
Bill Scherer

Department of Computer Science
Rice University

scherer@cs.rice.edu

Mutual Exclusion:
Classical Algorithms for Locks

COMP 422 Lecture 20 March 2008

2

Motivation

Ensure that a block of code manipulating a data structure is
executed by only one thread at a time

• Why? avoid conflicting accesses to shared data (data races)
—read/write conflicts
—write/write conflicts

• Approach: critical section

• Mechanism: lock
—methods

– acquire
– release

• Usage
—acquire lock to enter the critical section
—release lock to leave the critical section

3

Problems with Locks

• Conceptual
—coarse-grained: poor scalability
—fine-grained: hard to write

• Semantic
—deadlock
—priority inversion

• Performance
—convoying
—intolerance of page faults and preemption

4

Lock Alternatives

• Transactional memory (TM)
+ Easy to use, well-understood metaphor
– High overhead (so far)
± Subject of much active research

• Ad hoc nonblocking synchronization (NBS)
+ Thread failure/delay cannot prevent progress
+ Can be faster than locks (stacks, queues)
– Notoriously difficult to write – every new algorithm is a publishable

result
+ Can be “canned” in libraries (e.g. java.util)

5

Pr
og

ra
m

m
er

 E
ffo

rt

System Performance

Coarse
Locks

Canned
NBS

Fine
Locks

Ad Hoc
NBS

 HW
 TM

Software
TM (STM)

Synchronization Landscape

6

Properties of Good Lock Algorithms

• Mutual exclusion (safety property)
—critical sections of different threads do not overlap

– cannot guarantee integrity of computation without this property

• No deadlock
—if some thread attempts to acquire the lock, then some thread will

acquire the lock

• No starvation
—every thread that attempts to acquire the lock eventually succeeds

– implies no deadlock

Notes

• Deadlock-free locks do not imply a deadlock-free program
—e.g., can create circular wait involving a pair of “good” locks

• Starvation freedom is desirable, but not essential
—practical locks: many permit starvation, although it is unlikely to occur

• Without a real-time guarantee, starvation freedom is weak property

7

Topics for Today

Classical locking algorithms using load and store

• Steps toward a two-thread solution
—two partial solutions and their properties

• Peterson’s algorithm: a two-thread solution

• Filter lock: generalized Peterson

8

Classical Lock Algorithms

• Use atomic load and store only, no stronger atomic primitives

• Not used in practice
—locks based on stronger atomic primitives are more efficient

• Why study classical algorithms?
—understand the principles underlying synchronization

– subtle
– such issues are ubiquitous in parallel programs

9

Toward a Classical Lock for Two Threads

• First, consider two inadequate but interesting lock algorithms
—use load and store only

• Assumptions
—only two threads
—each thread has a unique value of self_threadid ∈ {0,1}

10

Lock1

class Lock1: public Lock {
 private:

 volatile bool flag[2];
public:

 void acquire() {
 int other_threadid = 1 - self_threadid;
 flag[self_threadid] = true;
 while (flag[other_threadid] == true);
 }
 void release() {
 flag[self_threadid] = false;
 }
}

set my flag

wait until other flag
is false

11

Using Lock1

flag[0] = true
while(flag[1] == true);

flag[1] = true

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true);

assume that initially
both flags are false

12

Using Lock1

flag[0] = true

while(flag[1] == true);
flag[1] = true

wait

thread 0 thread 1

while(flag[0] == true);

wait

deadlock!

13

Summary of Lock1 Properties

• If one thread executes acquire before the other, works fine
—Lock1 provides mutual exclusion

• However, Lock1 is inadequate
—if both threads write flags before either reads → deadlock

14

Lock2

class Lock2: public Lock {
 private:

 volatile int victim;
public:

 void acquire() {
 victim = self_threadid;
 while (victim == self_threadid); // busy wait
 }
 void release() { }
}

15

Using Lock2

victim = 0
while(victim == 0);

victim = 1

wait

thread 0 thread 1

while(victim == 1);

victim = 0
while(victim == 0);

wait

16

Using Lock2

thread 0

wait

deadlock!

victim = 0
while(victim == 0);

17

Summary of Lock2 Properties

• If the two threads run concurrently, acquire succeeds for one
—provides mutual exclusion

• However, Lock2 is inadequate
—if one thread runs before the other, it will deadlock

18

Combining the Ideas

Lock1 and Lock2 complement each other

• Each succeeds under conditions that causes the other to fail
—Lock1 succeeds when CS attempts do not overlap
—Lock2 succeeds when CS attempts do overlap

• Design a lock protocol that leverages the strengths of both…

19

Peterson’s Algorithm: 2-way Mutual Exclusion

class Peterson: public Lock {
 private:

 volatile bool flag[2];
 volatile int victim;

public:
 void acquire() {
 int other_threadid = 1 - self_threadid;
 flag[self_threadid] = true; // I’m interested
 victim = self_threadid // you go first
 while (flag[other_threadid] == true &&
 victim == self_threadid);
 }
 void release() {
 flag[self_threadid] = false;
 }
}

Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3):115-116, 1981.

