
 1

First-class Functions and Patterns

Corky Cartwright

Department of Computer Science

Rice University

COMP 211, Spring 2010 2

Encoding First-class Functions in Java

• Java methods are not data values; they cannot
be used as values.

• But java classes include methods so we can
implicitly pass methods (functions) by passing
class instances containing the desired method
code.

• Moreover, Java includes a mechanism that
closes over the free variables in the method
definition!

• Hence, first-class functions (closures) are
available implicitly, but the syntax is wordy.

• Example: Scheme map

COMP 211, Spring 2010 3

 Interfaces for Representing Functions
• For accurate typing, we need different interfaces for different

arities. With generics, we can define parameterized interfaces
for each arity. For now, we will have to define separate
interfaces for each desired typing.

• map example:

interface Lambda {
 Object apply(Object arg); // Object -> Object
}

abstract class ObjectList {
 ObjectList cons(Object n) {
 return new ConsObjectList(n, this);
 }
 abstract ObjectList map(Lambda f);
}
 ...

COMP 211, Spring 2010 4

 Representing Specific Functions

• For each function that we want to use a value, we must define a class,
preferably a singleton. Since the class has no fields, all instances are
effectively identical.

• Defining a class seems unduly heavyweight, but it works in principle.
• In OO parlance, an instance of such a class is called a strategy.
• Java provides a lightweight notation for singleton classes called

anonymous classes. Moreover these classes can refer to fields and
final method variables that are in scope. In DrJava language levels,
all variables are final. final fields and variables cannot be rebound
to new values after they are initially defined (immutable). final
methods cannot be overridden.

• Anonymous class notation:

new <type>() {
 <member1>
 ...
 <membern>
}

COMP 211, Spring 2010 5

 Anonymous Class Example
new Lambda() {
Object apply(Object arg) {
 return EmptyObjectList.ONLY.cons(arg);
}

}

There are pending proposals to provide better notation
for lambda abstractions. For now, you must pay
attention to the interface signature defined in the
library/program you are using.
This interface (Lambda) together with its implentation
classes is called the strategy pattern.

COMP 211, Spring 2010 6

 Another Example: Building Sort Objects

• Recall the IntList class from Lecture 20. Assume that we want to
create sort functions that sort IntLists in different ways (using
different algorithms and orderings). How can create such objects and
how can we apply them to IntLists? By

• Defining a Sorter interface
interface Sorter {
 IntList sort(IntList host);
}

• Defining a hook in IntList for applying Sorter objects to this.
• Defining strategy objects that implement Sorter.

• Note: we introduced an interface specific to this problem (instead of
using Lambda to suppot a more precise typing. (With generics
(classes and methods parameerized by type) there is no advantage to
creating a special interface.)

COMP 211, Spring 2010 7

 Naive Coding of UpSorter

class UpSorter implements Sorter {
 private UpSorter() { }
 IntList sort(IntList host) {
 if (host.equals(EmptyIntList.ONLY)) return host;
 ConsIntList cHost = (ConsIntList) host;
 return insert(sort(cHost.rest()), cHost.first());
 }
 IntList insert(IntList host, int elt) {
 if (host.equals(EmptyIntList.ONLY))
 return EmptyIntList.ONLY.cons(elt);
 ConsIntList cHost = (ConsIntList) host;
 if (elt <= cHost.first()) return cHost.cons(elt);
 return insert(cHost.rest(), elt).cons(cHost.first());
 }
}

COMP 211, Spring 2010 8

What Is Ugly About Class UpSorter?

• It defines sorting code statically using a decision tree of
predicates, just like a functional program. Ugh …

• How can we do better? Need hooks in our IntList class
that let us write essentially the interpreter pattern code
for a method on IntList as a first-class data object. This
is really a first-class function written according to the
interpreter pattern so it has extra structure, namely a
clause (method) for each variant (concrete class) in the
composite. Think of it as a closure (data object
representing a function) with explicit interpreter pattern
structure.

