
1

Adapting Our Design Recipe to Java

Corky Cartwright

Vivek Sarkar

Department of Computer Science

Rice University

COMP 211, Spring 2010 2

Reprise: the Design Recipe (Scheme)
How should we go about writing programs?
• Analyze problem, which includes:

• defining any data types (and corresponding
structural templates) that are not primitive;

• determining what top-level (visible) functions must
written.

• For each top-level function f to be written:
1. State contract (type signature) and purpose of f.
2. Give input-output examples for f written as tests
3. Select and instantiate a template for the function

body and primary argument. Define auxiliary
functions for other arguments if needed.

4. Code the function by filling in the template
5. Run the tests and confirm that they succeed.

COMP 211, Spring 2010 3

The Design Recipe for Java
How should I go about writing programs?
• Analyze problem, which includes:

• defining any classes C for data types that are not primitive;
• determining what visible methods should appear in each class.

• For each visible method m in each class C :
• Write the header and contract (HTDP: purpose) for m.
• Create a test class for C (or the set of tightly coupled classes

including C if it does not already exist) and write a test method
for m that checks it behavior on representative inputs.

• Select and instantiate a template for the method body and
primary argument (this). Define auxiliary helper methods as
needed, and add them to the class C containing m.

• Code the method by filling in the template
• Run the tests and confirm that they succeed.

COMP 211, Spring 2010 4

OO style
• OO languages are designed to support writing

programs in which dynamic dispatch is the principal
control mechanism. Dynamic dispatch refers to the
fact that in a method invocation
 o.m()
the method code executed depends on the class of
o. Recall that the method m is conceptually part of
the object o. This idea is astonishingly powerful.

• The essence of OO design is representing data and
computations in a form that leverages dynamic
dispatch.

COMP 211, Spring 2010 5

Union Pattern

• The union pattern is used to represent different forms of related
data with some common behavior.

• The pattern consists of an abstract class A together with a
collection of variant subclasses B1, ..., BN extending A. An
abstract class cannot be instantiated using new. Note: if A is
concrete then it is not the union of B1, ..., BN because A has
additional members that are instances of A.

• The collection of classes A, B1, ..., BN is called a union hierarchy and
A is called the root class of the hierarchy.

• The common behavior of this union is codified by a set of methods
in A, which may be abstract. Each such method m has an
associated contract* that the implementation in each variant class
must obey.
*In Java, the term contract corresponds to purpose in HTDP.

COMP 211, Spring 2010 6

Class Diagram of Union
Pattern

…

COMP 211, Spring 2010 7

Defining a Method on a Union

…

abstract <type> m(<params>);

<type> m(<params>) {
 <body 1>
}

<type> m(<params>) {
 <body N>
}

COMP 211, Spring 2010 8

City Directory Example

• Assume that we want to design the data for
an online city phone book. In contrast to our
DeptDirectory example, such a directory
will contain several different kinds of listings:
businesses, residences, and government
agencies.

• The entry data for such a directory is
represented by using the union pattern to
identify the common behavior among the
various kinds of listings.

COMP 211, Spring 2010 9

Definition of CityEntry
A CityEntry is either:
• a ResidentialEntry(name, address, phone)
• a BusinessEntry(name, address, phone, city, state)
• a GovernmentEntry(name, address, phone, city, state, government)

Examples:
ResidentialEntry("John Doe","3310 Underwood", "713-664-8809")

BusinessEntry("ToysRUs","2101 Old Spanish Trail",
"713-664-1234","Houston", "TX")

GovernmentEntry("Federal Drug Administration",
"800-666-9000", "Washington", "DC", "Federal")

COMP 211, Spring 2010 10

Initial Code for CityEntry (v1)

abstract class CityEntry { }

class BusinessEntry extends CityEntry {
 String name, address, phone, city, state;
}

class GovernmentEntry extends CityEntry {
 String name, address, phone, city, state, government;

}

class ResidentialEntry extends CityEntry {
 String name, address, phone;
}

COMP 211, Spring 2010 11

 Class Diagram of CityEntry Union

COMP 211, Spring 2010 12

Java Class Types
• Organized in a strict hierarchy with Object class at the top (root).
• Every class C except Object has a unique immediate superclass which is the

parent of C in the hierarchy.
• A descendant in the class hierarchy is called a subclass. B is a subclass of A iff

A is a superclass of B.
• Subclassing implies subtyping and vice-versa: if B is a subclass of A, then B is

a subtype of A. If class B is a subtype of class A, then B is a subclass of A.
• An object o is an instance of only one class but belongs to a hierarchy of types.

