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Abstract
Building program generators that do not duplicate generated code
can be challenging. At the same time, code duplication can easily
increase both generation time and runtime of generated programs
by an exponential factor. We identify an instance of this problem
that can arise when memoized functions are staged. Without ad-
dressing this problem, it would be impossible to effectively stage
dynamic programming algorithms. Intuitively, direct staging un-
does the effect of memoization. To solve this problem once and
for all, and for any function that uses memoization, we propose a
staged monadic combinator library. Experimental results confirm
that the library works as expected. Preliminary results also indicate
that the library is useful even when memoization is not used.

Categories and Subject DescriptorsI.2.2 [Automatic Program-
ming]: Program synthesis

General Terms Multi-stage Programming, Program Specializa-
tion

Keywords Staging, Monads, Fixed points, Code duplication, Pro-
gram specialization, Multi-stage programming, Partial evaluation,
Program generation

1. Introduction
Abstraction mechanisms such as functions, modules, and objects
can reduce development time and improve software quality. But
such mechanisms often have a cumulative runtime overhead that
can make them unattractive to programmers. Partial evaluation
[25] encourages programmers to use abstraction mechanisms by
trying to ensure that such overheads can be paid in a stage ear-
lier than the main stage of the computation. But because of the
subtleties of the process of separating computations into distinct
stages, a partial evaluator generally cannot guarantee all abstrac-
tion overheads will be eliminated in an earlier stage. Furthermore,
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it is not always intuitive for a novice user to guess which ones
will be eliminated. One approach to dealing with the issues of ex-
plicit guarantees about which abstraction overheads are eliminated
is Multi-stage Programming (MSP) [48, 44]. MSP languages pro-
vide the programmer with a quotation mechanism designed specifi-
cally for constructing code fragments. Such quotation mechanisms
enable the development of both the formal reasoning principles (cf.
[45, 44]) and the static type systems that guarantee that all gener-
ated programs would be type-safe (cf. [47]).

1.1 Code Duplication

A key technical problem that arises in source-level program gen-
eration (including partial evaluation and MSP) is code duplication.
The problem can be illustrated using a trivial generator that repre-
sents programs as strings:

let a = "x*y" in
let b = a ^ " + " ^ a in ...

Here string quotations are used to delay some sub-computations.
This is often called staging. It is common in MSP to derive staged
programs like the one above from an unstaged counterpart [48]
such as:

let a = x*y in
let b = a + a in ...

Clearly, the unstaged program involves no code generation, so
there is no duplicated computation. When the unstaged program
is executed, the multiplication is performed and the result is stored
in a. This result is simply a number. Computingb only involves
adding two numbers to produce a third number. In the staged
variant, computinga involves no computation (it is already a string
value representing a code fragment). Computingb also involves
computing two concatenation operations to produce the string value
"x*y + x*y". Thus, the length of the stringb will be a bit more
than twice as much asa. In addition, performing the computation
represented byb will also take a bit more than twice as much as
that fora.

In the example above, code duplication leads to doubling the
amount of work required both for generating and for executing
the resulting program. By the Master Theorem, this constant-factor
degradation in performance can also lead to degradation in the or-
der of complexity. In particular, it is often the case that code gen-
eration is done in iterative or recursive functions where the number
of repetitions depends on an input value. These repetitions often
compound the duplication of code (see the example of the power
function in Section 3.5). This combination of events is common in
practice, and easily leads to exponential degradation in the order of
complexity.



1.2 Problem

The motivation for the present work comes from ongoing efforts
to stage various dynamic programming (DP) algorithms. DP al-
gorithms are memoized versions of recursive equations. Without
memoization, evaluating these recursive equations directly would
require an exponentially large number of steps. However, the call
graph for such a computation involves a significant number of re-
peated calls to the same function with the same inputs. Memoiza-
tion makes it possible to avoid this redundancy, and often leads
to algorithms that are sub-exponential. This paper shows how di-
rect staging of memoized functions has the effect of undoing what
is achieved by memoization, and that the runtime complexity of
the resulting solution degenerates back to exponential time. Local
transformations, such as inserting let statements into the generated
code, appear to be insufficient. A common global transformation
in the partial evaluation literature is to convert the program into
continuation-passing style (CPS). Because the use of memoization
means that a notion of state is already present, precisely how the
CPS transform should be carried out is not obvious. Furthermore,
the resulting code (and types) from these transformations obfus-
cate the basic recurrence underlying the algorithm being staged,
and complicate the task of programming.

Can we resolve these issues, and package the results in a form
that would help keep the task of staging a memoized function
manageable?

1.3 Contributions

After a brief review of MSP (Section 2), we present a generic ac-
count of memoization using fixed-point combinators and monads
(Section 3). Somewhat surprisingly, this has not been done before.
In our previous, ad hoc attempts to stage memoized functions, iden-
tifying the sources of code duplication was difficult. To help pro-
grammers avoid this difficulty, we propose a combinator-based for-
mulation of memoized functions. This formulation allows us to pre-
cisely characterize a pervasive source of code-duplication for this
class of functions. It also allows us to show that the problem we
identify can be addressed once and for all by staging the combina-
tors in a particular manner. An interesting byproduct of this formu-
lation is that it allows us to show how the combinators can also be
staged so that all intermediate results are named, thus ensuring that
any generated programs would be in A-normal form [19].

