Mutual Exclusion:

Classical Algorithms for Locks

Bill Scherer

Department of Computer Science
Rice University

scherer@cs.rice.edu

COMP 422 Lecture 20 March 2008

Motivation

Ensure that a block of code manipulating a data structure is
executed by only one thread at a time

* Why? avoid conflicting accesses to shared data (data races)

—read/write conflicts
—write/write conflicts

* Approach: critical section

* Mechanism: lock
—methods
— acquire
— release

* Usage
—acquire lock to enter the critical section
—release lock to leave the critical section

Problems with Locks

Conceptual
—coarse-grained: poor scalability
—fine-grained: hard to write

Semantic
—deadlock
—priority inversion

Performance
—convoying
—intolerance of page faults and preemption

Lock Alternatives

* Transactional memory (TM)
+ Easy to use, well-understood metaphor
— High overhead (so far)
+ Subject of much active research

* Ad hoc nonblocking synchronization (NBS)
+ Thread failure/delay cannot prevent progress
+ Can be faster than locks (stacks, queues)

— Notoriously difficult to write — every new algorithm is a publishable
result

+ Can be “canned” in libraries (e.g. java.util)

Synchronization Landscape

Software
TM (STM)

Programmer Effort

System Performance

Properties of Good Lock Algorithms

Mutual exclusion (safety property)

—critical sections of different threads do not overlap
— cannot guarantee integrity of computation without this property

No deadlock

—if some thread attempts to acquire the lock, then some thread will
acquire the lock

No starvation

—every thread that attempts to acquire the lock eventually succeeds
— implies no deadlock

Notes

Deadlock-free locks do not imply a deadlock-free program
—e.g., can create circular wait involving a pair of “good” locks

Starvation freedom is desirable, but not essential
—practical locks: many permit starvation, although it is unlikely to occur

Without a real-time guarantee, starvation freedom is weak property ¢

Topics for Today

Classical locking algorithms using load and store

* Steps toward a two-thread solution
—two partial solutions and their properties

* Peterson’s algorithm: a two-thread solution

* Filter lock: generalized Peterson

Classical Lock Algorithms

* Use atomic load and store only, no stronger atomic primitives

* Not used in practice
—locks based on stronger atomic primitives are more efficient

* Why study classical algorithms?

—understand the principles underlying synchronization
— subtle
— such issues are ubiquitous in parallel programs

Toward a Classical Lock for Two Threads

* First, consider two inadequate but interesting lock algorithms
—use load and store only

* Assumptions

—only two threads
—each thread has a unique value of self_threadid € {0,1}

Lock1

class Lockl: public Lock {
private: set my flag
volatile bool flag[2];
public:
void acquire() {
int other threadid = 1 - self threadid;
flag[self threadid] = true;
while (flag[other threadid] == true);
}
void release() {
flag[self threadid] = false;

} ' wait until other flag

is false

10

Using Lock1

assume that initially
both flags are false

thread 0 thread 1

flag[0] = true

while(flag[1] == true);
f‘

flag[1] = true
CS,< while(flag[0] == true);

flag[0] = false™ ~

CS, <

.

flag[1] = false

Using Lock1

thread 0

flag[0] = true

while(flag[1] == true): |

deadlock!

\

thread 1

flag[1] = true
while(flag[0] == true);

wait

wait

12

Summary of Lock1 Properties

* If one thread executes acquire before the other, works fine
—Lock1 provides mutual exclusion

* However, Lock1 is inadequate
—if both threads write flags before either reads — deadlock

13

Lock?2

class Lock2: public Lock {
private:
volatile int victim;
public:
void acquire() {
victim = self threadid;
while (victim == self threadid); // busy wait
}

void release() { }

14

Using Lock2

thread 0 thread 1

victim=0 victim =1

while(victim == 0); while(victim == 1);

>wait

victim=0
while(victim == 0);

} wait

v
15

Using Lock2

thread 0

victim=0
while(victim == 0);

_J/

Y
<
=

(G

deadlock!

<

16

Summary of Lock2 Properties

* If the two threads run concurrently, acquire succeeds for one
—provides mutual exclusion

* However, Lock2 is inadequate
—if one thread runs before the other, it will deadlock

17

Combining the ldeas

Lock1 and Lock2 complement each other

* Each succeeds under conditions that causes the other to fail
—Lock1 succeeds when CS attempts do not overlap
—Lock2 succeeds when CS attempts do overlap

* Design a lock protocol that leverages the strengths of both...

18

Peterson’s Algorithm: 2-way Mutual Exclusion

class Peterson: public Lock {
private:
volatile bool flag[2];
volatile int victim;
public:
void acquire() {
int other threadid = 1 - self threadid;
flag[self threadid] = true; I/l ’'m interested

victim = self threadid /Il you go first
while (flag[other threadid] == true &&
victim == self threadid);

}

void release() {
flag[self threadid] = false;

}

Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3):115-116, 1981.

