
Design Patterns for

Self-Balancing

Trees

Dung “Zung” Nguyen

Stephen Wong

Rice University

Motivations

 A binary search tree of n elements
can be skewed resulting in O(n)
search.

1

2

3

4

Need a way to maintain the tree’s balance in
order to guarantee O(logn) search.

Balanced Trees

 Classic balanced tree structures

– 2-3-4 tree (see next slide)

– red-black tree (binary tree equivalent
of 2-3-4 tree)

– B-tree (generalized 2-3-4 tree)

– Difficult and complex. Where’s the
code?

 What’s the proper abstraction?

– Need to decouple algorithms from
data structures.

A 2-3-4 Tree is…

A

A B

A B C

Empty

Non-Empty, in 3 possible states:

 1-State: 1 data element + 2 sub-trees.

 3-State: 3 data elements + 4 sub-trees.

 2-State: 2 data elements + 3 sub-trees.

 0-State: no data element + no sub-trees.

Variant vs. Invariant

Operations

 Self-balancing insertion is not an

intrinsic (invariant) operation of a

tree.

 What are the invariant operations?

– Gettors & Constructors.

– Constructive and Destructive

operations:

Constructive: Splice a tree into another.

Destructive: Split a tree into a 2-state.

Splittin’ and Splicin’

A C

A B C

B

A B C

A C

B

Split Up:
Splice:

Structural Operations

t1

-10 0 10-20 20

t1.splitUpAt(1)

-10

0 10-20 20

t2

β γα

t1.spliceAt(1, t2)

-10 0 10-20 20β γα

t1.splitDownAt(1)

-10

0 10-20 20

Con/De-struction

t1

10

t2

t1.splitUpAt(0)

10

t1.splitDownAt(0)

t2.spliceAt(0, t1)

10

Visitor Design Pattern

Invariant: Hosti calls casei of the visitor.

AHost

execute(v)
AVisitor

+case1()

+case2()

+case3()
Host1 Host2 Host3

VisitorA VisitorB

Fixed # of methods  fixed # of hosts

Generalized Visitors

Invariant: Hosti calls caseAt(i) of the visitor.

AHost

execute(v) AVisitor

+caseAt(int i)

Host1 Host2 Host3

VisitorA VisitorB

TreeN and Algorithms

Visitor Design Pattern

Composite Design Pattern: A non-empty

TreeN has sub-trees that are TreeN.

toString() Algorithm

public class ToStringAlgo implements ITreeNAlgo {

// Constructors omitted

public Object caseAt(int idx, TreeN host, Object key) {

switch(idx) {

case 0: { return "[]"; }

default: {

String sData= "", sTrees="";

for(int i = 0;i<idx;i++) {

sData += host.getDat(i)+" ";

sTrees += host.getChild(i).execute(toStringHelp,"| ")+"\n";

}

sTrees += host.getChild(idx).execute(toStringHelp," ").toString();

return sData +"\n"+sTrees;

}

}

}

ITreeNAlgo toStringHelp = …see next slide….

}

Empty Tree

Non-Empty Tree

“Prefix” data

ToString() Helper

private final static ITreeNAlgo toStringHelp = new ITreeNAlgo() {

public Object caseAt(int idx, TreeN host, Object prefix) {

switch(idx) {

case 0: { return "|_[]"; }

default: {

String sData= "", sTrees="";

for(int i = 0;i<idx;i++) {

sData += host.getDat(i)+" ";

sTrees += prefix

+ (String) host.getChild(i).execute(this, prefix+"| ")+"\n";

}

sTrees += prefix

+ host.getChild(idx).execute(this, prefix+" ").toString();

return "|_ "+sData +"\n"+sTrees;

}

}

}

};

Empty Tree

Non-Empty Tree

“Prefix” data

Vertical Data Transport

-10 0 10-20 20

5

-10 0 10-20 20

5

-10 0 10-20 205

Split up Splice

Collapse/Splice Split-down

No net height change except at root and leaves!