20

Peterson’s Lock: Serialized Acquires

flag[0] = true
victim = 0

while(flag[1] == true
&& victim == 0); flag[1] = true

victim = 1

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true
 && victim == 1);

21

Peterson’s Lock: Concurrent Acquires

flag[0] = true
victim = 0

while(flag[1] == true
&& victim == 0);

flag[1] = true
victim = 1

flag[0] = false

CS0

CS1

flag[1] = false

wait

thread 0 thread 1

while(flag[0] == true
 && victim == 1);

22

From 2-way to N-way Mutual Exclusion

• Peterson’s lock provides 2-way mutual exclusion

• How can we generalize to N-way mutual exclusion, N > 2?

• Filter lock: direct generalization of Peterson’s lock

23

Filter Lock

class Filter: public Lock {
 private:
 volatile int level[N]; volatile int victim[N-1];

public:
 void acquire() {
 for (int j = 1; j < N; j++) {
 level [self_threadid] = j;
 victim [j] = self_threadid;
 // wait while conflicts exist
 while (sameOrHigher(self_threadid,j) &&
 victim[j] == self_threadid);
 }
 }
 bool sameOrHigher(int i, int j) {
 for(int k = 0; k < N; k++)
 if (k != i && level[k] >= j) return true;
 return false;
 }
 void release() {
 level[self_threadid] = 0;
 }
}

24

Understanding the Filter Lock

• Peterson’s lock used two-element Boolean flag array

• Filter lock generalization: an N-element integer level array
—value of level[k] = highest level thread k is interested in entering
—each thread must pass through N-1 levels of exclusion

• Each level has it’s own victim flag to filter out 1 thread,
excluding it from the next level
—natural generalization of victim variable in Peterson’s algorithm

• Properties of levels
—at least one thread trying to enter level k succeeds
—if more than one thread is trying to enter level k, then at least one

is blocked

• For proofs, see Herlihy and Shavit’s manuscript

25

References

• Maurice Herlihy and Nir Shavit. “Multiprocessor
Synchronization and Concurrent Data Structures.” Chapter 3
“Mutual Exclusion.” Draft manuscript, 2005.

• Gary Peterson. Myths about the Mutual Exclusion Problem.
Information Processing Letters, 12(3), 115-116, 1981.

Bill Scherer

Department of Computer Science
Rice University

scherer@cs.rice.edu

 Lock Synchronization with
Atomic Primitives

COMP 422 Lecture 20 March 2008

27

Topics for Today

• Atomic primitives for synchronization

• Lock algorithms using atomic primitives
—test-and-set lock
—test-and-set with exponential backoff
—Array-based queue locks
—MCS list-based queue lock
—CLH list-based queue lock

• Case study: performance of lock implementations
—BBN Butterfly and Sequent Symmetry

28

Atomic Primitives for Synchronization

Atomic read-modify-write primitives
• test_and_set(Word &M)

—writes a 1 into M
—returns M’s previous value

• swap(Word &M, Word V)
—replaces the contents of M with V
—returns M’s previous value

• fetch_and_Φ(Word &M, Word V)
—Φ can be ADD, OR, XOR
—replaces the value of M with Φ(old value, V)
—returns M’s previous value

• compare_and_swap(Word &M, Word oldV, Word newV)
—if (M == oldV) M ← newV
—returns TRUE if store was performed
—universal primitive

29

Load-Linked & Store Conditional

• load_linked(Word &M)
—sets a mark bit in M’s cache line
—returns M’s value

• store_conditional(Word &M, Word V)
—if mark bit is set for M’s cache line, store V into M, otherwise fail
—condition code indicates success or failure
—may spuriously fail if

– context switch, another load-link, cache line eviction

• Arbitrary read-modify-write operations with LL / SC
loop forever

load linked on M returns V
execute sequence of instructions performing arbitrary computation on V
and other values
store conditional of V’ into M
if store conditional succeeded exit loop