Compared to previous approaches to controlled naming and the
use of monads in program generation, the key technical novelty is
that our approach does not require any language extensions. For
example, Hatcliff and Danvy [22] use a monad augmented with
special-purpose rewriting rules that can be used at the meta-level
to specify continuation-based partial evaluators. In contrast, we
present a monad that combines both continuations and state and
is expressible at the object-levelin a multi-stage calculus. The cal-
culus we use does not allow pattern matching on generated code
[45], so our approach guarantees that we preserve the equational
properties of generated code fragments. By implementing all the
combinators in MetaOCaml [8, 35], we also demonstrate that us-
ing a standard, practical static type system [47, 7] is sufficient to
allow the programmer to implement several different approaches to
controlling code duplication.

To test the utility of these combinators from the point of view
of both the performance of the resulting implementation and the
difficulty of programming, we have used them to implement and
study several standard DP algorithms (Section 4). Our experiments
show that the combinators can be used without change for these
different examples, and that the performance of the resulting imple-
mentations is comparable to that of hand-written (unspecialized) C
implementations of these algorithms.

2. Multi-stage Programming
MSP languages [48, 44] provide three high-level constructs that
allow the programmer to break down computations into distinct
stages. These constructs can be used for the construction, combi-
nation, and execution of code fragments. Standard problems asso-
ciated with the manipulation of code fragments, such as accidental
variable capture, are eliminated (cf. [44]). The following minimal
example illustrates MSP programming MetaOCaml:

let rec power n x =
if n=0 then .<1>.
else .< .~x * .~(power (n-1) x)>.

let power3 = .! .<fun x -> .~(power 3 .<x>.)>.

Ignoring the staging constructs (brackets.<e>., escapes.~e, and
run .! e) the above code is a standard definition of a function that
computesxn, which is then used to define the specialized func-
tion x3. Without staging, the last step simply returns a function that
would invoke thepower function every time it gets invoked with
a value forx. In contrast, the staged version builds a function that
computes the third power directly (that is, using only multiplica-
tion). To see how the staging constructs work, we can start from the
last statement in the code above. Whereas a termfun x -> e x
is a value, an annotated term.<fun x -> .~(e .<x>.)>. is not:
the outer brackets contain an escaped expression that still needs to
be evaluated. Brackets mean that we want to construct a future stage
computation, and escapes mean that we want to perform an imme-
diate computationwhile building the bracketed computation. In a
multi-stage language, these constructs are not hints, they are im-
peratives. Thus, the applicatione .<x>. must be performed even
thoughx is still an uninstantiated symbol. In thepower example,
power 3 .<x>. is performed immediately, once and for all, and
not repeated every time we have a new value forx. In the body
of the definition of the functionpower, the recursive application
of power is escaped to ensure its immediate execution in the first
stage. Evaluating the definition ofpower3 first results in the equiv-
alent of

.! .<fun x -> x*x*x*1>.

Once the argument to run (.!) is a code fragment that has no
escapes, this code fragment is compiled and evaluated. In this case,
evaluation returns a function that has the same performance as if
we had explicitly coded the last declaration as:

let power3 = fun x -> x*x*x*1

Applying this function does not incur the unnecessary overhead
that the unstaged version pays every timepower3 is used.

Finally, while MSP language constructs resemble LISP and
Scheme’s quasi-quote and eval mechanisms, the technical novelty
of these languages lies in automatically avoiding accidental vari-
able capture [8], supporting equational reasoning inside quotations
[45], and statically ensuring that any generated programs are well-
typed (c.f. [47]). This comes at the cost of not providing a mech-
anism for taking apart code fragments once they are constructed
[45].

3. A Monadic Combinator Library
In what follows we gradually develop the set of generic combina-
tors that we use to characterize memoizing functions, to point out a
pervasive source of code duplication when staging such programs,
and to stage these combinators in a way that deals with this problem
once and for all.



3.1 Fixed-point Combinators

In a call-by-name (CBN) setting, the simplest fixed-point combina-
tor can be expressed as:

y : (’a -> ’a) -> ’a

let rec y f = f (y f)

In a call-by-value (CBV) language, such a definition does not work,
because the inner application would always be evaluated, leading to
divergence of any application of the fixed-point combinator. This
problem is often addressed by restricting the type of the fixed-point
combinator, and using eta-expansion to delay the inner application.
For function types, we can use the following definition1:

y : ((’a -> ’b) -> (’a -> ’b)) -> (’a -> ’b)

let rec y f = f (fun x -> y f x)

3.2 Memoization

Memoization requires that whenever we apply a function to some
arguments, we store an association of the arguments with the result
of the application. This way, successive applications of the func-
tion to the same arguments need not be recomputed. To memoize
recursive functions, this store and lookup work can be performed
in the fixed-point combinator itself, so that the programmer can get
the benefits of memoization without having to make changes to the
code for the core algorithm.