Command Design Pattern

ICommand

+Object apply(Object inp)

Command1 Command2 Command3

Well-defined, but unrelated semantics.

Invoker
invokes

Insertion Heuristics

 Insertion must take place at the leaf.

 Tree must grow only at the root.

Must transport data

from the leaves to the root

without affecting the height balance.

Problem: If a child node is too

wide, it needs to split up and

splice into its parent, but…

 The child node does not know where to

splice into its parent

 The child does not even have a reference

to its parent.

Solution: Pass a command

(lambda) forward from the

parent to the child during the

recursive call.

class SplitUpAndApply implements ITreeNAlgo {

int _order;

public SplitUpAndApply(int order) { _order = order;}

public Object caseAt(int i, TreeN host, Object param) {

if(i <= _order) return host;

else {

host.splitUpAt(i / 2);

return ((ILambda)param).apply(host); }

}

}

Split-up and Splice (Apply)

Max width of node

Not too wide?  no-op

Too wide?  Split up

then apply lambda

The lambda splices this

child into its parent.

Insertion Algorithm

 Find insertion point at the leaf and splice new

data in.

 Use Split-and-Apply visitor to transport excess

data upwards.

– Visitor passed as parameter to recursive call.

– Non-root: split-and-splice

– Root node: split-and-no-op will cause entire

tree to grow in height.

– Abstract the splice/no-op as a command

passed to the visitor!

Splice into parent!

Insertion Dynamics

20

405 30

25

λ110

15 λ2

25

Compare and

create splicing

lambda

Compare and

create splicing

lambda

Insert here!

Too wide!

Split up

Too wide!

Split up

Splice into parent!
Send lambda to child!

Send lambda to child!

2 elements/node max
λ0 no-op

public Object caseAt(int s, final TreeN host, final Object key) {

switch(s) {

case 0: { return host.spliceAt(0, new TreeN((Integer) key)); }

default: {

host.execute(new ITreeNAlgo() {

public Object caseAt(int s_help, final TreeN h, final Object cmd) {

switch(s_help) {

case 0: { return ((ILambda)cmd).apply(new TreeN((Integer)key)) ;}

default: {

final int[] x={0}; // hack to get around final

for(; x[0] < s_help; x[0]++) {

int d = h.getDat(x[0]);

if (d >= (Integer)key) {

if (d == (Integer)key)) return h; // no duplicate keys

else break; } }

h.getChild(x[0]).execute(this, new ILambda() {

public Object apply(Object child) {

return h.spliceAt(x[0], (TreeN) child); } });

return h.execute(splitUpAndSplice, cmd); } } } },

new ILambda() {

public Object apply(Object child){ return host; }});

return host; } } }

x[0] has the splice location

F
in

d
 t

h
e

in
se

rt
io

n
/s

p
li

ce

lo
ca

ti
o
n

Recurse into the child, passing on the

splicing lambda

The beauty of closure!

Deletion Heuristics

 Deletion only well-defined at leaf.

 Data might exist anywhere in the tree.

 Tree can only shorten at root.

Must transport data

from the root to the leaves and

from the leaves to the root

without affecting the height balance.

 Push “candidate” data down from the root to the leaves.

 Bubble “excess” data back to the root.

Deletion Algorithm

 Identify candidate data

– split down at candidate and collapse with

children.

– If root is a 2-node, then tree will shorten.

 Data to delete will appear as 2-node

below leaves.

 Use Split-and-Apply to transport

excess data upwards.

Deletion Dynamics

20

10 30 40

5 2515 35 45

Remove “30”
2 elements/node max

Split-down candidate

element and collapse

with children

Delete it!

Split-up and splice

as needed

Conclusions

 Proper abstraction leads to

– Decoupling

– Simplicity

– Flexibility & extensibility

 Generalized Visitors open up new possibilities.

 Self-balancing trees illustrate

– Abstract decomposition

– Design patterns

– Component-frameworks

– Lambda calculus

– Proof-of-correctness & complexity analysis

