

5. Cleanup.Both Commit and Abort complete by removing all tu-
ples that correspond to the transaction’s read and write set from
the corresponding MD structures. The MD structures them-
selves (if dynamically allocated) may be freed if the tuple-
sequence has become empty.

4.3 Design details

This section describes a few of the important optimizations and
design choices made in our prototype.

4.3.1 Resolving dependences

A transaction must wait until all transactions on which it depends
complete (commit or abort). After they commit, it can proceed (past
step 3a) and continue its attempt to commit. A transaction’s de-
pendences are implicitly encoded by its tuple’s position in the MD
accessors sequence—the transactions of tuples preceding it in the
sequence are the ones it may depend on. One strategy for resolv-
ing dependences is to iterate through each address in the working

set, checking if all preceding transactions in the MD accessor list
that have the Written flag set have completed. Recall that when a
transaction completes, it removes its tuple from the MD accessor.
We implement a more efficient strategy for resolving depen-

dences that uses vector clocks. The runtime has a global-clock (GC)
that tracks the number of transactions completed by each proces-
sor. Each transaction has a wait-vector that is used to summarize
the transactions it has to wait on. When a transaction starts on a
processor p, it reads GC[p] (the pth entry in the vector clock) and
keeps track of V = GC[p]+1. This scalar (V) represents the value
which the transaction will write into the global-clock when it com-
pletes, and is communicated to other processors that wish to take a
dependence on this transaction. This communication occurs when a
transaction accesses any memory address, it updates its wait-vector
with the V values of all transactions preceding it in the accessor
tuple. The V value is present in each tuple, as the transaction-id
field encodes both p and V. When a transaction completes (whether
commit or abort), it writes V to GC[p], after dooming its write-set.
Dependence resolution is thus reduced to each transaction waiting
for global-clock to be greater-or-equal to its wait-vector.

4.3.2 Optimizing read data

Most transactions read more data than they write. Some addresses
are only read during a transaction and never written. For such
transactions, the basic algorithm can impose a heavy performance
penalty in the steps required to process a read (2a) and to validate
the read-set at commit time (3c). For data that is only read during
a transaction, we would like to avoid any MD structure locking ,
vector-clock management, tuple management, and so on.
Our approach initially assumes that all data accessed by a trans-

action is read-only—as indicated by the ro-flag field in theMD. The
transaction reads the desired data from main memory, and saves the
ro-version value in its read-set. The validation phase (3c) for such
memory locations consists of ensuring that for each address the ro-
version has not changed in the MD structure, and that the ro-flag
still indicates that the address is in read-only mode.
If a transaction stores to a memory location (i.e. uses the MD

structure), the ro-flag is cleared. Any transaction that previously
read the location while the ro-flag was set will abort during vali-
dation if it sees that the flag has been turned off. With the flag off,
reads are processed as in 2a. The runtime can decide to transition an
MD back to read-only mode by resetting the ro-flag and increasing
the ro-version. Increasing the ro-version ensures that any outstand-
ing transaction that reads the location in read-only mode will abort
during validation. The runtime might turn on all ro-flags if there are
no active transactions, or might turn them on everyN transactions.

4.3.3 Deadlock management

Deadlock can arise in the commit protocol, steps 3a-c, for a variety
of reasons. First, cyclical dependences in the DASTM model result
in two transactions waiting for each other to commit, and thus both
stay in step 3a indefinitely. Second, we do not impose any specific
ordering on lock acquires (exacerbated by the fact that we acquire
write-set locks before read-set), so transactions can deadlock in
steps 3b or 3c. Third, since our implementation uses a single lock
to protect multiple MD structures that hash to the same bucket, on
rare occasions false conflicts can cause deadlocks.
Deadlocks are handled using timeout, similar to TL2. Other ap-

proaches are possible, including implementations that avoid dead-
locks (e.g. by restricting dependence creation to guarantee acyclic
dependences or imposing lock order), or which use more sophisti-
cated deadlock detection techniques like Dreadlocks [13].