19

Peterson’s Lock: Serialized Acquires

thread 0

flag[0] = true
victim=0
while(flag[1] == true

&& victim == 0)

CS, <

J

(

flag[0] = false

thread 1

flag[1] = true

victim =1
while(flag[0] == true
&& victim == 1);

wait

CS,

flag[1] = false

20

Peterson’s Lock: Concurrent Acquires

thread 0 thread 1
flag[0] = true
victim =10 flag[1] = true
victim =1
while(flag[1] == true while(flag[0] == true
&& victim == 0)} && victim == 1); ~

CS
0= wait

Y

flag[0] = false™
CS,
flag[1] = false

21

From 2-way to N-way Mutual Exclusion

* Peterson’s lock provides 2-way mutual exclusion
* How can we generalize to N-way mutual exclusion, N > 2?

* Filter lock: direct generalization of Peterson’s lock

22

Filter Lock

class Filter: public Lock {
private:
volatile int level[N]; volatile int victim[N-1];
public:
void acquire() {
for (int j = 1; j < N; j++) {
level [self threadid] = j;
victim [j] = self threadid;

while (sameOrHigher (self threadid,j) &&
victim[j] == self threadid);
}
}

bool sameOrHigher(int i, int j) {
for(int k = 0; k < N; k++)

if (k != i && level[k] >= j) return true;
return false;

}

void release() {
level[self threadid] = O0;

}
23

Understanding the Filter Lock

Peterson’s lock used two-element Boolean f1lag array

Filter lock generalization: an N-element integer 1evel array
—value of level[k] = highest level thread k is interested in entering
—each thread must pass through N-1 levels of exclusion

Each level has it’'s own victim flag to filter out 1 thread,
excluding it from the next level

—natural generalization of victim variable in Peterson’s algorithm

Properties of levels
—at least one thread trying to enter level k succeeds

—if more than one thread is trying to enter level k, then at least one
is blocked

For proofs, see Herlihy and Shavit’s manuscript

24

References

* Maurice Herlihy and Nir Shavit. “Multiprocessor
Synchronization and Concurrent Data Structures.” Chapter 3
“Mutual Exclusion.” Draft manuscript, 2005.

* Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3), 115-116, 1981.

25

Lock Synchronization with

Atomic Primitives

Bill Scherer

Department of Computer Science
Rice University

scherer@cs.rice.edu

COMP 422 Lecture 20 March 2008

Topics for Today

Atomic primitives for synchronization

Lock algorithms using atomic primitives
—test-and-set lock

—test-and-set with exponential backoff
—Array-based queue locks

—MCS list-based queue lock

—CLH list-based queue lock

Case study: performance of lock implementations
—BBN Butterfly and Sequent Symmetry

27

Atomic Primitives for Synchronization

Atomic read-modify-write primitives

test_and_set(Word &M)
—writes a1 into M
—returns M’s previous value

swap(Word &M, Word V)
—replaces the contents of M with V
—returns M’s previous value

fetch_and_®(Word &M, Word V)
—® can be ADD, OR, XOR
—replaces the value of M with ®(old value, V)
—returns M’s previous value

compare_and_swap(Word &M, Word oldV, Word newV)

—if (M == oldV) M <~ newV

—returns TRUE if store was performed

—universal primitive 28

Load-Linked & Store Conditional

load_linked(Word &M)
—sets a mark bit in M’s cache line
—returns M’s value

store_conditional(Word &M, Word V)
—if mark bit is set for M’s cache line, store V into M, otherwise fail
—condition code indicates success or failure
—may spuriously fail if
— context switch, another load-link, cache line eviction

Arbitrary read-modify-write operations with LL / SC

loop forever
load linked on M returns V

execute sequence of instructions performing arbitrary computation on V
and other values

store conditional of V’ into M
if store conditional succeeded exit loop

Supported on Alpha, PowerPC, MIPS, and ARM
29

Test & Set Lock

type lock = (unlocked, locked)

procedure acquire lock (L : “lock)
loop
/I NOTE: test and set returns old value
if test and set (L) = unlocked
return

procedure release lock (L : “lock)
L” := unlocked

30

Test & Test & Set (TATAS) Lock

type lock = (unlocked, locked)

procedure acquire lock (L : “lock)
loop

/I NOTE: test and set returns old value

if test and set (L) = unlocked
return

else
loop
until L~ <> locked

procedure release lock (L : “lock)
L” := unlocked

31

Test & Set Lock Notes

* Space: n words for n locks and p processes

* Lock acquire properties
—spin waits using atomic read-modify-write

* Starvation theoretically possible; unlikely in practice
—Fairness, however can be very uneven

