
1

Adapting Our Design Recipe to Java

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

If and Other Statements
• Java is a statement based language rather than an

expression language.
• if statements are used to express explicit conditional

control in most OO languages including Java. Note: if
statements are used much less frequently in well-written
OO code than they are in functional or procedural code.

• An if statement has the following syntax:
if (test) statement
else statement

• What other forms of statements have we used implicitly up
to this point?

• Variable definition: type var = expr;
• Return: return expr;

COMP 211, Spring 2009 3

Method Definition Revisited
class Entry {
 /* fields */
 String name, address, phone;

 /** return true iff name matches keyName.*/
 Entry match(String keyName) {
 if (keyName.equals(name)) return true;
 else return false;
 }
 // Note: version without if was much cleaner
}

COMP 211, Spring 2009 4

Reprise: the Design Recipe (Scheme)
How should I go about writing programs?
• Analyze problem, which includes:

• defining any data types (and templates) that are not primitive;
• determining what top-level (visible) functions must written.

• For each top-level function f to be written:
1. State contract (type signature) and purpose of f.
2. Give input-output examples for f written as tests
3. Select and instantiate a template for the function body. Code the

function by filling in the template
4. Run the tests and confirm that they succeed.

• Writing a function may require help functions. Add these
functions to the list of functions to be written. Use local?
Perhaps.

COMP 211, Spring 2009 5

The Design Recipe for Java
How should I go about writing programs?
• Analyze problem, which includes:

• defining any classes C for data types that are not primitive;
• determining what visible methods should appear in each class.

• For each visible method m in each class C :
1. Write the header (type signature) and contract (purpose) for m.
2. Create a test class for C (or the set of tightly coupled classes

including C if it does not already exist) and write a test method
for m that checks it behavior on representative inputs.

3. Select and instantiate a template for the method body.
4. Code the method by filling in the template
5. Run the tests and confirm that they succeed.

• Writing a method m may require help methods. Add these
methods to the class C containing m. Use private? Perhaps.

COMP 211, Spring 2009 6

Java Data Types
• Primitive types: int long short byte double float char boolean
• Important primitive operations dicussed in monogaph and lab. Written in

conventional infix/prefix notatin following C conventions
• Object types

• Organized in a strict hierarchy with Object at the top.
• Every class C except Object has an immediate superclass, which is the parent

of C in the hierarchy.
• A descendant in the class hierarchy is called a subclass. B is a subclass of A

iff A is a superclass of B.
• Subclassing implies subtyping and vice-versa: if B is a subclass of A, then B is

a subtype of A. If class B is a subtype of class A, then B is a subclass of A
• An object o is an instance of only one class but belongs to a hierarchy of types.
• Each subclass C inherits (includes) all of the members of its superclass.
• Declared members of C augment the inherited members with one exception: if

C declares a method m defined in the superclass, new definition overrides old.

COMP 211, Spring 2009 7

OO style
• OO languages are designed to support writing

programs in which dynamic dispatch is the
principal control mechanism. Dynamic dispatch
refers to the fact that in a method invocation
 o.m()
the method code executed depends on the class of
m. Recall that the method m is conceptually part of
the object o. This idea is astonishingly powerful.

• The essence of OO design is representing data and
computations in a form that leverages dynamic
dispatch.

COMP 211, Spring 2009 8

Union Pattern
• The union pattern is used to represent different forms of

related data with some common behavior.
• The pattern consists of an abstract class A together with a

collection of variant subclasses B1, ..., BN extending A.
An abstract class cannot be instantiated using new. Note:
if A is concrete then it is not the unition of B1, ..., BN
because A has additional members that are instances of A

• The collection of classes A, B1, ..., BN is called a union
hierarchy and A is called the root class of the hierarchy.

• The common behavior is codified by a set of methods in A,
which may be abstract Each such method m has an
associated contract that that the implementation in each
variant class must obey.

COMP 211, Spring 2009 9

Class Diagram of Union Pattern

…

COMP 211, Spring 2009 10

Defining a Method on a Union

…

abstract <type> m(<params>);

<type> m(<params>) {
 <body 1>
}

<type> m(<params>) {
 <body N>
}

COMP 211, Spring 2009 11

City Directory Example
• Assume that we want to design the data for an

online city phone book. In contrast to our
DeptDirectory example, such a directory will
contain several different kinds of listings:
businesses, residences, and government agencies.

• The entry data for such a directory is represented
by using the union pattern to identify the common
behavior among the various kinds of listings.

COMP 211, Spring 2009 12

Definition of CityEntry
A CityEntry is either:
• a ResidentialEntry(name, address, phone)
• a BusinessEntry(name, address, phone, city, state)
• a GovernmentEntry(name, address, phone, city, state, government)

Examples:
ResidentialEntry("John Doe","3310 Underwood", "713-664-8809")
BusinessEntry("ToysRUs","2101 Old Spanish Trail",

"713-664-1234","Houston", "TX")
GovernmentEntry("Federal Drug Administration",

"800-666-9000", "Washington", "DC", "Federal")

COMP 211, Spring 2009 13

Class Diagram of CityEntry Union

COMP 211, Spring 2009 14

Crude Code for CityEntry
abstract class CityEntry { }

class BusinessEntry extends CityEntry {
 String name, address, phone, city, state;
}

class GovernmentEntry extends CityEntry {
 String name, address, phone, city, state,

government;
}

class ResidentialEntry extends CityEntry {
 String name, address, phone;
}

COMP 211, Spring 2009 15

Defining Methods on Unions
• Assume that we want to define a method on a

union. The method will typically require a
separate implementation for each variant
(subclass) of the union. But each implementation
will satisfy the same (description of behavior).

• In Java, the method must not only be defined in
each variant of the union, it must be declared as
abstract in the root class of the union hierarchy.
Otherwise, Java will not allow the method to be
invoked on objects of the union type.

COMP 211, Spring 2009 16

Defined Method for CityEntry
• Let's illustrate the definition of a plausible method for

CityEntry :

abstract class CityEntry {

 /** Returns true if key is a prefix of name. */
 abstract boolean nameStartsWith(String key);

}

COMP 211, Spring 2009 17

Crude Expanded Code for CityEntry

abstract class CityEntry {
 /** Returns true if key is a prefix of name. */
 abstract boolean nameStartsWith(String key);
}

class BusinessEntry extends CityEntry {
 String name, address, phone, city, state;
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}
class GovernmentEntry extends CityEntry {
 String name, address, phone, city, state, government;
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}
class ResidentialEntry extends CityEntry {
 String name, address, phone;
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}

COMP 211, Spring 2009 18

Member Hoisting
• In a union hierarchy, the same code may be

repeated in every variant.
• A cardinal rule of software engineering is

never duplicate code. We can eliminate
code duplication in a union hierarchy by
hoisting duplicated code (code that is
invariant within the union) into the abstract
class at the route of the hierarchy.

COMP 211, Spring 2009 19

Revised Code for CityEntry
abstract class CityEntry {
 /* common fields */
 String name, address, phone;

 /** Returns true if key is a prefix of name. */
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}

class BusinessEntry extends CityEntry {
 String city, state;
}
class GovernmentEntry extends CityEntry {
 String city, state, government;
}
class ResidentialEntry extends CityEntry { }

COMP 211, Spring 2009 20

For Next Class
• Exams due Friday
• Optional Homework due Monday
• Reading: OO Design Notes, Ch 1.1 - 1.4.1.