4.3.4 Design tradeoffs

Our STM design does not implement every feature of the dependence-
aware model. Transaction dependences are always created relative

167

to the most recently written value of the object. With this policy,
the dependence graph is always a chain, and new dependences
are appended to the end. A given transaction will forward only a
single value, even if the address is written multiple times. That
single value can be forwarded to multiple transactions. Prelimi-
nary data indicated that these optimizations would generate little
performance and add complexity.

4.4 Containing zombies

Because W→R dependences forward uncommitted data, a transac-
tion can read invalid or inconsistent data (see Section 2.4). Zombie
transactions (those that will never commit) can enter infinite loops,
write to incorrect addresses, read from incorrect addresses, jump to
incorrect addresses, and fail program assertions. Some STM sys-
tems allow zombie transactions and have mechanisms to deal with
them [6]. DASTM’s control over data forwarding makes containing
zombies easy.
With dependence-aware transactions, infinite loops are resolved

by runtime support. When transaction A enters an infinite loop (that
is not present in the original program), it must have read inconsis-
tent data from a transaction B that will not successfully commit.
When transaction B restarts, the runtime restarts transaction A. If
B is also in an infinite loop because of a dependence on A, the run-
time system periodically polls for circular dependences and restarts
both transactions. In Java, the VM can propagate the restart. In C,
the runtime system sends a signal.
The runtime buffers data written during a transaction, which

prevents zombie transactions from corrupting the program’s data
structures, and from causing spurious exceptions due to stores to
incorrect addresses. Zombie transactions can load from incorrect
or invalid addresses, causing incorrect control flow or spurious ex-
ceptions. When any transaction that has read forwarded data throws
an exception, the transaction is restarted in no-forward mode. Oth-
erwise, it will be restarted when the source of the inconsistent data
restarts. A managed runtime can detect exceptions directly, while
an unmanaged environment can use signal handlers.
Jumping to a loaded address in a transaction that has read

forwarded data causes the runtime to restart the transaction in no-
forward mode. Program assertions must be integrated with the
STM runtime. Any failed assertion in a transaction that has read
forwarded data is restarted in no-forward mode.

5. Evaluation

We conducted the experiments for DASTM on a Sun server us-
ing the UltraSparc T1 (Niagara) processor. This processor contains
eight multi-threaded cores with four contexts per core, for a total
of 32 total hardware contexts. The machine runs the 64-bit Linux
2.6.24-19 operating system. Our Java tests (DASTM-J) are on a
machine with 4 quad-core Intel Xeon 2.93GHz processors, for a
total of 16 hardware cores. The machine runs Linux kernel ver-
sion 2.6.22-14. We use counter as a micro-benchmark to study
how DASTM performs in the presence of hot-spots. We also re-
port the performance results for three representative STAMP 0.9.8
benchmarks—vacation, labyrinth and ssca2. We compare DASTM
with unmodified TL2 [6] on each of these benchmarks. We report
TL2 statistics that differ from those reported by Minh et al. [22]
because their results are from a simulator, while ours are from real
hardware. We use the TL2 code distributed with the STAMP suite.
We ensure each benchmark’s threads are appropriately pinned to
individual processors (using thread affinity) to avoid OS schedul-
ing anomalies. We report the averages of three benchmark runs.

5.1 counter

Writing shared data within a transaction generally leads to hot-
spots that result in poor performance of an STM. In Figure 3, we

Figure 3. Speedup (higher is better) seen in DASTM and TL2 on
the counter benchmark.

Figure 5. Speedup (higher is better) achieved by DASTM and TL2
compared to the single thread performance of TL2 on labyrinth+, a
high contention variant of labyrinth

study the effect of updating a shared counter for a total of 100,000
times using a variable number of threads. Each increment transac-
tion also contains a fixed amount of think time (5,000 iterations of
a local loop), to simulate work on private data. TL2 does not scale
at all, revealing the inherent lack of concurrency in two-phase lock-
ing systems. This micro-benchmark demonstrates how DASTM, in
ideal conditions, can increase concurrency by allowing conflicting
transactions to safely commit.