COMP 211, Spring 2010 9

 Deconstructing the Interpreter Pattern
• In the interpreter pattern, the method is declared as
abstract in the root class/interface and defined
concretely in each concrete variant (subclass). To
package the code for a method defined by the interpreter
pattern in a separate object (called a visitor) we need to
write each concrete method definition:

class ... {
 Object forEmptyIntList(EmptyIntList host) {
 ... <method code using EmptyIntList host instead of this> ...
 }
 Object forConsIntList(ConsIntList host) {
 ... <method code using ConsIntList host instead of this> ...
 }
}

COMP 211, Spring 2010 10

 Invoking Visitors
• The corresponding composite class must include hooks to invoke visitors for the class. To

specify the signature of these hooks, we need to introduce an interface for all visitors that
return IntList
interface IntListVisitor {
 IntList forEmptyIntList(EmptyIntList host)
 IntList forConsIntList(ConsIntList host)
}

• The hook methods have trivial definitions:
abstract class IntList {
 ...
 abstract Object accept(IntListVisitor v);
}
class EmptyIntList extends IntList {
 ...
 IntList accept(IntListVisitor v) { return forEmptyIntList(this); }
}
class ConsIntList extends IntList {
 ...
 IntList accept(IntListVisitor v) { return forConsIntList(this); }
}

COMP 211, Spring 2010 11

 Defining Visitors
• Easy case: method of no arguments.
• Example: upsort (we drop the "up" qualifier since ascending order is assumed)

class UpSortVisitor implements IntListVisitor {
 IntList forEmptyIntList(EmptyIntList host) { return host; }
 IntList forConsIntList(ConsIntList host) {
 return host.rest().accept(this).insert(host.first());
 }
}

• Oops! We have to write insert as a visitor. But it has an argument! We embed the argument in the visitor
object (which is exactly what happens when we apply a Scheme closure):

class InsertVisitor implements IntListVisitor {
 int elt;
 IntList forEmptyIntList(EmptyIntList host) { return host.cons(elt); }
 IntList forConsIntList(ConsIntList host) {
 int first = host.first();
 IntList rest = host.rest();
 if (elt <= first) return host.cons(elt);
 return rest.accept(this).cons(first);
 }
}

COMP 211, Spring 2010 12

 Defining Visitors cont.

Last line of UpSortVisitor becomes
 return host.rest().accept(this).accept(new InsertVisitor(host.first()));

Yielding:

class UpSortVisitor {
 IntList forEmptyIntList(EmptyIntList host) { return host; }
 IntList forConsIntList(ConsIntList host) {
 /* visitor equivalent of rest().sort().insert(first) */
 return host.rest().accept(this).accept(new InsertVisitor(host.first()));
 }
}

The preceding is standard OO visitor code. You need to learn to understand it as a transliteration of
cleaner interpreter code which is a transliteration of still cleaner functional code.

COMP 211, Spring 2010 13

 Defining Visitors cont.

• Remember: the problem decomposition is not affected by
using visitor pattern; only the syntax!

• Why use visitors? There is a compelling reason in addition
to "elegance". It the same reason why the interpreter
pattern is far superior to static method definitions:
inheritance.

• But SortVisitor is a closure class akin to UpSorter.
So why bother with the Sorter interface at all? We can
use IntListVisitor instead.

• What is the primary software engineering disadvantage of
visitors (and OO in general)? Dynamic dispatch makes
tracing code during debugging difficult.

COMP 211, Spring 2010 14

 UpSort Example

• Go to DrJava
• See code files saved with this lecture in

the course wiki.

COMP 211, Spring 2010 15

Reprise: Anonymous Classes
• What do free variables mean inside anonymous

classes. What do they mean in λ-expressions?
• In Java, the free variables can be either:

• fields, or
• final local (method) variables.

• Use them in doing the filter problem in HW8.

COMP 211, Spring 2010 16

For Next Class
• Labs today and tomorrow. Covering first-class

functions and visitors.
• Get comfortable with visitors; you will use them

extensively in the next assignment.
• Please report any problems with DrJava

Language Levels. I have not had any problems
in testing/revising class solutions.

	Loose Ends and First-class Functions
	Encoding First-class Functions in Java
	Interfaces for Representing Functions
	 Representing Specific Funcions
	Anonymous Class Example
	Another Example: Building Sort Objects
	Naive Coding of UpSorter
	What Is Ugly About Class UpSorter?
	Deconstructing the Interpreter Pattern
	Invoking Visitors
	 Defining Visitors
	Slide 12
	 Defining Visitors cont.
	UpSort Example
	Reprise: Anonymous Classes
	For Next Class

