Complexity and Accumulators

Corky Cartwright
Department of Computer Science
Rice University

Today’s goals

Overview of accounting for cost of computation
(complexity)

Intuitively, accumulators can capture “history”™
Accumulators can be used to

Improve performance

Avoid non-termination (uncommon)

Improve expressivity (simplify code)

How do we recognize when they are needed?

COMP 211, Spring 2009

Cost accounting

Measure computation cost in reduction steps using
our reduction semantics. Models actual cost
reasonably well.

Consider three algorithms
. Cost-A(n) = 2*n° + n? + 50
. Cost-B(n) = 3*n? + 100
. Cost-C(n) = 2»
Which algorithm 1s best?
Which algorithm works best for large n?

Can we formalize this notion?

COMP 211, Spring 2009 3

Order of Complexity

- We'll say that Cost-X 1s “order f (n))”, or simply
“O(f (n))” (read “Big-O of f(n))”) 1f
. Cost-X(n) < factor * f(n) for sufficiently large n
- Examples:
. Cost-A(n) =2*n’ +n?+ 1 Cost-A is O(n?)
. Cost-B(n) = 3*n? + 10 Cost-B is O(n?)
. Cost-C(n) =2 Cost-C 1s O(2")

COMP 211, Spring 2009

- 0(l)

- O (logn)

- O (n)

- O *logn)
- O [m?)

- O m)

. nod

. 20

COMP 211, Spring 2009

Famous "Complexity Classes”

constant-time (head, tail)

logarithmic (binary search)
linear (vector multiplication)
"nlogn" (sorting)

quadratic (matrix addition)
cubic (matrix multiplication)
polynomial (...many! ...)
exponential (guess password)

Improving Performance

Consider the sequence accumulation function
. Takes'(1 123 -1) and produces '(12476)

How do we write this function using the list
template?

We can do much better!
What information do we need to do better?

- This 1s basically the “lost history” in the recursive call

COMP 211, Spring 2009 6

Partial Sums Program

;; sums: (listOf number) -> (listOf number)
;; (sums alon) replaces each number n in alon by the sum
,; of the numbers preceding (and including) n.
;; (sums (12 3))="(136)
(define (sums alon)
(cond [(empty? alon) empty]
[else
(cons (first alon)
(map (lambda (x) (+ x (first alon)))
(sums (rest alon))))]))

COMP 211, Spring 2009 7

Accumulator version of same program

. Idea: as the list 1s successively decomposed
into first and rest, the sums function can
accumulate the sum of the numbers to the
left of rest.

. Template Instantiation:
(define (sums-help lon sum)
(cond [(empty? lon) ...]
[else ... (first lon) ... sum ...
(sums-help (restlon) ..)]))

COMP 211, Spring 2009 8

Accumulator version of same program

;; sums-help: (listOf number) number -> (listOf number)
(define (sums-help alon sum)
(cond
[(empty? alon) empty]
[else
(local [(define new-sum (+ sum (first 1)))]
(cons new-sum (sums-help (rest 1) new-sum)))]))
;; sums: (listOf number) -> (listOf number)
(define (sums alon) (sums-help alon 0))

COMP 211, Spring 2009 9

Formulating an Accumulator

. If we decide to use an accumulator, we need
to answer three questions:

. How will we use the accumulator to produce
the final result?

- How will we modify the accumulator in each
recursive call? (What will we “accumulate”?)

. What should the 1nitial value for the
accumulator be?

COMP 211, Spring 2009 10

Another Example

;; (flatten: (genListOf symbol) -> (listOf symbol)
;; (flatten agl) returns a list of the symbols in order of appearance
;; (flatten '((@a b) ¢ ((d))) ='(a b c d)
(define (flatten agl)
(cond [(empty? agl) empty]
[else (local [(define head (first agl))
(define tail (flatten (rest agl)))]
(cond [(empty? head) tail]
[(cons? head) (append (flatten head) tail)]
[else (cons head tail)]))]))

Note: we wrote this function so that the symbol type can be replaced by any
non-list type.

COMP 211, Spring 2009 11

Accumulator version

;; flatten-help: (genListOf symbol) (listOf symbol) -> (listOf symbol)
;; (flatten agl los) returns a list of the symbols in agl appended to los
;; (flatten '((a b) c ((d)) '(e)) ='(abcde)

;; Template Instantiation:
(define (flatten-help agl los)
(cond [(empty? agl) ...]
[else (first agl) ... los ... (flatten-help agl ..) ...]))
(define (flatten-help agl los)
(cond [(empty? agl) los]
[else (local [(define head (first agl))
(define tail (flatten-help (rest agl) los))]
(cond [(empty? head) tail]
[(cons? head) (flatten-help head tail)]
[else (cons head tail)]))]))

COMP 211, Spring 2009

12

Other Examples

- Graph searching: avoid repetition/cycles by
accumulating set of nodes already seen and testing
membership in this set. In most cases, mutation
(marking) is better in practice.

COMP 211, Spring 2009 13

Added Expressivity

Code simplication using accumulators

Consider the list reverse function
. Takes '(12 34 5) and produces '(54321)

How do we write this function using the list
template? Use append. Ugh.

What information do we need to do better?
. This 1s basically the “lost history” of the recursive call

Is this list reversal example really different from
the list accumlation example?

COMP 211, Spring 2009 14

Naive reverse

(define (rev |)
(cond [(empty? |) empty]
else (append (rev (rest |))

(list (first 1))]))

COMP 211, Spring 2009

15

Reverse using an accumulator

(define (rev-help | ans)
(cond [(empty? |) ans]
[else (rev-help (rest |) (cons (first 1) ans))]))

(define (fast-rev 1) (rev-help | empty))

COMP 211, Spring 2009 16

For Next Class

- Bonus lecture this afternoon at 2 in DH 1042
- Homework due Monday
. Midterm:

. Take home exam distributed Friday February
10; due Friday, February 17.

. Covers Scheme Material (Chs. 1- 32 of HTDP
except 28, 29.3)

- Reading:
. Chs 29 .1, 29.2, 30-32

COMP 211, Spring 2009 17