• Each subclass C inherits (includes) all of the members of all its superclasses.
• Declared members of C augment the inherited members with one exception: if C

declares a method m defined in the superclass, the new definition overrides the
old.

COMP 211, Spring 2010 13

Defining Methods on Unions

• Assume that we want to define a method on a union
that requires a separate implementation for each
variant (subclass) of the union. Each implementation
will satisfy the same contract (description of
behavior).

• In Java, the method must not only be defined in each
variant of the union, it must be declared as abstract
in the root class of the union hierarchy. Otherwise,
Java will not allow the method to be invoked on
objects of the union type.

COMP 211, Spring 2010 14

Defined Method for CityEntry

• Let's illustrate the definition of a
plausible method for CityEntry:

abstract class CityEntry {

 /** Returns true if key is a prefix of name. */
 abstract boolean nameStartsWith(String key);

}

COMP 211, Spring 2010 16

Extended Code for CityEntry (v2)

abstract class CityEntry {

 /** Returns true if key is a prefix of name. */

 abstract boolean nameStartsWith(String key);

}

class BusinessEntry extends CityEntry {

 String name, address, phone, city, state;

 boolean nameStartsWith(String key) { return name.startsWith(key); }

}

class GovernmentEntry extends CityEntry {

 String name, address, phone, city, state, government;

 boolean nameStartsWith(String key) { return name.startsWith(key); }

}

class ResidentialEntry extends CityEntry {

 String name, address, phone;

 boolean nameStartsWith(String key) { return name.startsWith(key); }

}

Example: using the CityEntry code

CityEntry be = new BusinessEntry("ToysRUs", "2101 Old Spanish Trail",
 "713-664-1234","Houston", "TX");

CityEntry ge = new GovernmentEntry("Federal Drug Administration",
 "800-666-9000", "Washington", "DC", "Federal");

CityEntry re = new ResidentialEntry("John Doe", "3310 Underwood",
 "713-664-8809");

boolean b = be.nameStartsWith("Toys"); // true

boolean g = ge.nameStartsWith("Drug"); // false

boolean r = re.nameStartsWith("J"); // true

COMP 211, Spring 2010 17

How would we have written
nameStartsWith in Scheme?

COMP 211, Spring 2010 18

;; CityEntry-nameStartsWith: CityEntry -> boolean
;; return true iff city entry C’s name starts with key
(define (CityEntry-nameStartsWith C key)
 (cond
 [(BusinessEntry? C)
 (stringStartsWith (BusinessEntry-name C) key)]
 [(GovernmentEntry? C)
 (stringStartsWith (GovernmentEntry-name C) key)]
 [(ResidentialEntry? C)
 (stringStartsWith (ResidentialEntry-name C) key)]
)
)

Assumes three distinct structs for BusinessEntry, GovernmentEntry,
ResidentialEntry

NOTE: Interleaving of logic for different structs leads to “spaghetti” code

COMP 211, Spring 2010 18

Member Hoisting
• In a union hierarchy, the same code

may be repeated in every variant.
• A cardinal rule of software engineering

is never duplicate code. We can
eliminate code duplication in a union
hierarchy by hoisting duplicated code
(code that is invariant within the union)
into the abstract class at the route of the
hierarchy.

COMP 211, Spring 2010 19

Revised Code for CityEntry (v3)

abstract class CityEntry {
 /* common fields */
 String name, address, phone;

 /** Returns true if key is a prefix of name. */
 boolean nameStartsWith(String key) { return name.startsWith(key); }
}

class BusinessEntry extends CityEntry {
 String city, state;
}

class GovernmentEntry extends CityEntry {
 String city, state, government;
}

class ResidentialEntry extends CityEntry { }

Usage of revised CityEntry
code can stay unchanged

CityEntry be = new BusinessEntry("ToysRUs", "2101 Old Spanish Trail",
 "713-664-1234","Houston", "TX");

CityEntry ge = new GovernmentEntry("Federal Drug Administration",
 "800-666-9000", "Washington", "DC", "Federal");

CityEntry re = new ResidentialEntry("John Doe", "3310 Underwood",
 "713-664-8809");

boolean b = be.nameStartsWith("Toys"); // true

boolean g = ge.nameStartsWith("Drug"); // false

boolean r = re.nameStartsWith("J"); // true

COMP 211, Spring 2010 20

COMP 211, Spring 2010 21

Reminders

• Exams due in class Friday
• Optional Homework due Monday
• Reading: OO Design Notes, Ch 1.1

- 1.4.2.
• No classes next week!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Usage of revised CityEntry code can stay unchanged
	Slide 21