* Poor scalability
—continual updates to a lock cause heavy network traffic
— on cache-coherent machines, each update causes an invalidation

—Improved with TATAS variant, but still a big spike on each
release of the lock, even on cache-coherent machines

32

Test & Set Lock with Exeonential Backoff

type lock = (unlocked, locked)

procedure acquire lock (L : “lock)
delay : integer := 1

// NOTE: testand set returns old value
while test and set (L) = locked

pause (delay) // wait this many units of time
delay := delay * 2 // double delay each time

procedure release lock (L : “lock)
L” := unlocked

33

Test & Set Lock with Exp. Backoff Notes

Similar to code developed by Tom Anderson

Grants requests in unpredictable order

Starvation is theoretically possible, but unlikely in practice
Spins (with backoff) on remote locations

Atomic primitives: test_and_set

Pragmatics: need to cap probe delay to some maximum

IEEE TPDS, January 1990

34

Array-based Lock Notes

* Grants requests in FIFO order

* Space: O(pn) space for p processes and n locks

35

The MCS List-based Queue Lock

type qnode = record
next : “qnode
locked : Boolean
type lock = “gnode [initialized to nil

Il parameter |, below, points to a gnode record allocated (in an enclosing scope) in
Il shared memory locally-accessible to the invoking processor
procedure acquire lock (L : "lock, I : “gnode)
I->next := nil
predecessor : “gqnode := fetch and store (L, I)

if predecessor != nil Il queue was non-empty
I->locked := true

predecessor->next := I
repeat while I->locked //spin

procedure release lock (L : "lock, I: “gnode)
if I->next = nil Il no known successor
if compare and swap (L, I, nil) return
// compare and swap returns true iff it stored
repeat while I->next = nil //spin
I->next->locked := false 36

MCS Lock In Action - |

tail

e

O O = -

run spin spin arriving

Process 4 arrives, attempting to acquire lock

37

MCS Lock In Action - i

tail

PR

N BN
D O~ =

run spin spin arriving

Process 4 swaps self into tail pointer
Acquires pointer to predecessor (3) from swap on tail

Note: 3 can’t leave without noticing that one or more
successors will link in behind it because the tail no longer
points to 3 38

MCS Lock In Action - il

tail

- EE
O U -

run spin spin arriving

4 links behind predecessor (3)

39

MCS Lock In Action -1V

tail

N RN
O L UT

run spin spin spin

4 links now spins until 3 signals that the lock is available

by setting a flag in 4’s lock record

40

MCS Lock In Action -V

tail

EN EN EN KN
O U UT

leaving spin spin spin

* Process 1 prepares to release lock
—if it’s next field is set, signal successor directly
—suppose 1’s next pointer is still null
— attempt a compare_and_swap on the tail pointer
— finds that tail no longer points to self
— waits until successor pointer is valid (already points to 2 in diagram)
— signal successor (process 2) 41

ER [&N Em

leaving

MCS Lock In Action - VI

run

O

spin

tail

Q:

spin

42

MCS Lock Notes

Grants requests in FIFO order
Space: 2p + n words of space for p processes and n locks

Requires a local "queue node"” to be passed in as a parameter

—alternatively, additional code can allocate these dynamically in
acquire_lock, and look them up in a table in release_lock).

Spins only on local locations

— cache-coherent and non-cache-coherent machines
Atomic primitives

—fetch_and_store and (ideally) compare _and_swap

ASPLOS, April 1991
ACM TOCS, February 1991

43

Impact of the MCS Lock

Key lesson: importance of reducing memory traffic in
synchronization

—Ilocal spinning technique influenced virtually all practical scalable
synchronization algorithms since

2006 Edsger Dijkstra Prize in distributed computing

—“an outstanding paper on the principles of distributed computing, whose
significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

—“probably the most influential practical mutual exclusion algorithm ever”
—*“vastly superior to all previous mutual exclusion algorithms”

—fast, scalable, and fair in a wide variety of multiprocessor systems
—avoids need to pre-allocate memory for a fixed, maximum # of threads
—widely used: e.g., monitor locks used in Java VMs are variants of MCS

44

CLH List-based Queue Lock

type qnode = record
prev : “gnode
succ_must wait : Boolean

type lock = “qnode /linitialized to point to an unowned gnode

procedure acquire lock (L : "lock, I : “qnode)
I->succ _must wait := true
pred : “gqnode := I->prev := fetch and store(L, I)
repeat while pred->succ_must wait

procedure release lock (ref I : “gnode)
pred : “gnode := I->prev
I->succ _must wait := false
I := pred Il take pred's qnode

45

CLH Lock In Action

tail

:\ :\
N N

A A

N N

run =) spin =) spin =) spin

46

CLH Queue Lock Notes

Discovered twice, independently

—Travis Craig (University of Washington)
— TR 93-02-02, February 1993

—Anders Landin and Eric Hagersten (Swedish Institute of CS)
— IPPS, 1994

Space: 2p + 3n words of space for p processes and n locks
—MCS lock requires 2p + n words

Requires a local "queue node"” to be passed in as a parameter
Spins only on local locations on a cache-coherent machine

Local-only spinning possible when lacking coherent cache

—can modify implementation to use an extra level of indirection
(local spinning variant not shown)

Atomic primitives: fetch_and_store
47

Case Study:

Evaluating Lock
Implementations for the
BBN Butterfly and Sequent

Symmetry

J. Mellor-Crummey and M. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM
Transactions on Computer Systems, 9(1):21-65, Feb. 1991.

