
1

Review & Computing with First-class Functions

Corky Cartwright
Department of Computer Science

Rice University

COMP 210, Fall 2007 2

Plan for today

• Review of the design recipe including some
in-class drill.

• Do arrangements problem in class
• More immersion in computing with

functions as values.

COMP 210, Fall 2007 3

Review: the Design Recipe
How should I go about writing programs?
• Analyze problem, which includes:

• defining any requisite data types (and templates) that are not primitive;
• determining what top-level (visible) functions must written.

• For each top-level function f to be written:
1. State contract (type signature) and purpose of f.
2. Give input-output examples for f written as tests
3. Select and instantiate a template for the function body. In most cases, the

template is simple structural recursion. Other common examples include:
1. a degenerate template, e.g. trivial function, delegation to help function
2. minor varations on structural recursion

1. simultaneous structural recursion, e.g. adding two vectors represented as lists
2. extra base cases, but often better handled by a help function, e.g. max of list

3. a generative recursion template.
4. Code the function by filling in the template
5. Run the tests and confirm that they succeed.

• Writing a function may require help functions. Add these functions to the
list of functions to be written. Use local? Perhaps.

COMP 210, Fall 2007 4

Extra Base Cases?
• ; fib: nat -> nat

; Purpose computes nth Fibonacci number
(define (fib n)
 (cond [(= n 0) 1)]
 [(= n 1) 1)]
 [else (+ (fib (- n 1)) (fib (- n 2)))]))

• ; max-list: list-of-numbers -> number
; Purpose: (max-list lon) finds the maximum element in
; lon; throws an error on the empty list
(define (max-list lon)
 (local [(define (ml-help ans lon)
 (cond [(empty? lon) ans]
 [(< ans (first lon)) (ml-help (first lon) (rest lon))]
 [else (ml-help ans (rest lon))]))]
 (cond [(empty? lon) (error 'max-list "applied to empty")]
 [else (ml-help (first lon) (rest lon))])))

COMP 210, Fall 2007 5

What goes in a template?
• Division into cases corresponding to an inductive

definition of the data.
• Identification of recursive sub-problems (form of

recursive calls)
• No calls on auxiliary functions or predicates other

than those required for case analysis, such as:
• testing that input has form assumed in contract
• including logic from the "glue" code (what is inserted

in the ellipsis of a properly written template)

COMP 210, Fall 2007 6

Template vs. Template Instantiation
• Template is part of a data definition

• function name is generic
• extra arguments to function are unspecified

• Template Instantiation is a prelude to writing a
specific function. After you select the
appropriate template, you tailor it to the function
you are writing:

• function name is specific
• extra argument are specified in header and in

recursive calls if possible
• Nothing else appears in a template instantiation.

COMP 210, Fall 2007 7

More review materials
• Homework problems
• Look at past first and second mid-terms

from Comp 210, ignoring last 5 pages of
2nd exam which cover

• Parsing
• Graph traversal
• Software engineering trade-off questions

COMP 210, Fall 2007 8

Exam Description
• Take home. Closed book. Closed computer.
• Don't worry about Scheme library

functions. You will be given all of the
operations you can use in coding.

• Three hours with optional 15 minute break
in middle.

COMP 210, Fall 2007 9

Class exercise
• Write insert-everywhere/in-all-words (problem

12.4.2 from HTDP)
• See link to 12.4.2.sol.ss on wiki

COMP 210, Fall 2007 10

Using Functions to Represent Objects
• How can we represent a pair so that the only

operations that code can perform on pairs are:
 (create-pair x y)
 (pair-first p)
 (pair-second p)
 (pair-equal? p1 p2)

• What if we represent a pair as a list? As a struct?
Structs are not as robust as you might think. In the
advanced language level try:
 (define-struct Pair (first second))
 (define p (make-Pair 1 2))
 (set-Pair-first! P 17)
 p

•

COMP 210, Fall 2007 11

Objects as closures

(define (make-pair x y)
 (lambda (msg)
 (cond [(equal? msg 'first) (lambda () x)]
 [(equal? msg 'second) (lambda () y)]
 [(equal? msg 'equal)
 (lambda (p)
 (and (equal? (pair-first p) x)
 (equal? (pair-second p) y)))])))
(define (pair-first p) ((p 'first)))
(define (pair-second p) ((p 'second)))
(define (pair-equal? p1 p2) ((p1 'equal) p2))

COMP 210, Fall 2007 12

For Next Class
• New Homework due Monday
• Labs today and tomorrow
• Reading: review for the exam.