The fact that memoization involves a notion of state suggests
that we need a variant of the above combinator where the types are
specialized as follows:

y_state : ((state -> ’a -> (state * ’b)) ->
(state -> ’a -> (state * ’b))) ->
(state -> ’a -> (state * ’b))

let rec y_state f = f (fun s x -> y_state f s x)

The memoizing fixed-point combinator that we will use is an in-
stance of this type, where state is a memo table, and the combinator
itself manipulates the state as follows:

y_memo :
(((’a,’b) table -> ’a -> (’a,’b) table * ’b) ->
((’a,’b) table -> ’a -> (’a,’b) table * ’b)) ->
((’a,’b) table -> ’a -> (’a,’b) table * ’b)

let rec y_memo f =
f (fun s x ->

match (lookup s x) with
| Some r -> (s,r)
| None ->

let (s1, r1) = (y_memo f s x) in
((ext s1 (x,r1)), r1))

whereext andlookup are functions for extending the table and
for looking up values in the table, respectively.

This combinator first checks if the result off applied to its
argumentx was already computed. If so, we return the stored
resultr, along with the unmodified tables. If not, we perform the
applicationy memo f s x, and add the result to the new table.

In practice, the functionf to be memoized will be called with
several arguments, and not all of them are needed to determine the
key into the memo table. To support this common situation we pass
a key function that extracts only the relevant components ofx as
used in the next variation,y key.

1 Following a suggestion from a reviewer, we use more parenthesis than
strictly needed so that the types easier to read.

y_key :
(’a -> key) ->
(((key,’b) table -> ’a -> (key ,’b) table * ’b) ->
((key,’b) table -> ’a -> (key ,’b) table * ’b))->
((key,’b) table -> ’a -> (key ,’b) table * ’b)

let rec y_key key f =
f (fun s x ->

match (lookup s (key x)) with
| Some r -> (s,r)
| None ->

let (s1, r1) = (y_key key f s x) in
((ext s1 ((key x),r1)), r1))

The key is also useful when arguments might be grouped into
equivalence classes such that all elements of a class yield the same
result when called withf. In such a scenario,key can be used
to translate the arguments into some representative of the class to
which they belong, thus allowing for more effective memoization.

In general, a DP algorithm will consist of a collection of dif-
ferent functions, many of which need to be memoized using sepa-
rate memo tables. Furthermore, because all of these tables must be
maintained throughout the full computation, it might be necessary
to memoize the results of more than one recursive function that
might be used together. In such a case, the fixed-point combinator
must be able to correctly lookup (or update) a state depending on
which particular function it is called with. To do this, we make one
more generalization:

y_mult : (’a -> key) *
(tables -> (key * ’b) table) *
((key * ’b) table -> tables -> tables) ->
((tables -> ’a -> tables * ’b) ->
(tables -> ’a -> tables * ’b)) ->
(tables -> ’a -> tables * ’b)

let rec y_mult (key, get, set) f =
f (fun s x ->

match (lookup (get s) (key x)) with
| Some r -> (s,r)
| None ->

let (s1, r1) =
(y_mult (key, get, set) f s x)

in ((set (ext (get s1) ((key x),r1)) s1),
r1))

Here,get is used to identify the component of the state that
the current functionf uses, andset is used to update the state
component used byf.

3.3 Staging the Fixed-point Combinator

The combinators presented above allow us to characterize a large
class of memoized functions. Now we turn to the question of
staging such functions when the parameter that determines the
recursion structure is known statically.

3.3.1 The Source of Code Duplication

Staging the function to be memoized and not the fixed-point combi-
nator leads to a code duplication problem. In particular, it generates
code that repeats all the work that memoization saved. Consider the
functiony_mult presented above: the variabler1, used to name the
result of the computation when it is first computed, is copied both
into the table and returned back as the result value. In the unstaged
setting, this is not problematic. In the staged setting,r1 is not a
simple value but a code fragment. If the variabler1 has more than
one usage occurrence, the code fragment carried byr1 will then be



inserted into a bigger code fragment multiple times. A sequence of
these events leads to exponential code growth.

3.3.2 Where to Generate Let-statements

In the partial evaluation literature, the standard technique for avoid-
ing code duplication is inserting let-statements that provide a name
for the fragment and allow us to return several copies of the name
rather than of the fragment. Code duplication can be avoided if the
combinatory_mult can be modified to generate a let-statement that
names the result of evaluatingr1 and then to allow us to refer to it
in the rest of the code by that name. However, withy_mult, it is
not clear that this can be done by a local addition of a let-statement
and staging annotations to its definition. In particular, inserting a
second-stage let-statement naming the result of evaluatingr1 re-
quires inserting brackets around the final state returned by the com-
putation, as well as name of the result. The difficulty here is that we
mustsimultaneouslyreturn these two values as a static (first-stage)
pair, and not a dynamic pair. The staged computation needs to pro-
cess each of the two elements of the pair separately in the rest of
the computation. The name of the result will be inserted into (and
looked up from) the memo-table, while the state will be passed
around and accessed statically during the first-stage computation.
The type system simply does not allow an expression consisting of
brackets to have any type other than a code type (and so it cannot
have a pair type). In essence, the computation needs to return a dy-
namic let as a “side-effect”, without altering the type of the return
value of the computation.