5.2 STAMP

vacation Vacation models a travel reservation system. It uses
red-black trees to store data. Client tasks are performed within
transactions to provide safe access to this data. Our experiments
execute 1,000 transactions and use the parameters “-t 1000 -n 100
-u 50”. This particular configuration has very high contention and
more than 86% of the benchmark time is spent within transactions.
Figure 4 depicts how DASTM compares to TL2. DASTM outper-
forms TL2 by 4.86× at 16 threads.
We see that vacation performance decreases on DASTM going

from 16 to 32 threads. The abort rate doubles when going from
16 to 32 threads with almost all of vacation’s aborts due to time-
outs waiting for dependences to be satisfied at commit (see Table 1
in Section 5.3 below). We increased the timeout value which de-
creased the abort rate and improved performance at 32 processor
threads, nearly matching 16 thread performance. With more cores,
deadlock detection that is more precise than simple timeouts (for

168

Figure 4. Speedup (higher is better) achieved by DASTM and TL2 compared to the single thread performance of TL2 on (A) vacation (B)
labyrinth and (C) ssca2.

example, Dreadlocks [13]) are likely to become important to sus-
tain good performance.

labyrinth The labyrinth benchmark uses Lee’s algorithm to find
the shortest path between pairs of nodes in a maze [22]. The
program reads and updates memory locations within data struc-
tures, such as a worklist and a grid. Most of the updates occur
in long transactions. Figure 4 shows the results for a maze of
size 256 × 256 × 5, using parameters “-i random-x256-y256-z5-
n256.txt”. The total number of transactions is between 514 to 576
(depending on the number of threads). With the default transac-
tion boundaries, both TL2 and DASTM are able to scale well on
this benchmark. We therefore decided to use different transaction
boundaries: the benchmark’s primary loop creates two transactions
per iteration, which we merge into a single transaction. This is an-
other way to transactionalize the benchmark (producing the same
results), however contention is much higher. Figure 5 shows the re-
sults for this variant, which we call labyrinth+. DASTM is able to
improve performance by up to approximately 1.6× with additional
cores, whereas TL2 is unable to improve beyond single thread
performance. Neither system achieves any additional speedup as
the number of hardware threads is increased above 2. Like vaca-
tion, aborts due to time out increase with more threads. In addi-
tion, overwrite aborts (shown as A2 in Table 1) also increase with
more threads. Experiments with increased timeout thresholds do
reduce those aborts by up to 60%, but overwrite aborts remain un-
changed and thus become the limiting factor for performance. Even
with more sophisticated deadlock detection, labyrinth+ is inher-
ently limited in the amount of concurrency that can automatically
be achieved.

ssca2 The ssca2 benchmark uses a scientific computational ker-
nel that operates on a multi-graph to produce an efficient graph
structure representation using adjacency (and other auxiliary) ar-
rays [22]. We run the benchmark using the parameters “-s17 -i1.0
-u1.0 -l3 -p3”. It creates a large number of transactions: over 1.4
million, which individually are relatively small. The benchmark has
very little contention, so it does not benefit much from dependence
management. Figure 4 shows that on single-threaded runs, TL2 is
roughly 20% faster than DASTM, due to overheads for manag-
ing metadata. Overheads for other benchmarks depend on a variety
of factors including access to DASTM metadata, transaction con-
tention, and the ratio of transaction computation to data accesses.
TL2 achieves a peak speedup of approximately 2.4× at 32 threads,
while DASTM’s overhead causes its peak speedup to be slightly
lower at 2.25×.

Parameter (in %) vacation labyrinth+ counter

Reduction in Exec-time 72.5 23.9 86.8
Reduction in Restarts 98.2 90.0 99.5
Abort Rate 44.3 88.8 3.3
A1:Dep. Wait Aborts 79.5 62.6 20.7
A2:Overwrite Aborts 16.2 34.0 79.3
A3:Lock Timeout Aborts 4.2 0.0 0.0
D1:Tx using R→W 3.6 3.8 0.0
D2:Tx using W→W 1.3 76.6 99.6
D3:Tx using W→R 34.0 77.4 99.6

Table 1. DASTM statistics for vacation, labyrinth+ and counter at
8 threads.

