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Motivations

 A binary search tree of n elements 
can be skewed resulting in O(n) 
search.
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Need a way to maintain the tree’s balance in 
order to guarantee O(logn) search.



Balanced Trees

 Classic balanced tree structures

– 2-3-4 tree (see next slide)

– red-black tree (binary tree equivalent 
of 2-3-4 tree)

– B-tree (generalized 2-3-4 tree)

– Difficult and complex.   Where’s the 
code?

 What’s the proper abstraction?

– Need to decouple algorithms from 
data structures.



A 2-3-4 Tree is…
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Empty

Non-Empty,  in 3 possible states:

 1-State: 1 data element +  2 sub-trees.

 3-State: 3 data elements + 4 sub-trees.

 2-State: 2 data elements +  3 sub-trees.

 0-State: no data element +  no sub-trees.



Variant vs. Invariant 

Operations

 Self-balancing insertion is not an 

intrinsic (invariant) operation of a 

tree.

 What are the invariant operations?

– Gettors & Constructors.

– Constructive and Destructive 

operations:

Constructive: Splice a tree into another.

Destructive: Split a tree into a 2-state.



Splittin’ and Splicin’
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Structural Operations
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Con/De-struction
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Visitor Design Pattern

Invariant: Hosti calls casei of the visitor.

AHost

execute(v)
AVisitor

+case1()

+case2()

+case3()
Host1 Host2 Host3

VisitorA VisitorB

Fixed # of methods  fixed # of hosts



Generalized Visitors

Invariant: Hosti calls caseAt(i) of the visitor.

AHost

execute(v) AVisitor

+caseAt(int i)

Host1 Host2 Host3

VisitorA VisitorB



TreeN and Algorithms

Visitor Design Pattern

Composite Design Pattern: A non-empty

TreeN has sub-trees that are TreeN.



toString() Algorithm

public class ToStringAlgo implements ITreeNAlgo {

// Constructors omitted

public Object caseAt(int idx, TreeN host, Object key) {

switch(idx) {

case 0: {  return "[ ]";  }

default: {

String sData= "", sTrees="";

for(int i = 0;i<idx;i++) {

sData += host.getDat(i)+" ";

sTrees += host.getChild(i).execute(toStringHelp,"|  ")+"\n";

}

sTrees += host.getChild(idx).execute(toStringHelp,"   ").toString();

return sData +"\n"+sTrees;

}

}

}

ITreeNAlgo toStringHelp =  …see next slide….

}

Empty Tree

Non-Empty Tree

“Prefix” data



ToString() Helper

private final static ITreeNAlgo toStringHelp = new ITreeNAlgo() {

public Object caseAt(int idx, TreeN host, Object prefix) {

switch(idx) {

case 0: {  return "|_[ ]"; }

default: {

String sData= "", sTrees="";

for(int i = 0;i<idx;i++) {

sData += host.getDat(i)+" ";

sTrees += prefix 

+ (String) host.getChild(i).execute(this, prefix+"|  ")+"\n";

}

sTrees += prefix 

+ host.getChild(idx).execute(this, prefix+"   " ).toString();

return "|_ "+sData +"\n"+sTrees;

}

}

}

};

Empty Tree

Non-Empty Tree

“Prefix” data



Vertical Data Transport

-10 0 10-20 20

5

-10 0 10-20 20

5

-10 0 10-20 205

Split up Splice

Collapse/Splice Split-down

No net height change except at root and leaves!



Command Design Pattern

ICommand

+Object apply(Object inp)

Command1 Command2 Command3

Well-defined, but unrelated semantics.

Invoker
invokes



Insertion Heuristics

 Insertion must take place at the leaf.

 Tree must grow only at the root.

Must transport data 

from the leaves to the root

without affecting the height balance.



Problem: If a child node is too 

wide, it needs to split up and 

splice into its parent, but…

 The child node does not know where to 

splice into its parent

 The child does not even have a reference 

to its parent.

Solution: Pass a command 

(lambda) forward from the 

parent to the child during the 

recursive call.



class SplitUpAndApply implements ITreeNAlgo {

int _order;

public SplitUpAndApply(int order) { _order = order;}

public Object caseAt(int i, TreeN host, Object param) {

if(i <= _order) return host;

else {

host.splitUpAt(i / 2); 

return ((ILambda)param).apply(host); }

}

}

Split-up and Splice (Apply)

Max width of node

Not too wide?   no-op

Too wide?   Split up 

then apply lambda

The lambda splices this 

child into its parent.



Insertion Algorithm

 Find insertion point at the leaf and splice new 

data in.

 Use Split-and-Apply visitor to transport excess 

data upwards.

– Visitor passed as parameter to recursive call.

– Non-root: split-and-splice

– Root node: split-and-no-op will cause entire 

tree to grow in height.

– Abstract the splice/no-op as a command 

passed to the visitor!



Splice into parent!

Insertion Dynamics
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public Object caseAt(int s, final TreeN host, final Object key) {

switch(s) {

case 0: {  return host.spliceAt(0, new TreeN((Integer) key)); }

default: {

host.execute(new ITreeNAlgo() {

public Object caseAt(int s_help, final TreeN h, final Object cmd) {

switch(s_help) {

case 0: { return ((ILambda)cmd).apply(new TreeN((Integer)key)) ;}            

default: {

final int[] x={0};  // hack to get around final

for(; x[0] < s_help; x[0]++) { 

int d = h.getDat(x[0]);

if (d >= (Integer)key) {

if (d == (Integer)key)) return h; // no duplicate keys                       

else break;  } }

h.getChild(x[0]).execute(this, new ILambda() {

public Object apply(Object child) { 

return h.spliceAt(x[0], (TreeN) child); } } );

return h.execute(splitUpAndSplice, cmd); } } } }, 

new ILambda() {

public Object apply(Object child){ return host; }} );

return host;  } } }

x[0] has the splice location
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Recurse into the child, passing on the 

splicing lambda

The beauty of closure!



Deletion Heuristics

 Deletion only well-defined at leaf.

 Data might exist anywhere in the tree.

 Tree can only shorten at root.

Must transport data 

from the root to the leaves and

from the leaves to the root

without affecting the height balance.

 Push “candidate” data down from the root to the leaves.

 Bubble “excess” data back to the root.



Deletion Algorithm

 Identify candidate data 

– split down at candidate and collapse with 

children.

– If root is a 2-node, then tree will shorten.

 Data to delete will appear as 2-node 

below leaves.

 Use Split-and-Apply to transport 

excess data upwards.



Deletion Dynamics
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Conclusions

 Proper abstraction leads to 

– Decoupling

– Simplicity

– Flexibility & extensibility

 Generalized Visitors open up new possibilities.

 Self-balancing trees illustrate

– Abstract decomposition

– Design patterns

– Component-frameworks

– Lambda calculus

– Proof-of-correctness & complexity analysis


