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Today’s goals

Overview of accounting for cost of computation
(complexity)

Intuitively, accumulators can capture “history”™
Accumulators can be used to

Improve performance

Avoid non-termination (uncommon)

Improve expressivity (simplify code)

How do we recognize when they are needed?
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Cost accounting

Measure computation cost in reduction steps using
our reduction semantics. Models actual cost
reasonably well.

Consider three algorithms
. Cost-A(n) = 2*n° + n? + 50
. Cost-B(n) = 3*n? + 100
. Cost-C(n) = 2»
Which algorithm 1s best?
Which algorithm works best for large n?

Can we formalize this notion?
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Order of Complexity

- We'll say that Cost-X 1s “order f (n))”, or simply
“O(f (n))” (read “Big-O of f(n))” ) 1f
. Cost-X(n) < factor * f(n) for sufficiently large n
- Examples:
. Cost-A(n) =2*n’ +n?+ 1 Cost-A is O(n?)
. Cost-B(n) = 3*n? + 10 Cost-B is O(n?)
. Cost-C(n) =2 Cost-C 1s O(2")
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Famous "Complexity Classes”

constant-time (head, tail)

logarithmic  (binary search)
linear (vector multiplication)
"nlogn" (sorting)

quadratic  (matrix addition)
cubic (matrix multiplication)
polynomial (...many! ...)
exponential (guess password)



Improving Performance

Consider the sequence accumulation function
. Takes'(1 123 -1) and produces '(12476)

How do we write this function using the list
template?

We can do much better!
What information do we need to do better?

- This 1s basically the “lost history” in the recursive call
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Partial Sums Program

;; sums: (listOf number) -> (listOf number)
;; (sums alon) replaces each number n in alon by the sum
,; of the numbers preceding (and including) n.
;; (sums (12 3))="(136)
(define (sums alon)
(cond [(empty? alon) empty]
[else
(cons (first alon)
(map (lambda (x) (+ x (first alon)))
(sums (rest alon))))]))
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Accumulator version of same program

. Idea: as the list 1s successively decomposed
into first and rest, the sums function can
accumulate the sum of the numbers to the
left of rest.

. Template Instantiation:
(define (sums-help lon sum)
(cond [(empty? lon) ... ]
[else ... (first lon) ... sum ...
(sums-help (restlon) ..) ]))
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Accumulator version of same program

;; sums-help: (listOf number) number -> (listOf number)
(define (sums-help alon sum)
(cond
[(empty? alon) empty]
[else
(local [(define new-sum (+ sum (first 1)))]
(cons new-sum (sums-help (rest 1) new-sum)))]))
;; sums: (listOf number) -> (listOf number)
(define (sums alon) (sums-help alon 0))
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Formulating an Accumulator

. If we decide to use an accumulator, we need
to answer three questions:

. How will we use the accumulator to produce
the final result?

- How will we modify the accumulator in each
recursive call? (What will we “accumulate”?)

. What should the 1nitial value for the
accumulator be?
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Another Example

;; (flatten: (genListOf symbol) -> (listOf symbol)
;; (flatten agl) returns a list of the symbols in order of appearance
;; (flatten '((@a b) ¢ ((d))) ='(a b c d)
(define (flatten agl)
(cond [(empty? agl) empty]
[else (local [(define head (first agl))
(define tail (flatten (rest agl)))]
(cond [(empty? head) tail]
[(cons? head) (append (flatten head) tail)]
[else (cons head tail)]))]))

Note: we wrote this function so that the symbol type can be replaced by any
non-list type.
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Accumulator version

;; flatten-help: (genListOf symbol) (listOf symbol) -> (listOf symbol)
;; (flatten agl los) returns a list of the symbols in agl appended to los
;; (flatten '((a b) c ((d)) '(e)) ='(abcde)

;; Template Instantiation:
(define (flatten-help agl los)
(cond [(empty? agl) ... ]
[else .... (first agl) ... los ... (flatten-help agl ..) ...]))
(define (flatten-help agl los)
(cond [(empty? agl) los]
[else (local [(define head (first agl))
(define tail (flatten-help (rest agl) los))]
(cond [(empty? head) tail]
[(cons? head) (flatten-help head tail)]
[else (cons head tail)]))]))
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Other Examples

- Graph searching: avoid repetition/cycles by
accumulating set of nodes already seen and testing
membership in this set. In most cases, mutation
(marking) is better in practice.
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Added Expressivity

Code simplication using accumulators

Consider the list reverse function
. Takes '(12 34 5) and produces '(54321)

How do we write this function using the list
template? Use append. Ugh.

What information do we need to do better?
. This 1s basically the “lost history” of the recursive call

Is this list reversal example really different from
the list accumlation example?
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Naive reverse

(define (rev |)
(cond [(empty? |) empty]
else (append (rev (rest |))

(list (first 1))]))
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Reverse using an accumulator

(define (rev-help | ans)
(cond [(empty? |) ans]
[else (rev-help (rest |) (cons (first 1) ans))]))

(define (fast-rev 1) (rev-help | empty))
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For Next Class

- Bonus lecture this afternoon at 2 in DH 1042
- Homework due Monday
. Midterm:

. Take home exam distributed Friday February
10; due Friday, February 17.

. Covers Scheme Material (Chs. 1- 32 of HTDP
except 28, 29.3)

- Reading:
. Chs 29 .1, 29.2, 30-32
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