48

BBN Butterfly

8 MHz MC68000

24-bit virtual address space
1-4 MB memory per PE

log, depth switching network
Packet switched, non-blocking

Remote reference
—4us (no contention)
—b5x local reference

Collisions in network
—1 reference succeeds
—others aborted and retried later

16-bit atomic operations
—fetch_clear_then_add
—fetch_clear_then_xor

P1M

49

Sequent Symmetry

16 MHz Intel 80386

Up to 30 CPUs

64KB 2-way set associative cache
Snoopy coherence

various logical and arithmetic ops
—no return values, condition codes only

|

]

el [
m
C

C

J)
1
(—.

L

AR

O

O

O
j’“u":
Lo L

-

50

Lock Comparison

BBN Butterfly: distributed memory, no coherent caches

Time
(a5}

600 - ’*I
550 G—Q {est & set !
o o ticket °
500 - | _ _
o o test & set, linear backoli o
450 &—a anderson
400 4 « o« test & set, exp. backoif
a
350 o °° ticket, prop. backoff ° -
e NCE a
300 — Q
250 o
200
150 —
100
. b i
50 — e e e
0 I T] R 1 T T

0 10 20 30 40 50 60 70 80

P FOCessors

empty critical
section

51

Lock Comparison (Selected Locks Only)

BBN Butterfly: distributed memory, no coherent caches

100 —— — . j

_ &—b anderson
G0 -
+ o test & set, exp. backoff
850 oo ticket, prop. backoff

. / —e MCS
)

o /
Time _, |
(ns) 907

-10—-?'

30
B B o e e S S
20
10 - empty critical
section

0— T T T T T I T T
0 10 20 30 40 50 60 70 50

Processors 5 2

Lock Comparison (Selected Locks Only)

Sequent Symmetry: shared-bus, coherent caches

e—a test & test & set
27

a———a& anderson
I').,I. . ::

L

o test & set, exp. backoff

« IMCS

Time

(j25) 15 =

12 —

()_.

7 empty critical
3 section

0 2 4 6 R 10 12 14 16 18
Processors 53

Lock Comparison (Selected Locks Only)

Sequent Symmetry: shared-bus, coherent caches

30 —

27

24 -

—

e—= test & test & set
e a test & set, exp. backoff o

somare INCS

&—a anderson

small critical

" section
1 [| | | 1 1 i |
0 4 6 8 10 12 14 16 18
Processors

54

References

J. Mellor-Crummey, M. L. Scott: Synchronization without Contention. ASPLOS, 269-
278, 1991.

J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65, Feb.
1991.

T. E. Anderson, The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16,
Jan. 1990.

Gary Graunke and Shreekant Thakkar, Synchronization Algorithms for Shared-
Memory Multiprocessors, Computer, 23(6):60-69, June 1990.

Travis Craig, Building FIFO and priority queuing spin locks from atomic swap.
University of Washington, Dept. of Computer Science, TR 93-02-02, Feb. 1993.

Anders Landin and Eric Hagersten. Queue locks on cache coherent multiprocessors.
International Parallel Processing Symposium, pages 26-29, 1994.

95

56

Lemma: For j, 0 <j < n-1, there are at most n - j threads at level |

Proof by induction on j.
Base case: j = 0 is trivially true.
Induction hypothesis: at most n-j+1 threads at level j-1

Induction step:
—show that at least one thread cannot progress to level |
—argue by contradiction: assume there are n-j+1 threads at level j
— let A be the last thread at level j to write to victim[j]
— because A is last, for any other B at level j
writeg(victim[j] = B) — write,(victim[j] = A)

57

Evaluation criteria
—hardware support
—performance: latency, throughput
—fairness

Mutual exclusion
—load-store based protocols
—test and set locks
—ticket locks
—queuing locks

Barriers
—centralized barriers: counters and flags
—software combining trees
—tournament barrier
—dissemination barrier

Problems and solutions
—re-initialization via sense switching
—handling counter overflow

58

Maintain the integrity of shared data structures

* Goal: avoid conflicting updates
—read/write conflicts
—write/write conflicts

59