• Supported on Alpha, PowerPC, MIPS, and ARM

30

Test & Set Lock

type lock = (unlocked, locked)

procedure acquire_lock (L : ^lock)
 loop
 // NOTE: test and set returns old value
 if test_and_set (L) = unlocked
 return

procedure release_lock (L : ^lock)
 L^ := unlocked

31

Test & Test & Set (TATAS) Lock

type lock = (unlocked, locked)

procedure acquire_lock (L : ^lock)
 loop
 // NOTE: test and set returns old value
 if test_and_set (L) = unlocked
 return
 else
 loop
 until L^ <> locked

procedure release_lock (L : ^lock)
 L^ := unlocked

32

Test & Set Lock Notes

• Space: n words for n locks and p processes

• Lock acquire properties
—spin waits using atomic read-modify-write

• Starvation theoretically possible; unlikely in practice
—Fairness, however can be very uneven

• Poor scalability
—continual updates to a lock cause heavy network traffic

– on cache-coherent machines, each update causes an invalidation
—Improved with TATAS variant, but still a big spike on each

release of the lock, even on cache-coherent machines

33

Test & Set Lock with Exponential Backoff

type lock = (unlocked, locked)

procedure acquire_lock (L : ^lock)
 delay : integer := 1

// NOTE: test and set returns old value
 while test_and_set (L) = locked
 pause (delay) // wait this many units of time
 delay := delay * 2 // double delay each time

procedure release_lock (L : ^lock)
 L^ := unlocked

34

Test & Set Lock with Exp. Backoff Notes

• Similar to code developed by Tom Anderson

• Grants requests in unpredictable order

• Starvation is theoretically possible, but unlikely in practice

• Spins (with backoff) on remote locations

• Atomic primitives: test_and_set

• Pragmatics: need to cap probe delay to some maximum

IEEE TPDS, January 1990

35

Array-based Lock Notes

• Grants requests in FIFO order

• Space: O(pn) space for p processes and n locks

36

The MCS List-based Queue Lock
type qnode = record
 next : ^qnode
 locked : Boolean
type lock = ^qnode // initialized to nil

// parameter I, below, points to a qnode record allocated (in an enclosing scope) in
// shared memory locally-accessible to the invoking processor
procedure acquire_lock (L : ^lock, I : ^qnode)
 I->next := nil
 predecessor : ^qnode := fetch_and_store (L, I)
 if predecessor != nil // queue was non-empty
 I->locked := true
 predecessor->next := I
 repeat while I->locked // spin

procedure release_lock (L : ^lock, I: ^qnode)
 if I->next = nil // no known successor
 if compare_and_swap (L, I, nil) return
 // compare_and_swap returns true iff it stored
 repeat while I->next = nil // spin
 I->next->locked := false

37

tail

4321

spin spinrun

MCS Lock In Action - I

Process 4 arrives, attempting to acquire lock

arriving

38

tail

4321

spin spinrun

MCS Lock In Action - II

• Process 4 swaps self into tail pointer

• Acquires pointer to predecessor (3) from swap on tail

• Note: 3 can’t leave without noticing that one or more
successors will link in behind it because the tail no longer
points to 3

arriving

39

tail

4321

spin spinrun

MCS Lock In Action - III

4 links behind predecessor (3)

arriving

40

tail

4321

spin spinrun

MCS Lock In Action - IV

4 links now spins until 3 signals that the lock is available

by setting a flag in 4’s lock record

spin

41

tail

4321

spin spinleaving

MCS Lock In Action - V

• Process 1 prepares to release lock
—if it’s next field is set, signal successor directly
—suppose 1’s next pointer is still null

– attempt a compare_and_swap on the tail pointer
– finds that tail no longer points to self
– waits until successor pointer is valid (already points to 2 in diagram)
– signal successor (process 2)

spin

42

tail

432

run spin

MCS Lock In Action - VI

1

leaving spin

43

MCS Lock Notes

• Grants requests in FIFO order
• Space: 2p + n words of space for p processes and n locks
• Requires a local "queue node" to be passed in as a parameter

—alternatively, additional code can allocate these dynamically in
acquire_lock, and look them up in a table in release_lock).

