
 1

Visibility, Type Checking and Generics

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2010 2

 Review: What are Language Levels Hiding?

• In principle, nothing …
Java could have supported a notion of immutable
classes with the same semantics as the DrJava
Intermediate Level.

• But Java is what it is …
• Transforming DrJava IL code to full Java code:

• Explicit constructors (initializers!)
• Explicit accessors
• Explicit overriding of equals
• Explicit overriding of hashCode()
• Explicit overriding of toString()

COMP 211, Spring 2010 3

 Review: Java Constructors
The Java virtual machine supports an operation called new that allocates an object of
specified type in the heap. What is the heap? An area in address space for dynamically
allocated (newed) objects. new also “zeros” out the contents of the allocated object. For
each Java type, a zero representation is the “default” value. For object (reference) types, 0
is the null reference (pointer to nothing). For primitive types (int, double, boolean,
char, …), 0 is the zero values for numeric types, 0 is false for boolean, the null
character char, …

The empty constructor does nothing! It takes no arguments leaves the default initialization
performed by zero-ing in place.

Full Java generates a default empty constructor for any class with no constructor declared in
the source (written) code for the class.

Java supports multiple constructors for a class as long as their argument list types
(signatures) are different.

With the exception of the empty constructor used in the singleton pattern, you do not need
to write any constructors until we move on to Full Java in our assignments (next week).

COMP 211, Spring 2010 4

 Review: Accessors in Full Java

In Full Java, accessors are ordinary methods. You must
define them for private fields if you want other classes to
see the field.

What is private anyway?

COMP 211, Spring 2010 5

Simple Visibility

• Four visibility modifiers in Java
• default (package)
• public
• private
• protected

• Visibility modifiers apply to classes and class members
• In simple student programs, default would suffice except for:

• Java constraint on interface members: must be public; the unlabeled members
delcared in an interface are automatically public.

• JUnit insists that test classes and the test methods they contain are public.
• Overriding the member of a class cannot narrow its visibility. Some methods

inherited from Object like equals and toString are public

• DrJava language levels conversion promotes default visibility for
methods to public except for instance fields which are made private.
Elementary level prohibits explicit modifiers.

COMP 211, Spring 2010 6

 Full Java Visibility

• Java supports an infinite number of distinct name spaces
called packages. Each package has a name consisting of a
sequence of conventional Java identifiers (names) separated
by periods, e.g., java.lang. We have been using (and will
continue to use) the default package which has no name.

• Libraries and frameworks (except those developed by Sun as
part of the Java core libraries) almost always use package
names that begin with the name of the organization that
created it, e.g., edu.rice.cs.drjava.

• Named packages are useful in building production (industrial
strength) software but not is simple pedagogic programs.

• We defer discussing the interaction between packages and
visibility until later in the course.

COMP 211, Spring 2010 7

 Static Type Checking

• A static type system consists of a collection of local rules specifying constraints on the
syntactic form of programs. Excluding generics, Java type rules are straightforward and
intuitive:

• Variables and methods always have their declared types.
• If the context of an expression requires a given type, an expression of some subtype

may be used instead. Examples: passing an Integer argument to a method that
has a parameter of Object type.

• Cast expressions have the type specified in the cast. Casting to a disjoint type is
forbidden.

• Conditional expressions return the least upper bound of the consequent and
alternative types.

• The type (signature) of an overriding method must exactly match the overridden
method except that the output type can be narrowed (restricted) in an overriding
method. Example: see file IntList.dj1 where the output type of
 Object forEmptyIntList(EmptyIntList host)
is narrowed in visitors.

COMP 211, Spring 2010 8

 Generics in a Nutshell

• A generic class (interface) is a class parameterized by types T, U, … most often a
single type T, e.g. List<T>

• Within a generic class, the type parameters can be used like conventional types
(almost).

• Outside a generic class, clients always refer to instantiations of the class, e.g.
List<Integer>

• Generic clients can use their type parameters in such instantations, e.g., the code
in List<T> can refer to EmptyList<T>

• Static members of a generic class are not in the scope of the classes type
parameters.

• Generic subtyping is non-variant (invariant?): C<S> <: (is a subthype of) C<T>
Iff S = T. But it respects erased (ignoring parameterization) class subtyping:
A<S> <: B<T> Iff S = T and A <: B

• Generics are not available in DrJava language levels.

COMP 211, Spring 2010 9

 Examples:
• See List<E>, ListVisitor<E, R>, … etc.,

in List.java in the entry for this lecture on
course webpage.

COMP 211, Spring 2010 10

 Generics in a Nutshell, cont.

• Every type parameter has a fixed upper bound. The
default is Object but other bounds are sometimes
necessary. Bounds are specified using an extends
clause after the binding occurrence of the type parameter,
e.g., T extends Number

• Bounds can refer to the type parameter being bound.
Example: look at Enum<E> in java.lang

• class Enum<E extends Enum<E>>
• Read about Enum at java.sun.com
• Each value of Enum type is a singleton class E

extending Enum<E>

COMP 211, Spring 2010 11

 Generics in a Nutshell, cont.

A Java class may contain polymorphic (generic) methods
parameterized by types T, U, … (typically only one), e.g.,

abstract <R> R accept(ListVisitor<E,R> v);

The scope of the type parameter is restricted to the method
definition (return type, parameter list, body).

• The class containing a polymorphic method is not necessarily
generic.

• The type parameters for a polymorphic method are separately
bound at each call site.

• The bindings of polymorphic method type parameters are
typically inferred by the Java compiler.

• Study the accept methods in the example file List.java

COMP 211, Spring 2010 12

 Generics in a Nutshell, cont.

Why generics? Much more precise type-checking. Cleaner code without
casts. Well-typed programs should never die.

More Advanced Topics:

• Wildcard types which provide co-variant and contra-variant
subtyping.

• Details of type inference; in the presence of wildcard types, it is broken.
See the recent paper Java Type Inference Is Broken: Can We Fix It?,

• Java generics are not first class. new T(), new T[], ...

(where T is a type parameter) are illegal. Parameterized
casts are unimplementable (with a few exceptions) and break type safety.

• Can Java generics become first-class in a future version of Java? Perhaps.

COMP 211, Spring 2010 13

For Next Class
• Homework due on Friday. It consists of doing HW6 in

Java given a Scheme solution.
• Full answer involves using the visitor pattern.
• Suggestion: do the problem using the interpreter

pattern first to write the equivalent of the Scheme
functions in the solution that process boolean
formulas (represented as abstract syntax trees).

• Convert these methods to visitor objects once you
have the program working. If you can't get visitors to
work, a flawless interpreter based solution with get
85% credit for the assignment.

	Visibility, Type Checking and Generics
	What are Language Levels Hiding?
	Explicit Constructors
	Slide 4
	Simple Visibility
	Full Java Visibility
	Static Type Checking
	Generics in a Nutshell
	Examples:
	Generics in a Nutshell, cont.
	Slide 11
	Slide 12
	For Next Class