3.3.3 Conversion to CPS

When direct insertion of let statement seems to be impossible,
another standard technique from the partial evaluation literature is
to convert the source program into CPS. The following CPS version
of the above combinator will allow us to do just that:

y_cps :
(’a -> key) *
(tables -> (key * ’b) table) *
((key * ’b) table -> tables -> tables) ->

((’a -> tables -> (tables -> ’b -> ’c) -> ’c) ->
(’a -> tables -> (tables -> ’b -> ’c) -> ’c)) ->
(’a -> tables -> (tables -> ’b -> ’c) -> ’c)

let rec y_cps (key, get, set) f =
f (fun s x k ->

match (lookup (get s) (key x)) with
| Some r -> k s r
| None -> y_cps (key, get, set) f s x

(fun s1 -> fun r1 ->
k (set (ext (get s1) ((key x),r1)) s1)

r1))

The functionf is assumed to be in CPS, taking a continuationk
that consumes the memo tables, a value of type’b, and to return
a final answer of type’c. The added flexibility that we get form
conversion from CPS (and that we do not seem to have before
conversion to CPS) is that the type’c is unconstrained. The type
of the return context for the computation does not have to be the
same as’b. The staged fixed-point combinator can now produce
new let statements that are added to the context of the computation
but without interfering with the type or value being returned by
the computation. The CPS fixed-point combinator can be staged as
follows:

let rec y_cps (key,get,set) f =
f
(fun x s k ->

match (lookup (get s) (key x)) with

| Some r -> k s r
| None -> y_cps (key,get,set) f x s

(fun s1 -> fun v ->
.<let r1 = .~v

in .~(k (set (ext (get s1) ((key x),
.<r1>.)) s1) .<r1>.)>.))

Now, when we have to perform a function call, the continuation
proceeds by first bindingv to a fresh variabler1, and associating
key x with this variable. As a result, any future lookup into the
state results in thenamer1 being passed to the continuation rather
than a (possibly large) valuev.

Staging the fixed-point combinator in this fashion constraints
the type of the memoized value and the answer type of the contin-
uation to both be of code type. Each is a (different) polymorphic
code type, but both are constrained to have the same environment
classifier.

3.4 Monadic Encapsulation

Especially because of the complexity of its type, expecting the
programmer to be able to use the above fixed-point combinator
might seem impractical. Fortunately, the structure underlying our
fixed-point combinator is a standard monad. Monads have been
found useful for expressing effectful computations in purely func-
tional languages [28], and for structuring denotational semantics
[36, 37, 18], interpreters [30], compilers [21], partial evaluators
[43, 22] and program generators [20, 41]. Several excellent intro-
ductions to monads exist in the published literature [50, 24].

For the purposes of this paper, the following monad is sufficient:

’a monad =
state -> (state -> ’a -> answer) -> answer

The operators for this monad are simply:

let ret a = fun s k -> k s a
let bind a f =

fun s k -> a s (fun s’ x -> f x s’ k)

Without any staging annotations, this monad is sufficient for stag-
ing many DP algorithms where the only source of code duplication
is memoization. All we have to do is to convert the DP recurrence
equations into monadic style and use open recursion (several ex-
amples are presented in Appendix A). During this process, we do
not need to worry about the details of the monad.

If, however, there are other sources of duplication in the algo-
rithm itself, the type of the monad can be restricted, and we have the
choice of using either the standard operators above or the following
staged version:

let retN a =
fun s k -> .<let z = .~a in .~(k s .<z>.)>.

let bindN a f =
bind a (fun x -> bind (retN x) f)

Alternatively,bindN can be defined first:

let bindN a f =
fun s k ->
a s (fun s’ x ->

.<let z = .~x in
.~(f .<z>. s’ k)>.)

let retN a = bindN (ret x) ret

The combinators always name the monadic value in their argument,
thus ensuring that using this argument multiple times cannot lead
to code duplication.

It is important to note that programs generated using these com-
binators can only contain the program fragments that are in brack-
ets. This means that most of the computation in the staged, CPS



fixed-point combinator as well as the staged monadic operators will
be done in the first stage. Thus, the overhead of recursion, all op-
erations on the memo table, and the applications of the return and
bind operations will not be incurred in the generated code.

3.5 Aside: A-normal Form

With some care, the above operators can be used to produce code
in A-normal form [19]. Consider a variant of thepower function
staged as follows:

let power f (n, i) =
if (n = 0) then ret .<1>.
else if (even (n)) then

bind (f (n / 2, i)) (fun x ->
ret (.<.~x * .~x>.))

else
bind (f (n-1, i)) (fun x ->
ret (.<.~i * .~x>.))

let pow5 = .<fun i ->
.~((y_sm power) (5, .<i>.)

[] (fun s x -> x))>.

The combinatory_sm is a variant ofy_cps with thekey, get, and
set parameters instantiated so thatn, the first argument topower,
is the key and there is only one table in the global store.

Evaluating the expression forpow5 leads to code duplication. In
particular, the code we get is:

.<fun i_1 ->
(i_1 * (((i_1 * 1) * (i_1 * 1)) *

((i_1 * 1) * (i_1 * 1))))>.

