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Abstract
Motivation: Model organisms are widely used to better understand the molecular causes of human disease. While sequence similarity greatly
aids this cross-species transfer, sequence similarity does not imply functional similarity, and thus, several current approaches incorporate pro-
tein–protein interactions to help map findings between species. Existing transfer methods either formulate the alignment problem as a matching
problem which pits network features against known orthology, or more recently, as a joint embedding problem.

Results: We propose a novel state-of-the-art joint embedding solution: Embeddings to Network Alignment (ETNA). ETNA generates individual
network embeddings based on network topological structure and then uses a Natural Language Processing-inspired cross-training approach to
align the two embeddings using sequence-based orthologs. The final embedding preserves both within and between species gene functional
relationships, and we demonstrate that it captures both pairwise and group functional relevance. In addition, ETNA’s embeddings can be used to
transfer genetic interactions across species and identify phenotypic alignments, laying the groundwork for potential opportunities for drug
repurposing and translational studies.

Availability and implementation: https://github.com/ylaboratory/ETNA

1 Introduction

Many critical discoveries in medicine have been uncovered by
molecular studies conducted in model organisms, and the im-
portance of leveraging these models for translational studies
only continues to increase (Aitman et al. 2011). However, one
of the major challenges to realizing the full potential of model
organism studies is functional knowledge transfer (Park et al.
2013), the process of translating information learned in one
species to another.

Model organisms are an important, well-established tool
for studying fundamental biological pathways and disease eti-
ology, especially given the technical and ethical limitations of
performing direct research on humans (O’Neil et al. 2017).
Furthermore, their inherent characteristics and range of avail-
able assays provide opportunities to capture unique biological
perspectives that would otherwise be impossible. For exam-
ple, synthetic lethality studies in yeast (Tong et al. 2004) re-
veal genetic interaction relationships, genetic screens in
organisms with short life cycles such as worm and fly
(Brenner 1974, St Johnston 2002) can be used to study aging-
related phenotypes that are much costlier to study in other
organisms, and sophisticated optogenetics and behavioral
assays can be used to study complex neurobiology in mice
(Fenno et al. 2011). The ability to transfer meaningful molec-
ular insights from one species to another is therefore a central

problem encountered by many experimental biologists,
critical for both helping reveal the broader implications of
individual studies as well as guiding the generation of new
hypotheses for further experimentation.

One intuitive approach to transfer findings from one organ-
ism to another is via sequence similarity, attributing the same
biological function to orthologous genes. However, across
organisms, similar pathway-specific functions can be taken on
by proteins that may not be the most sequence similar
(Park et al. 2013). For this reason, simply assigning conserved
function between species through orthologous proteins is in-
sufficient. To address this problem, researchers have devel-
oped network alignment methods to consider similarity
across protein–protein interaction (PPI) networks from differ-
ent organisms or combine orthology together with PPI
networks, to better capture conserved protein function.
Intuitively, if two proteins maintain similar interaction part-
ners, they are more likely to play similar functional roles in
their respective organisms. Several PPI network alignment
methods have been developed (Table 1), including methods
that leverage PageRank (Singh et al. 2008, Kalecky and Cho
2018), genetic algorithms (Vijayan et al. 2015), or search
algorithms (Patro and Kingsford 2012, Neyshabur et al.
2013, Mamano and Hayes 2017), as well as hub-alignment
(Hashemifar and Xu 2014) and graphlet-based methods
(Malod-Dognin and Pr�zulj 2015). However, of the existing
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alignment methods that use both sequence similarity and PPI
networks, the vast majority usually optimize a convex combi-
nation of the two.

The main limitation of formulating the alignment problem
in this manner is that network topology and sequence similar-
ity are, in some sense, pitted against each other (Fan et al.
2019, Gu and Milenkovi�c 2020). A recent method, MUNK,
seeks to address this challenge by reframing the alignment
problem as a joint embedding problem (Fan et al. 2019).
Specifically, it uses a regularized Laplacian kernel to embed
each PPI network individually and uses orthology to project
one embedding to the other, achieving better performance
than traditional biological network alignment methods for
functional tasks. However, MUNK’s embeddings are direc-
tional, requiring a decision between “source” and “target”
species, leading to differing results for the alignment between
the same pair of species. Furthermore, MUNK simply uses the
same dimensionality as the smaller of the two PPI networks
for its latent embedding, which does not fully take advantage
of the natural “compression” that is inherent to embedding
methods and makes it prone to overfitting.

