
 1

Generative Recursion
Illustrated

Corky Cartwright
Department of Computer Science

Rice University

COMP 211, Spring 2010 2

Big Picture

• Functional program design in Scheme
• Data-directed (functional) program design

 2-10
• Algorithm design (generative recursion, accumulators)

 11-15
• Applied functional programming

 16-18
• Object-oriented (OO) program design in Java19-40

• …

COMP 211, Spring 2010 3

Plan for Today
• Template for Generative Recursion
• Looks at a simple example of generative

recursion (algorithms) in detail: (very)
simple parsing

• Book: focuses on more challenging
numerical algorithms but the challenge is
the underlying mathematics not the
coding

COMP 211, Spring 2010 4

Generative Recursion
Structural recursion

Template derived directly from data definition
Termination for all programs is guaranteed
Conceptually includes complete structural recursion such

 as naive Fibonacci
 f(n) = f(n-1) + f(n-2)
 but complete structural recursion does not fit our structural
recursion template.

Generative recursion
Data definition does not strictly guide design of function
Must address termination in each such function
Degenerate cases: complete/pseudo structural recursion

COMP 211, Spring 2010 5

Impact on Design Recipe
• Only effects:

• choice of template; and
• inclusion of termination argument

• Impact on template:
• “Divide and Conquer” decomposition of the

problem requires some creativity
• Determine solution for trivial problems
• Determine how to break big problems into smaller

ones
• Determine how to combine solutions of smaller

problems to solve the bigger problem

COMP 211, Spring 2010 6

Generative Template
(define (gr-fun problem)
 (cond
 [(trivially-solvable? Problem)
 ;; computer trivial solution
 ...]
 [else
 ;; combine-solutions
 ... problem ...
 (gr-fun (gen-subproblem-1 problem))
 ...
 (gr-fun (gen-subproblem-n problem))
 ...]))

COMP 211, Spring 2010 7

Numerical Algorithms;
Stream Algorithms
Algorithms that process real numbers are not structural
Examples:
• Bi-section for finding roots
• Newton's algorithm for finding root of a function f (square root is

best known application)
• Formulas for constructing fractals
• Series approximations
Explanation: real numbers are not a structural type (Dedekind cuts,

Cauchy sequences)
Algorithms that process (infinite) streams are not structural
• Parsing
• Arithmetic operations on radix representations of real numbers

 (exact real arithmetic)
Explanation: (infinite) streams are not a structural type

COMP 211, Spring 2010 8

Examples of stream-processing
algorithm

• Parsing console input

• Parsing according to a context-
free grammar (deferred to
Comp 311/314/412)

COMP 211, Spring 2010 9

 Parsing Console Input

• Used every time a program reads a text file
• Basic idea: a file is a sequence of proper chars separated by

newline (improper) chars. A read operation returns the
sequence of chars starting at the cursor position ending with
the next newline and advances the cursor. In a functional
setting, a stream of chars is converted to a stream of lines

 (parse '(a b newline c d e f newline g h i …
 produces
 '((a b) (c d e f) (g h i) ...)

• True functional characterization requires potentially infinite
streams (constructed using non-strict cons).

COMP 211, Spring 2010 10

Parsing cont.
Is there a generative decomposition?
Consider writing the following function
; parse : (list-of symbol) -> (list-of (list-of symbol))

; symbol is a convenient substitute for char

We will start with structural template but we will revise it
as we fill in code.
; parse : (list-of symbol) -> (list-of (list-of symbol))

(define (parse input)

 (cond [(empty? input) ...]

 [(cons? input)

 ... (first input) ... (parse (rest input))]))

COMP 211, Spring 2010 11

Parsing cont.
Collective in class exercise
The primitives first and rest are clearly wrong.
What should we use instead?

 parse : (list-of symbol) -> (list-of (list-of symbol))

(define (parse input)

 (cond [(empty? input) ...]

 [(cons? input)

 ... (first?? input) ... (parse (rest?? input))]))

COMP 211, Spring 2010 12

For Next Class

• Homework due on Friday
• Reading:

• Study chs. 25-28: many generative
(non-structural) algorithms

• Lab
• Practice with generative recursion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