Code duplication here has nothing to do with memoization, because
no memoization is needed for computing this function. In situations
like this, the combinators can be used inside the memoized function
(as opposed to the fixed point combinator) to avoid code duplica-
tion in the body of the staged function.

It should be noted that if we replaceret with retN, the gener-
ated code forpow5 becomes:

.<fun i_1 ->
let z_2 = (i_1 * 1) in
let z_3 = (z_2 * z_2) in
let z_4 = (z_3 * z_3) in
let z_5 = (i_1 * z_4) in z_5>.

This modification is sufficient for solving the problem for this
particular function. In general, however, computations done in the
body of a bindN operation can introduce duplication. Thus, in
general, it is more appropriate to usebindN everywhere rather than
retN.

UsingbindN introduces a subtle problem: If we use thebindN
in the function above, we get:

.<fun i_1 ->
let z_2 = 1 in
let z_3 = (i_1 * z_2) in
let z_4 = z_3 in
let z_5 = (z_4 * z_4) in
let z_6 = z_5 in
let z_7 = (z_6 * z_6) in
let z_8 = z_7 in
let z_9 = (i_1 * z_8) in z_9>.

The generated code contains several unnecessary administrative
redexes suchlet z 6 = z 5.

Unnecessary redexes can be avoided using abstract interpreta-
tion [26]. This involves making the monad aware of the abstract

domain that the program uses to generate optimal code. Other than
being written to work in the abstract domain, the staged program
itself remains unchanged in its structure.

The use of abstract interpretation can be illustrated by declaring
the following datatype (and auxiliary function), and modifying the
body of thepower function:

type ’a exp =
Val of (’a, int) code

| Exp of (’a, int) code

let retA a s k =
match a with
| Exp x -> .<let z = .~x in .~(k s (Val .<z>.))>.
| _ -> k s a

let bindA a f =
bind a (fun x -> bind (retA x) f)

let conc z =
match z with

Val x -> x
| Exp x -> x

let power f (n, i) =
if (n = 0) then

retA (Val .<1>.)
else if (even (n)) then

bindA (f (n / 2, i)) (fun x ->
retA (Exp .<.~(conc x) * .~(conc x)>.))

else
bindA (f (n-1, i)) (fun x ->
retA (Exp .<.~i * .~(conc x)>.))

let pow5 =
.<fun i -> .~((y_sm power) (5, .<i>.)

[] (fun s x -> conc x))>.

The typeexp is an abstract domain that discriminates simple ex-
pressions (Vals) such as constants or variables that are cheap to
duplicate from complex expressions (Exps) that should not be du-
plicated, but instead bound to variables that can then be used mul-
tiple times without resulting in code-size explosion. WhileVal and
Exp construct values of an abstract domain from a concrete domain
(int code in this case), the functionconc allows us to recover the
concrete values from abstract values. This allows the construction
of larger abstract values from smaller ones. Evaluatingpow5 yields

.<fun i_1 ->
let z_2 = (i_1 * 1) in
let z_3 = (z_2 * z_2) in
let z_4 = (z_3 * z_3) in
let z_5 = (i_1 * z_4) in z_5>.

which has no unnecessary name bindings.

4. Case Studies and Experimental Results
The memoizing combinators presented above were used with sev-
eral standard example DP algorithms and various timings were
recorded. MetaOCaml sources for the main recurrences of these
problems are presented in the Appendix A. They include all the
example DP algorithms presented in Cormen et al.’s standard text-
book [11]. Most of the programs are around 10 lines long (exclud-
ing standard helper functions).

4.1 Example Algorithms

Our study used the following algorithms specialized to various first-
stage parameters:



• fwd is forward algorithm for Hidden Markov Models. Special-
ization is for the size of the observation sequence equal to 7.

• gib is the Gibonacci function, a minor generalization of the
Fibonacci function. Specialization is the 25th number in the
sequence.

• ks is the 0/1 knapsack problem. Specialization is for 32 items
with statically known weights.

• lcs is the longest common subsequence problem. Specializa-
tion is for strings lengths of 25 and 34.

• obst is the optimal binary search tree algorithm. Specialization
is a leaf-node-tree of size 15.

• opt is the optimal matrix multiplication problem. Specializa-
tion is for 18 matrices.

4.2 Platform

To facilitate the gathering of timing results, a timing library is
included in the MetaOCaml distribution.2 Benchmarks were timed
using theTrxtime.timenew function which takes a function from
unit to an arbitrary type and executes it repeatedly until the total
execution time exceeds one second. The number of iterations as
well as the average time is reported to the user. Timings for the
unstaged versions of the benchmark algorithms are computed in
this way. Since the number of iterations for the unstaged functions
is computed automatically by the timing function that ensures that
the function is run enough times so that the total time is more than
one second, this number of iterations is reported to the benchmark
script and used when measuring execution times for staged and
generated C programs. Using the same number of iterations helps
ensure that the total number of runs outside MetaOCaml gives
a total time that can still be measured reliably. The timings for
C programs executed outside of the (Meta)OCaml runtime were
collected using the bash shelltime utility.

The experiments were performed by a fully-automated set of
scripts that execute the benchmark algorithms and produce de-
tailed reports, making our experiments easily reproducible and ver-
ifiable. The benchmark is available online [14]. The full set of
raw data summarized in this paper as well as a detailed report
on the execution platform can be found in a sample report named
v1.20-ex2.tex in theruns/ directory of the distribution of the
benchmark.