• Spins only on local locations
— cache-coherent and non-cache-coherent machines

• Atomic primitives
—fetch_and_store and (ideally) compare_and_swap

ASPLOS, April 1991
ACM TOCS, February 1991

44

Impact of the MCS Lock

• Key lesson: importance of reducing memory traffic in
synchronization
—local spinning technique influenced virtually all practical scalable

synchronization algorithms since

• 2006 Edsger Dijkstra Prize in distributed computing
—“an outstanding paper on the principles of distributed computing, whose

significance and impact on the theory and/or practice of distributed
computing has been evident for at least a decade”

—“probably the most influential practical mutual exclusion algorithm ever”
—“vastly superior to all previous mutual exclusion algorithms”
—fast, scalable, and fair in a wide variety of multiprocessor systems
—avoids need to pre-allocate memory for a fixed, maximum # of threads
—widely used: e.g., monitor locks used in Java VMs are variants of MCS

45

CLH List-based Queue Lock

type qnode = record
 prev : ^qnode
 succ_must_wait : Boolean

type lock = ^qnode // initialized to point to an unowned qnode

procedure acquire_lock (L : ^lock, I : ^qnode)
 I->succ_must_wait := true
 pred : ^qnode := I->prev := fetch_and_store(L, I)
 repeat while pred->succ_must_wait

procedure release_lock (ref I : ^qnode)
 pred : ^qnode := I->prev
 I->succ_must_wait := false
 I := pred // take pred's qnode

46

tail

spin spin spinrun

CLH Lock In Action

47

CLH Queue Lock Notes

• Discovered twice, independently
—Travis Craig (University of Washington)

– TR 93-02-02, February 1993
—Anders Landin and Eric Hagersten (Swedish Institute of CS)

– IPPS, 1994

• Space: 2p + 3n words of space for p processes and n locks
—MCS lock requires 2p + n words

• Requires a local "queue node" to be passed in as a parameter

• Spins only on local locations on a cache-coherent machine

• Local-only spinning possible when lacking coherent cache
—can modify implementation to use an extra level of indirection

(local spinning variant not shown)

• Atomic primitives: fetch_and_store

48

Case Study:

Evaluating Lock
Implementations for the

BBN Butterfly and Sequent
Symmetry

J. Mellor-Crummey and M. Scott. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM
Transactions on Computer Systems, 9(1):21-65, Feb. 1991.

49

BBN Butterfly

• 8 MHz MC68000
• 24-bit virtual address space
• 1-4 MB memory per PE
• log4 depth switching network
• Packet switched, non-blocking
• Remote reference

—4us (no contention)
—5x local reference

• Collisions in network
—1 reference succeeds
—others aborted and retried later

• 16-bit atomic operations
—fetch_clear_then_add
—fetch_clear_then_xor

50

Sequent Symmetry

• 16 MHz Intel 80386

• Up to 30 CPUs

• 64KB 2-way set associative cache

• Snoopy coherence

• various logical and arithmetic ops
—no return values, condition codes only

51

Lock Comparison

BBN Butterfly: distributed memory, no coherent caches

empty critical
section

52

Lock Comparison (Selected Locks Only)

BBN Butterfly: distributed memory, no coherent caches

empty critical
section

53

Lock Comparison (Selected Locks Only)

Sequent Symmetry: shared-bus, coherent caches

empty critical
section

54

Lock Comparison (Selected Locks Only)

Sequent Symmetry: shared-bus, coherent caches

small critical
section

55

References

• J. Mellor-Crummey, M. L. Scott: Synchronization without Contention. ASPLOS, 269-
278, 1991.

• J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21-65, Feb.
1991.

• T. E. Anderson, The performance of spin lock alternatives for shared-memory
multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6-16,
Jan. 1990.

• Gary Graunke and Shreekant Thakkar, Synchronization Algorithms for Shared-
Memory Multiprocessors, Computer, 23(6):60-69, June 1990.

• Travis Craig, Building FIFO and priority queuing spin locks from atomic swap.
University of Washington, Dept. of Computer Science, TR 93-02-02, Feb. 1993.

• Anders Landin and Eric Hagersten. Queue locks on cache coherent multiprocessors.
International Parallel Processing Symposium, pages 26-29, 1994.

56

57

Lemma: For j, 0 ≤ j ≤ n-1, there are at most n - j threads at level j

• Proof by induction on j.

• Base case: j = 0 is trivially true.

• Induction hypothesis: at most n-j+1 threads at level j-1

• Induction step:
—show that at least one thread cannot progress to level j
—argue by contradiction: assume there are n-j+1 threads at level j

– let A be the last thread at level j to write to victim[j]
– because A is last, for any other B at level j

 writeB(victim[j] = B) → writeA(victim[j] = A)

58

• Evaluation criteria
—hardware support
—performance: latency, throughput
—fairness

• Mutual exclusion
—load-store based protocols
—test and set locks
—ticket locks
—queuing locks

• Barriers
—centralized barriers: counters and flags
—software combining trees
—tournament barrier
—dissemination barrier

• Problems and solutions
—re-initialization via sense switching
—handling counter overflow

59

Maintain the integrity of shared data structures

• Goal: avoid conflicting updates
—read/write conflicts
—write/write conflicts