5.3 DASTM statistics

Table 1 shows the reduction in execution time and in transactional
restarts moving from TL2 to DASTM at 8 threads for the three
highest contention benchmarks—vacation, labyrinth+ and counter.
We see that on all of them, the number of dynamic aborts is
reduced by 90% or more. These findings validate our observation
that current STMs abort more transactions than what is strictly
necessary to remain safe. DASTM’s reduction in aborts translates
to increased performance.
Table 1 also gives the percentage of transactions that restart

(abort rate) and a breakdown of the various types of aborts and de-
pendences seen in these benchmarks. The Abort rate of the vacation
benchmark shows that 44.3% of the total transaction attempts re-
sulted in aborts. These aborts occur for three reasons: (1) timeouts
while waiting for dependences to be satisfied (A1), (2) aborts be-
cause a transaction overwrote a value that it had already forwarded
(A2), and (3) timeouts while trying to acquire locks on memory
locations (A3). The values of categories A1–A3 equals 100% of
aborts (nearly 100% for labyrinth+, which has some explicit calls
to abort). In a workload such as the counter benchmark aborts are
mostly due to forwarding of values that are then overwritten, while
labyrinth+ and vacation mostly abort due to timeout while waiting
for dependences to resolve.

D1, D2 and D3 give the number of transactions involved in
R→W, W→W and R→W dependences. For example, 99.6% of
the transactions in counter read values forwarded by the (W→R)
dependences. The numbers in these categories do not total to 100%
because a single transaction can have multiple dependence types.

5.4 DASTM-J: an object based STM

We have also implemented DASTM-J, an object based dependence-
aware STM. DASTM-J is written in Java and uses the same high
level design as presented in Section 4. We present the performance

169

0 2 4 6 8 10 12 14 16
0

200

400

600

800

1000

1200

1400

#Threads

T
x
/s

e
c
.

STMBench7

Read−dominated

Read−Write

Figure 6. DASTM-J results for STMBench7 read dominated and
read-write workload. The benchmark uses the default parameters
with long traversals disabled.

of DASTM-J on STMBench7 to show that our prototype has scal-
able performance and that dependences are useful for large trans-
actional workloads.
STMBench7 consists of traversals and modifications in a graph

with a million objects [9]. The authors of STMBench7 note the dif-
ficulty that every public STM has in running their benchmark [7].
In Figure 6, we show the scalable performance of DASTM-J for
two different inputs to STMBench7, creating a read dominated and
a read-write workload. At 16 threads, DASTM-J achieves more
than 1, 300 Tx/sec on the read-dominated workload. The read-
dominated workload does not benefit from dependences, but 2.5%
of transactions create dependences for the read-write workload. De-
pendences are more useful as contention increases.

6. Related work

In this section, we discuss the most relevant related work from
the literature. There have been many recent advances in STM
research [1,10,11,15,21]. We refer the reader to Larus and Rajwar
for a comprehensive reference of transactional memory systems as
of summer 2006 [19].

TM isolation Other transactional memory designs and imple-
mentations have also observed that modifying the safety condi-
tions for transactions can allow a system to extract more con-
currency from workloads. Along with DATM [26, 27], TSTM [2]
identifies that using conflict serializability as a correctness criteria,
rather than two-phase locking, benefits transactional memory sys-
tems by allowing more concurrency. However, their model is based
on timestamp ordering, and does not accept every conflict serializ-
able schedule (e.g. those that involve forwarding). The developers
of CS-STM [30] (which utilizes a new consistency criterion that the
authors call z-linearizable), also consider a variant of that algorithm
which maintains full serializability. This variant (called S-STM) is
only briefly described as using timestamps and vector clocks and
having to maintains partial precedence graphs. The authors state
that the runtime overhead of managing their intricate data struc-
tures can be prohibitive, especially for smaller transactions, though
performance data is not reported.
SI-STM uses snapshot isolation, a weaker isolation level than

conflict-serializability [29]. SI-STM shares some of the perfor-
mance goals of DATM, trying to get conflicting transactions
to commit. It also shares some implementation techniques with
DATM, namely preserving multiple versions of the same memory
byte. Snapshot isolation is more difficult for the programmer to

reason about than conflict serializability and is applicable to fewer
situations than DATM.

