
1

The Strategy and Visitor Patterns

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2009 2

Review: First-class Functions in Java
• Methods are not data values in Java, but objects containing

methods are data values. Hence, we can pass functions
using degenerate objects with a single method as the
primary member.

• When we pass such a value to an object and perhaps store
that object in a field of the receiving object (as in passing
an argument to a constructor), we are using what OO
designer call the strategy pattern. The passed object is
intuitively viewed as a strategy (behavior) to be used by
the receiving object. The type of the method in the
"function object" indicates what form of strategy is being
passed.

• Example: passing a layout manager to a GUI component.

COMP 211, Spring 2009 3

Another Example: Building Sort Objects

• Recall the IntList class from Lecture ??. Assume that we
want to create sort functions that sort . s in different ways
(using different algorithms and orderings). How can create
such objects and how can we apply them to IntLists? By:

• Defining a Sorter interface
interface Sorter {
 IntList sort(IntList host);
}

• Defining a hook in IntList for applying Sorter objects to
this.

• Defining strategy objects that implement Sorter.

COMP 211, Spring 2009 4

What Is Ugly About Class UpSort?
• It defines sorting code statically using a decision tree of

predicates, just like a functional program. Ugh …
• How can we do better? Need hooks in our IntList

class that let us write essentially the interpreter pattern
code for a method on IntList as a first-class data
object. This is really a first-class function written
according to the interpreter patter so it has extra
structure, namely a clause (method) for each different
kind of concrete class in the composite.

COMP 211, Spring 2009 5

Deconstructing the Interpreter Pattern
• In the interpreter pattern, the method is declared as abstract in

the root class/interface and defined concretely in each
concrete variant (subclass). To package the code for a method
defined by the interpreter pattern in a separate object (called a
visitor) we need:

class ... {
 Object forEmptyIntList(EmptyIntList host) {
 ... <method code using host instead of this> ...
 }
 Object forConsIntList(ConsIntList host) {
 ... <method code using host instead of this> ...
 }
}

COMP 211, Spring 2009 6

Invoking Visitors
• The corresponding composite class must include hooks to invoke visitors for

the class. To specify the signature of these hooks, we need to introduce an
interface for all visitors that return IntList
interface IntListVisitor {
 IntList forEmptyIntList(EmptyIntList host)
 IntList forConsIntList(ConsIntList host)
}

• The hook methods have trivial definitions:
abstract class IntList {
 ...
 abstract Object accept(IntListVisitor v);
}
class EmptyIntList extends IntList {
 ...
 IntList accept(IntListVisitor v) { return forEmptyIntList(this); }
}
class ConsIntList extends IntList {
 ...
 IntList accept(IntListVisitor v) { return forConsIntList(this); }
}

COMP 211, Spring 2009 7

 Defining Visitors
• Easy case: method of no arguments.
• Example: upsort

class UpSortVisitor {
 IntList forEmptyIntList(EmptyIntList host) { return host; }
 IntList forConsIntList(ConsIntList host) {
 return host.rest().accept(this).insert(host.first());
 }
}

• Oops! We have to write insert as a visitor. But it has an argument!
class InsertVisitor {
 int elt;
 IntList forEmptyIntList(EmptyIntList host) { return host.cons(elt); }
 IntList forConsIntList(ConsIntList host) {
 int first = host.first();
 IntList rest = host.rest();
 if (elt <= first) return host.cons(elt);
 return rest.accept(this).cons(first);
 }
}

• Last line of UpSortVisitor becomes
 return host.rest().accept(this).accept(new InsertVistor(host.first()));

COMP 211, Spring 2009 8

 Defining Visitors cont.

• Revised upsort
class UpSortVisitor {
 IntList forEmptyIntList(EmptyIntList host) { return host; }
 IntList forConsIntList(ConsIntList host) {
 host.rest().accept(this).
 accept(new InsertVisitor(host.first());
 }
}

• Remember: the problem decomposition is not affected by using
visitor pattern; only the syntax!

• Why use visitors? There is a compelling reason in addition to
"elegance". It the same reason why the interpreter pattern is far
superior to static method definitions. Inheritance.

COMP 211, Spring 2009 9

UpSort Example
Go to DrJava

COMP 211, Spring 2009 10

Reprise: Anonymous Classes
• What do free variables mean inside anonymous

classes. What do they mean in λ-expressions?
• In Java, the free variables can be either:

• fields, or
• local (method) variables.

• Use them in doing the filter problem in HW8.

COMP 211, Spring 2009 11

For Next Class
• Labs today and tomorrow. Covering first-class

functions and visitors.
• Get comfortable with visitors; you will use them

extensively in the next assignment.
• Please report problems with DrJava Language

Levels.