Measurements were made on an Intel Pentium 4 machine
(3055MHz clock speed) with 512 KB cache size and 1GB main
memory running Linux 2.4.20-31.9. Objective Caml bytecode and
native code compilers version 3.08, and gcc version 2.95.3 were
used to compile source code files. Results reported in the paper
were produced with version 1.20 of the benchmark.

4.3 Results

We have argued that the proposed combinators avoid the duplica-
tion problem that arises when we stage memoized functions. The
goal of this section is to confirm experimentally that when the com-
binators are used there is no exponential increase in runtime perfor-
mance or in the size of the generated code.

The execution times for the OCaml code generated by staged
versions of the algorithms appear to be within a constant factor of
the runtime of the unstaged OCaml versions. Second, if we trans-
late the generated code to C using offshoring [16], the execution
times appear to be within a constant factor of those for correspond-

2 MetaOCaml is a conservative extension of the OCaml compiler itself, and
is thus “binary compatible” with it: it generates the same code for non-MSP
programs, and executes them in the same runtime environment as OCaml
3.08.
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ing hand-written (unspecialized) C implementation of the example
algorithms.

The handwritten C implementations have no problem-specific
optimizations. The array-based bottom-up memoizing approach
was one that is suggested as an efficient approach for DP prob-
lems. In our code-generation approach, the implementer of a DP
algorithm would not have to deal with memoization explicitly, but
neither would our approach add any optimizations in the generated
code that are not available to the handwritten implementations. We
therefore feel that this comparison suggests that the approach pro-
posed here is promising.

Both the generated OCaml and C programs are consider-
ably faster than the unstaged OCaml versions. Figure 1 plots the
speedups of staged (and offshored) OCaml implementation over
unstaged DP programs executed using the bytecode compiler. The
C programs achieve an order of magnitude increase in speedup be-
cause they are compiled using native code compiler for C (gcc), and
because such compilers often perform more optimizations aimed
at numerically intensive code. In the case ofks the gains are par-
ticularly high, mainly because the original benchmark does not
make provisions for ensuring that the OCaml numerical compari-
son operators are monomorphically typed. As a result, OCaml uses
a much slower polymorphic comparison operation.3 Experimen-
tal results confirming this explanation, as well as a more detailed
analysis of the effect of offshoring on performance can be found
elsewhere [16].

The generated C programs were also faster than the handwritten
(unspecialized) C programs (Figure 2).4 We were not able to find
generic C implementations that corresponded closely to the DP
algorithms that we studied. Thus, we wrote array-based, bottom-
up, memoized implementations of each of these algorithms. These
were compared to the generated C programs (performing a role
analogous to the unstaged implementations in OCaml).

Because staged programs are significantly faster than the un-
staged memoized programs, the exponential increase in execution
times due to the undoing of effects of memoization by staging (Sec-
tion 3.3.1) does not occur with our combinators. Because the spe-
cialization sizes are all greater than ten, and because the exponen-
tial explosion would be a function of this parameter, the generate
programs would have been at least 1024 (2 to the power of 10)
times slower if there was any such effect.

The generated code is still quite large. As a result, the break-
even points for the number of times the generated code must be
used in order to amortize the cost of generation ranges from 50 to
300 times in the case of OCaml, and from 170 to 1800 times in
the case of offshoring. The size of the generated code is an area
where we expect future work to lead to significant improvements.
Nevertheless, for all benchmark examples, experiments showed
that we can increase the size of the problem until the number of
characters in the generated code is less than 2 raised to the power
of this size. This confirms experimentally that the combinators also
avoid any exponential increase in the size of the generated code.

5. Related Work
MSP grew out of work in partial evaluation on two-level languages
[39, 25]. Initially, two-level languages were intended only as a
model for the internal language of an offline partial evaluator, and
not as languages for writing multi-stage programs [48]. The work
described in this paper can be carried out in the context of a two-
level language extended with a run construct. Much of the work

3 We thank Xavier Leroy for pointing this out.
4 Both C programs were compiled with all available gcc optimization op-
tions, and the two best runs were used in the comparison.

on MSP languages focused on developing type systems that can
statically ensure that the run construct is safe to use (cf. [47]).

Liu and Stoller [32] studied the generation of efficient al-
gorithms from DP problems specified as recurrence equations.
Whereas our approach is largely extensional and uses a set of
monadic and fixed-point combinators for all problems, their ap-
proach is intensional in that it focuses on the use of a variety of
program transformation techniques to extract invariants from the
recurrence equations and to exploit opportunities for incremental-
ization [31]. It will be interesting to see if the two approaches can
be combined fruitfully.

McAdam [33] studied wrappers that can be joined with the stan-
dard fixed-point combinator to allow programmers to manipulate
the workings of functions in an extensional manner. This work is
carried out in an unstaged, imperative setting.

Ager, Danvy and Rohde [2] show how to derive string matchers
specialized with respect to a particular pattern. Their work also
focuses on speeding up the program generator, and controlling its
space usage when the size and time complexity of the generated
program is already under control.