Database systems DATM can be viewed as an efficient imple-
mentation of a SGT-based (Serialization Graph Testing-based) cer-
tifying concurrency-control scheduler [3]. It is designed to per-
mit recoverable schedules, a superset of ACA (Avoid Cascading
Aborts) schedules. It does not build up the actual serialization
graph, since the dependences on the shared objects provide suffi-
cient information to provide the necessary constraints.
Transaction dependences also have roots in early database re-

search. Spheres of control [4], in the context of a static hierarchy
of abstract data types, introduced the notion of dynamic spheres
created around actions accessing shared data. Transaction depen-
dences are at one level a refinement and formalization of the gen-
eral notion of spheres of control in a way that can be implemented
in the context of transactional memory.
Time-domain addressing [28] (also called multi-version concur-

rency control (MVCC)) tracks multiple versions of objects modi-
fied concurrently, as does DATM, and thus both systems address
similar issues. However, write-shared data are known to degrade
MVCC performance, while DATM is designed to scale in their
presence. Also, the techniques DATM employs to achieve conflict-
serializability (notably, the different types of dependences and the
forwarding of uncommitted data) are not found in MVCC systems.

Changing the STM programming model TM systems can
change the programming model to increase performance. The pro-
grammer must deal with more complexity, but the runtime can be
more efficient.
Privatization [33], and its complement (publication) are pro-

gramming technique that allows programmers to carefully manage
when data is shared and accessible by other transactions, versus be-
ing private. They bridge the conceptual gap between per-CPU data
structures and shared data structures. Early release [32] allows a
programmer to drop transactional isolation on given memory loca-
tions. The programmer must be correct in his judgment that isola-
tion is not needed on those locations, or the program will no longer
be correct. Having code in an escape action access the same data
as a paused transaction can cause semantic anomalies [24]. Open
nesting [25] trades physical isolation for logical isolation, with the
programmer guaranteeing correctness. All of these techniques re-
quire more programmer effort than DASTM.
Galois classes [18] and transactional boosting [14] allow the

programmer to provide inverse operations for the concurrent
data structures. These techniques are orthogonal to dependence-
awareness, and can be used to complement them. They have the
potential to eliminate structural conflicts in many situations, though
programmers may have varying success providing inverses for dif-
ferent data structures (e.g., k-d tree inserts are not straightforward
to handle), and defining commutativity relationships between all
operations. Similarly, abstract nested transactions (ANTs) [12] at-
tempt to reduce the performance effect of benign conflicts, but re-
quire the programmer identify the regions of code that are likely to
be victims of such conflicts. The system then ensures that ANTs are
re-executed appropriately if they do experience a conflict. ANTs
differ from closed nesting in when the re-executing can occur,
specifically ANT re-execution can be delayed until the top-level
transaction attempts to commit.

7. Conclusion

Dependence-aware transactions allow conflicting transactions to
safely commit. This paper presents a formal model of DATM,
proves its key properties, and presents the design of the first STM
implementation to use the model.

170

Experimental results from our prototypes (in C and Java) con-
firm the potential performance benefits of dependence-aware trans-
actional memory as compared to traditional STM implementations.

8. Acknowledgements

We extend thanks to Donald E. Porter and Christopher J. Rossbach
for careful reading of drafts and suggestions. This research is sup-
ported by NSF CISE Research Infrastructure Grant EIA-0303609,
NSF Career Award 0644205, and the DARPA computer science
study group. Sun Microsystems provided the T2000 machine via
the OpenSPARC program. Intel equipment grant 48395 provided
the 4 quad-core Intel server machine.

References

[1] Ali-Reza Adl-Tabatabai, Brian Lewis, Vijay Menon, Brian

Murphy, Bratin Saha, and Tatiana Shpeisman. Compiler and

runtime support for efficient software transactional memory.

In PLDI, Jun 2006.

[2] Utku Aydonat and Tarek Abdelrahman. Serializability of

transactions in software transactional memory. In TRANS-

ACT, Feb 2008.

[3] Philip Bernstein, Vassos Hadzilacos, and Nathan Goodman.

Concurrency Control and Recovery in Database Systems.

Addison Wesley, 1987.

[4] Charles T. Davies. Data processing spheres of control. IBM

Systems Journal, 17(2), 1978.

[5] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking

II. In DISC, Sep 2006.

[6] Dave Dice and Nir Shavit. What really makes transactions

faster? In TRANSACT, Jun 2006.

