
1

 Data Definitions

Prof. Robert “Corky” Cartwright

Prof. Vivek Sarkar

Department of Computer Science

Rice University

Recap of Previous Lecture
• Primitive types and values
• numbers, booleans, symbols

• Variable definitions, function definitions
• Operators
• Arithmetic, relational, function application

• Rules for reducing programs
• Leftmost reduction

• Syntax Errors & Runtime Errors
• Conditional Expressions

Challenge Problem from
Previous Lecture

Can you think of a Scheme program that
exibits different behaviors with rightmost
reduction instead of leftmost?

Consider the following example:

(+ (/ 1 0) (+ 'A 12))

Error conditions can make reasoning about
programs different from standard math e.g.,
you may not always preserve program
behavior by replacing (* 0 (f x)) by 0

COMP 211, Spring 2010

COMP 211, Spring 2010 4

Today’s Goals
• Compound data definitions and

templates
• Structures

• Inductive (self-referential)
compound data definitions and
templates
• Lists

• if expressions

COMP 211, Spring 2010 5

Compound Data:
Structures

• Scheme structures can be used to combine a
fixed number of values into a single piece of data
e.g.,

• Problem description
• “A complex number has a real part and an imaginary

part”

• Data definition
;; cmplx is a structure (make-cmplx real imag)
;; where real and imag are real numbers
(define-struct cmplx (real imag))

 real imag

number number

The structure,
cmplx, contains
two numbers

COMP 211, Spring 2010 6

Operations on Structures
• The following operations are automatically

generated from the define-struct declaration
for cmplx

• constructor: make-cmplx
• accessors: cmplx-real, cmplx-imag
• recognizer: cmplx?

• Reductions for field accessors and structure
recognizers

 (cmplx-imag (make-cmplx 1 2)) => 2
 (cmplx? (make-cmplx 3 4)) => true

COMP 211, Spring 2010 7

Structures are values
• A structure returned by a constructor is a value

(and hence is not reducible)
• A structure is like a box with a value in each compartment
• It may be big, but it’s just like 1, true, or ‘Rabbit
• It may be big, but it is NOT a reducible expression, like (+ 1 2)

• Notes:
• (make-cmplx 1 2) is a value
• (make-cmplx x y) is not a value (why not?)
• (make-cmplx 10 (+ 25 25)) is not a value (why not?)

COMP 211, Spring 2010 8

An Aside: Converting our cmplx structure
to a complex number in DrScheme

;; define the cmplx structure
(define-struct cmplx (real imag))

;; define eval function for converting cmplx to a
Scheme number
(define (eval z) (+ (cmplx-real z)
 (* (cmplx-imag z) (sqrt
-1))))

;; define variables C1, C2
(define C1 (make-cmplx 1 2))
(define C2 (make-cmplx 1 -2))

;; evaluate C1 and C1*C2
> (eval C1)
1+2i
> (* (eval C1) (eval C2))
5

COMP 211, Spring 2010 9

Template for Defined Data Types
• We start from the data definition. Example:
;; A course is a structure (make-course dept num size)
;; where dept is a symbol, and num and size are numbers
(define-struct course (dept num size))

• A function template must include a model of
all operations that can be performed on input
structure arguments e.g., here’s a template for
function f with argument c of type course

 ;; (define (f c)
 ;; ... (course-dept c) ...
 ;; ... (course-num c) ...
 ;; ... (course-size c) ...)

COMP 211, Spring 2010 10

Type --> Template --> Code
• Template for function processing a course

;; (define (f ... c ...)
;; ... (course-dept c) ...
;; ... (course-num c) ...
;; ... (course-size c) ...)

• Instantiation of template for big-class?
;; (define (big-class? c)
;; ... (course-dept c) ...
;; ... (course-num c) ...
;; ... (course-size c) ...)

• Templates help us write the code
 (define (big-class? c) (>= (course-size c) 30))

• Sophisticated types -> sophisticated templates …
helping us write correct, sophisticated code

Structures can be nested
(define-struct course (dept num size))

(define-struct department

 (school numFaculty numMajors))

COMP 211, Spring 2010

dept num size

number numberschool numFaculty numMajors

number numbersymbol

Limitations of structures
• Structures cannot contain variable

numbers of elements
• Structures are impractical for large

numbers of elements e.g.,
(define-struct BeerBikeTeam

 (rider1 rider2 … rider10

 chugger1 chugger2 …
chugger10

 …)

)
COMP 211, Spring 2010

Lists: defining Compound Data with
Variable Number of Elements

• How can we generate arbitrarily large data
objects like lists?