De Meuter [13] outlines how monads and aspects can both be
used to add memoization to programs with minimal change to the
code. The approach taken is to define a non-standard semantics
for an object-oriented language in Scheme. The semantics is dis-
cussed but not presented in the paper. Memoization using aspects
has also been investigated by Aldrich [3] where instead of a spe-
cialized fixed-point combinator,aroundaspects are used to capture
recursive function calls, and realize memoization.

As mentioned earlier in the paper, code duplication is addressed
in the context of partial evaluation either by modifying the seman-
tics of specialization (from the simple semantics of two-level lan-
guages) or by post-processing. For example, the FUSE system by
Weise et al. [51] targets a functional subset of Scheme, and has
a specializer that constructs graphs representing specialized pro-
grams. Nodes in these graphs represent computations, and out-
bound edges represent their uses. Each node having multiple out-
bound edges are let- bound to variables at code generation time,
thus avoiding code duplication. FUSE also involves sophisticated
graph-based transformations that rely on data flow analysis. This
approach is typical in partial evaluation systems, in that it solves
the problem at the meta-level, often using an analysis that looks for
cases when generated code is being duplicated (by insertion into
multiple different contexts in bigger code fragments). These two
approaches are not well-suited for MSP: First, making any trans-
formations or analysis part of the standard semantics for MSP lan-
guages defeats their goal of giving the programmer full control over
staging. Second, giving the user access to the internal representa-
tions of quoted values is problematic as it means the programmer
can no longer reason equationally about next-stage computations
[45], and invalidates the safety guarantees provided by the static
type systems currently available for multi-stage languages.

Consel and Danvy [10] showed that converting source programs
into CPS leads to more effective partial evaluation. Several works
that followed focused on improving either the performance or the
clarity of the source code of the specializer [4, 29]. But it seems
that none of these works indicate that CPS conversion improves
opportunities for controlling code duplication using let insertion. A
related idea to continuation-based partial evaluation was explored
by Holst and Gomard [23], who do not CPS convert, but rather,
rewrite each source program to push the syntactic context of every
let expression into its body. So, in contrast to Consel and Danvy’s
idea of CPS converting the source program, the scope of the con-
tinuation is limited to each source program procedure.

Thiemann [49] uses monads to capture the notion of interleaved
computations for code specialization and code generation in CPS-



based partial evaluation using a type-and-effect system, where ef-
fects are used to characterize the code generation, and allow for
better binding-time analysis. This work uses monads to represent
staged computation, whereas we use monads to express sharing in
the second-stage computations.

In a study on using partial evaluation to optimize imperative
programs, Debois also encounters the code duplication problem,
and uses a bisimulation-based post-processing transformation that
he calls “rewinding” to address it [12]. Debois notes that “a differ-
ent direction is further studying the rewinding transformation, in
particular finding out whether it can somehow be integrated with
specialization. Currently, we may produce enormous residual pro-
grams only to cut them back down with rewinding, incurring cor-
respondingly enormous time consumption.” It will be interesting to
see if the monadic combinator library approach proposed here can
be used to avoid the need for a posteriori rewinding.

Moggi and Fagorzi [38] describe a monadic multi-stage meta-
language. In this work, monads are used to separate code generation
from the computational effects and to give a simpler operational se-
mantics for multistage programming languages. This is orthogonal
to our work which uses monads as a programming technique.

In the Pan system by Elliott et al. [17], all function definitions
are inlined and function applications are beta-reduced. This results
in the generated code having a lot of replication. To remove this
replication, they use CSE to identify the replicated program frag-
ments and make let-bindings for them. In contrast to our approach
of avoiding code duplication, they use sophisticated intensional
analysis-based post-processing (whose correctness must be proved
separately) to first generate large-sized code and then reduce its
size. It will be interesting to see if the techniques presented here
can be used to achieve the same runtime performance as their sys-
tem.

Acar et al.[1] develop a sophisticated framework for selective
memoization that uses a language based on a modal type system.
Given the limited assumptions that we make about the notion of
memoization that we address, we expect that the techniques we pro-
pose here are compatible with their more refined notions of memo-
ization. It will be interesting to use their techniques to improve the
performance of the generation phase.

6. Conclusion and Future Work
This paper proposes a systematic approach to avoiding code du-
plication when staging memoized functions. A generic combinator
library supporting this approach is presented. To confirm experi-
mentally that the library does achieve the goal of avoiding dupli-
cation, it is used to implement several standard DP algorithms in-
cluding ones in standard algorithm textbooks. The generated im-
plementations are competitive with hand-written (unspecialized) C
programs.

Our use of monads gives rise to what may be the first example of
two-level monads and two-level monadic fixed points in the litera-
ture. It seems reasonable to expect that there may be other instances
where monads [36] and code [47] can be used synergistically.

Since the completion of the core of this work, the combinator
library has found a variety of applications beyond the scope of
memoized functions, including the generation of hardware circuits
for FFT [26, 27] as well as specialized Gaussian elimination algo-
rithms [9]. Even though FFT does not use memoization, a staged
version of the recurrence would suffer from code duplication if the
combinators presented here are not used. Thus, while the proposed
combinator library addressed our initial problem of staging memo-
ized functions, the scope of its utility seems to extend beyond this
domain.