[7] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Ka-

palka. Dividing Transactional Memories by Zero. In

TRANSACT, Feb 2008.

[8] Jim Gray and Andreas Reuter. Transaction Processing: Con-

cepts and Techniques. Morgan Kaufmann, 1993.

[9] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. Stm-

bench7: A benchmark for software transactional memory. In

EuroSys, Mar 2007.

[10] TimHarris and Keir Fraser. Language support for lightweight

transactions. In OOPSLA, Oct 2003.

[11] Tim Harris, Mark Plesko, Avraham Shinnar, and David

Tarditi. Optimizing memory transactions. In PLDI, Jun

2006.

[12] Tim Harris and Srdan Stipic. Abstract nested transactions. In

TRANSACT, Aug 2007.

[13] Maurice Herlihy and Eric Koskinen. Dreadlocks: Efficient

deadlock detection for stm. In TRANSACT, Feb 2008.

[14] Maurice Herlihy and Eric Koskinen. Transactional boosting:

a methodology for highly-concurrent transactional objects. In

PPoPP, Feb 2008.

[15] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexi-

ble framework for implementing software transactional mem-

ory. In OOPSLA, Oct 2006.

[16] Maurice Herlihy and J. Eliot Moss. Transactional memory:

Architectural support for lock-free data structures. In ISCA,

May 1993.

[17] Maurice Herlihy and Jeannette M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM TOPLAS,

12(3):463–492, Jul 1990.

[18] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ra-

manarayanan, Kavita Bala, and L. Paul Chew. Optimistic par-

allelism requires abstractions. In PLDI, Jun 2007.

[19] Jim Larus and Ravi Rajwar. Transactional Memory. Morgan

& Claypool, 2006.

[20] Nancy A. Lynch, Michael Merritt, William E.Weihl, and Alan

Fekete. Atomic Transactions. Morgan Kaufmann, 1993.

[21] Virendra J. Marathe, Michael F. Spear, Christopher Heriot,

Athul Acharya, David Eisenstat, William N. Scherer III, and

Michael L. Scott. Lowering the overhead of nonblocking

software transactional memory. In TRANSACT, Jun 2006.

[22] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and

Kunle Olukotun. Stamp: Stanford transactional applications

for multi-processing. In IEEE International Symposium on

Workload Characterization (IISWC), Sep 2008.

[23] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,

Austen McDonald, Nathan Bronson, Jared Casper, Christos

Kozyrakis, and Kunle Olukotun. An effective hybrid trans-

actional memory system with strong isolation guarantees. In

ISCA, Jun 2007.

[24] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke

Yen, Mark D. Hill, Ben Liblit, Michael M. Swift, and David A.

Wood. Supporting nested transactional memory in LogTM.

In ASPLOS, Oct 2006.

[25] J. Eliot Moss and Antony L. Hosking. Nested transactional

memory: Model and preliminary architecture sketches. In

SCOOL, Oct 2005.

[26] Hany E. Ramadan, Christopher J. Rossbach, Owen Hof-

mann, and Emmett Witchel. Dependence-aware transactional

memory. Technical Report TR-07-58, University of Texas at

Austin, Computer Sciences Department, 2007.

[27] Hany E. Ramadan, Christopher J. Rossbach, and Emmett

Witchel. Dependence-aware transactions for increased con-

currency. InMICRO, Nov 2008.

[28] David P. Reed. Implementing atomic actions on decentral-

ized data. ACM TOCS, 1(1), 1981.

[29] Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot

isolation for software transactional memory. In TRANSACT,

Jun 2006.

[30] Torvald Riegel, Heiko Sturzrehm, Pascal Felber, and Christof

Fetzer. From causal to z-linearizable transactional memory.

Technical Report RR-I-07-02.1, Universite de Neuchatel, In-

stitut d’Informatique, February 2007.

[31] Nir Shavit and Dan Touitou. Software transactional memory.

In PODC, Aug 1995.

[32] Travis Skare and Christos Kozyrakis. Early release: Friend or

foe? In Workshop on Transactional Memory Workloads, Jun

2006.

[33] Michael Spear, Virendra Marathe, Luke Dalessandro, and

Michael Scott. Privatization techniques for software transac-

tional memory. In PODC, Aug 2007.

171