• Use a two-element struct as a building block
to chain together multiple elements e.g.,
(define-struct cons (first rest))

COMP 211, Spring 2010

 first rest

Biker1 first rest

 first restBiker2

Biker10 empty

COMP 211, Spring 2010 14

 Inductive Data Definitions for Lists

• Use self-reference (induction/recursion)

• Example:
;; A list-of-numbers is either
;; empty, or
;; (cons n lon)
;; where n is a number and lon is a list-of-numbers

COMP 211, Spring 2010 15

Built-in support for lists in Scheme
• cons is a built-in struct definition in Scheme, with

special abbreviated names for its operations

Normal struct
operation

Equivalent list operation
(what you should use)

make-cons cons
Can also use ‘(e1 e2 …) as shorthand
for a list, instead of nested cons
operations

cons-first first

cons-rest rest (teaching dialects of Scheme also
check that rest is a list)

cons? cons?

COMP 211, Spring 2010 16

 Template for Inductive Data Type

;; (define (f ... alon ...)
;; (cond
;; [(empty? alon) ...] ;; empty case
;; [(cons? alon) ... (first alon) ... ;; cons case
;; ... (f ... (rest alon) ...) ...]))

• Processing inductive (self-referential) data requires recursion
(self-reference) in the computation.

COMP 211, Spring 2010 17

If Expressions
• Simplified notation for common conditional expressions.
• Form:
 (if question result-1 result-2)

abbreviates:

(cond [question result-1]
 [else result-2])

• Hence,

 (if true result-1 result-2) => result-1
 (if false result-1 result-2) => result-2

COMP 211, Spring 2010 18

Extended Example: Insertion Sort

• Problem: given a list-of-numbers,
sort it into ascending (non-
decreasing) order.

• The solution that we will develop is
the sample solution in the Scheme
HW Guide.

 https://wiki.rice.edu/confluence/display/cswiki/211Guidelines

Auxiliary function: insert
;; Contract and purpose

;; insert: number list-of-numbers -> list-of-numbers

;; Purpose: (insert n alon), where alon is sorted in
ascending order, returns a list containing n and the
elements of alon also sorted in ascending order

;; Examples and Tests:

(check-expect (insert 17 empty) '(17))

(check-expect (insert 17 '(17)) '(17 17))

(check-expect (insert 4 '(1 2 3)) '(1 2 3 4))

(check-expect (insert 0 '(1 2 3)) '(0 1 2 3))

(check-expect (insert 2 '(1 1 3 4)) '(1 1 2 3 4))

COMP 211, Spring 2010

Auxiliary function: insert (cont.)
#| Template instantiation
 (define (insert n a-lon)
 (cond
 [(empty? a-lon) ...]
 [(cons? a-lon) ... (first a-lon) ...
 ... (insert n (rest a-lon)) ...]))
|#
;; Code
 (define (insert n a-lon)
 (cond
 [(empty? a-lon) (cons n empty)]
 [(cons? a-lon)
 (if (<= n (first a-lon)) (cons n a-lon)
 (cons (first a-lon) (insert n (rest a-lon))))]))

COMP 211, Spring 2010

Main function: sort
;; Main function: sort

;; Contract and purpose:

;; sort: list-of-numbers -> list-of-numbers

;; Purpose: (sort alon) returns the a list with same elements
(including duplicates) as alon but in ascending order.

;; Examples and Tests:

(check-expect (sort empty) empty)

(check-expect (sort '(0)) '(0))

(check-expect (sort '(1 2 3)) '(1 2 3))

(check-expect (sort '(3 2 1)) '(1 2 3))

(check-expect (sort '(10 -1 10 -20 5)) '(-20 -1 5 10 10))

COMP 211, Spring 2010

Main function: sort
(contd)

#| Template Instantiation:

 (define (sort a-lon)

 (cond

 [(empty? a-lon) ...]

 [(cons? a-lon) ... (first a-lon) ...

 ... (sort (rest a-lon)) ...]))

|#

;; Code:

 (define (sort a-lon)

 (cond

 [(empty? a-lon) empty]

 [(cons? a-lon) (insert (first a-lon) (sort (rest a-lon)))]))

COMP 211, Spring 2010

COMP 211, Spring 2010 23

The Design Recipe (Again!)
How should I go about writing programs?
1. Analyze problem and define any requisite

data types
2. State contract (type) and purpose for

function that solves the problem
3. Give examples of function use and result
4. Select and instantiate a template for the

function body
5. Write the function itself
6. Test it, and confirm that tests succeeded

The order of the steps of the recipe is important

COMP 211, Spring 2010 24

Announcements
• Monday (Jan 18th) is a holiday

• No lecture on Monday
• Monday labs have been rescheduled to Wednesday

(Jan 20th)

• Reminder: work on HW01, due at 10am on Jan
22nd

• See course homework guidelines for details,
especially hand evaluation problems

• https://wiki.rice.edu/confluence/display/cswiki/211Guidelines

• Next class on Jan 20th: data-directed design
using other inductive types

https://wiki.rice.edu/confluence/display/cswiki/211Guidelines

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