6.1 Future Work

In terms of theoretical exploration, we are interested in investigat-
ing the extent to which the two-level monadic fixed point approach
can be used to define patterns of staging problems and their so-
lution. It will also be interesting to see if the monad used here can
help in the development of more expressive type systems for imper-
ative MSP. In particular, there are currently no static type systems
for imperative multi-stage languages that allow storing open terms
in the store (and retrieving them). State of the art type systems use
closedness types [6, 5]. Binding time analysis for imperative lan-
guages use the idea of regions (which do not have principal types),
and still do not allow the storing of open terms in memory [15]. The
combinator library presented in this paper uses a two-level monad
that stores open values in an explicit state, and is fully expressible
in a standard multi-stage type system with principal types [47, 7].

The proposed library provides the user with a mechanism for
blocking specific sources of code duplication in a program, one by
one. An interesting open question is whether all code duplication
can be avoidedwithout changing the semantics of the language.
This open question can be viewed in two ways: First, there may
be applications where code duplication poses difficulties for stag-
ing, and more sophisticated approaches (possibly based on other
combinator libraries) may be needed. Second, some partial evalua-
tors (like Tempo) are said to never introduce any code duplication.
Such a property is not expressed in current static type systems for
two level languages. In the future, it will be interesting to whether
this gap can be bridged.

There are several important practical directions for future work.
We are interested in understanding extent to which the combinators
can be applied to domains other than DP. Examples of such do-
mains include parsing [42], pretty-printing, and cryptography [34].
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A. Programs used in the test suite
We give below the code fragments corresponding to the core recur-
sive algorithms in each of the DP problems that were used in the test
suite. These fragments illustrate the concise high-level style that
can be used by a programmer type implement basic dynamic pro-
gramming algorithms. The use some unlisted simple helper func-
tions such asfor lm (to produce a list of results) andsum lms (to
sum up elements in a list).

(* Forward algorithm *)
let rec alpha_ms f

((time,state, (hma, hmb, pi),
stateSize), obs) =

match time with
1 -> let p1 = pi.(state) in

ret .<(p1 *. (.~hmb).(state).((.~obs).(1)))>.
| _ -> bind (for_lm 1 stateSize (fun kstate ->

bind
(f ((time-1, kstate, (hma, hmb, pi),

stateSize), obs))
(fun r1 ->

let p2 = (hma).(kstate).(state) in
ret (.<.~r1 *. p2>.)))) (fun r2 ->

bind (sum_lms r2) (fun r3 ->
ret (.<(.~hmb).(state).((.~obs).(time)) *.

.~r3>.)))

(* Gibonacci *)

let gib_ms f (n, (x, y)) =
match n with
| 0 -> ret x
| 1 -> ret y
| _ -> bind (f ((n-2), (x, y))) (fun r1 ->

bind (f ((n-1), (x, y))) (fun r2 ->
ret .<.~r2 + .~r1>.))

(* Longest Common Subsequence *)
let lcs_mks f ((i,j), (x,y)) =

if (i=0 || j=0) then ret .<0>.
else
bind (f ((i-1, j-1),(x,y))) (fun r1 ->
bind (f ((i, j-1),(x,y))) (fun r2 ->
bind (f ((i-1, j),(x,y))) (fun r3 ->
ret
.<if ((.~x).(i) = (.~y).(j)) then .~(r1) + 1

else max .~(r2) .~(r3)>.)))

(* 0/1 Knapsack *)
let ks_sm f ((i,w,wt), vl) =

match (i,w) with
(0,_) -> ret .<0>.

| (_,0) -> ret .<0>.
| (ni,nw) ->

if (wt.(i) > nw) then
f ((i-1, nw, wt), vl)

else
bind (f ((i-1, nw - wt.(i), wt), vl))

(fun r1 ->
bind (f ((i-1, nw, wt), vl))

(fun r2 ->
ret (.<max ((.~vl).(i) + .~r1) .~r2>.)))

(* Optimal Binary Search Tree *)
let obst_sm f ((j, k), p) =

if (j = k) then ret .<(.~p).(j)>.
else
if (k < j) then ret .<(0.0)>.
else

bind (for_lm j k (fun x -> ret .<(.~p).(x)>.))
(fun r0 ->

bind (msum_ls_memo_y ((r0, j, k),0))
(fun r1 ->

bind (for_lm j k (fun i ->
bind (f ((j, i-1), p))

(fun r2 ->
bind (f ((i+1, k), p))

(fun r3 ->
retN .<(.~r2 +. .~r3)>.))))

(fun r4 ->
bind (min_lms r4)

(fun r5 ->
ret .<.~r1 +. .~r5>.))))

(* Optimal Matrix Multiplication Order *)
let optmult_sm f ((i,j),p) =

if i=j then ret .<0>.
else bind (for_lm i (j-1)

(fun k ->
bind (f((i,k),p)) (fun r1 ->
bind (f((k+1,j),p)) (fun r2 ->
retN (.<.~r1 + .~r2 +

(.~p).(i-1) *
(.~p).(k) *
(.~p).(j)>.)))))

(fun r3 -> min_lms r3)