Here, we present Embedding to Network Alignment
(ETNA), a deep learning method for estimating functional rel-
evance between genes from different species (Fig. 1). ETNA
presents a novel autoencoder architecture to create individual
network embeddings that preserve the global and local topo-
logical structures of biological networks. Taking inspiration
from advances in natural language processing (NLP), ETNA
swaps the encoders and decoders of two embeddings in a
cross-training framework (Lauly et al. 2014) while using
orthologous genes as anchors to align the embeddings to a
joint latent space. The alignment process also allows informa-
tion from the other species to refine each individual network
embedding. ETNA’s final output is a bidirectional joint em-
bedding that encodes both within and between species func-
tional relationships.

Using human and four other commonly studied model
organisms (mouse, yeast, fly, and worm), we show that
ETNA’s joint embedding can capture both pairwise and
group functional relationships across species significantly bet-
ter than existing methods. We further explore applications of

the joint embedding, including predicting genetic interactions,
identifying potential phenotypic alignments between human
and mouse, as well as providing new insights on relationships
between human disease, mouse phenotypes, and drug targets.

2 Materials and methods

2.1 A framework for cross-species network

alignment

To align two networks, ETNA iterates between two main
steps: (1) calculating an embedding for each individual net-
work; and (2) aligning the two embedding spaces using ortho-
logs as reference anchors (steps 1 and 2 in Fig. 1). By doing
so, ETNA identifies a joint embedding between two networks.
When applied to PPI networks, this joint embedding can be
interpreted as a latent functional similarity map and enables
reasoning about relationships between proteins across organ-
isms, beyond ortholog pairs.

2.1.1 Individual network embeddings
ETNA uses an autoencoder framework to generate lower-
dimensional latent embeddings that preserve both local and
global network topology while capturing the nonlinear rela-
tionships in the input network. As in many other real-world
networks, gene relationships are diverse and complex, with
many nonlinear interactions (Kitano 2002). The capacity for
autoencoders to capture complex nonlinear relationships
through their activation functions renders them a well-suited
model for gene functional relationships. The framework is ag-
nostic to the type of network, but here we focus on PPI net-
works. Specifically, given a PPI network, we represent it as an
undirected graph G ¼ ðV;EÞ, where V ¼ fv1; v2; . . . ; vng is
the set of n proteins and E is the set of reported physical inter-
actions between pairs of proteins.

Importantly, instead of using G’s adjacency matrix A di-
rectly as input to the autoencoder, ETNA uses a closed-form
approximation of the random walk process on G, which we
denote by M (Equation 3). This matrix can consider long-
range topology that an adjacency matrix ignores. The autoen-
coder is composed of two parts, namely an encoder and a

Table 1. Comparison of ETNA with existing unsupervised pairwise network alignment methods.

Method Interpretable
embeddings

Cross-species
anchors

Combining
sequence and
topology

Directionality Algorithm Code
availability

ETNA Yes Orthologs Nonlinearly Bidirectional Autoencoders Python
MUNK (Fan et al. 2019) Yes Orthologs Nonlinearly Directional SVD Python
IsoRank (Singh et al. 2008) No BLAST Linearly Bidirectional PageRank Linux executable
HubAlign (Hashemifar and

Xu 2014)
No BLAST Linearly Bidirectionala Minimum-degree heuristic

algorithm
Cþþ

PrimAlign (Kalecky and
Cho 2018)

No BLAST Linearly Bidirectional Markov chain þ PageRank Not available

SANA (Mamano and Hayes
2017)

No BLAST Linearly Bidirectionala Simulated annealing Webserver, Cþþ

L-GRAAL (Malod-Dognin
and Pr�zulj 2015)

No BLAST Linearly Bidirectional Lagrangian graphlet Cþþ, not working

GHOST (Patro and
Kingsford 2012)

No GO Does not use
sequence

Bidirectionala Seed-and-extend with local
search

Cþþ

NETAL (Neyshabur et al.
2013)

No GO Does not use
sequence

Bidirectionala Greedy search on similarity
matrix

Webserver

MAGNAþþ (Vijayan et al.
2015)

No n/a Does not use
sequence

Bidirectional Genetic algorithm Executable, Cþþ

a The method has a bidirectional objective function, but the returned output is directional.
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decoder. For each vertex vi, the encoder compresses the n-di-
mensional input (i.e. the ith row of M, denoted by mi in the
following equations) through a 1024-dimensional hidden
layer to a 128-dimensional latent embedding zi. We collect
vectors zi for different vertices into a matrix Z 2 R

n�128 as its
rows. The decoder then uses an independent 1024-dimen-
sional hidden layer to map the latent embedding back into re-
construction space (step 1 in Fig. 1). To capture local and
global network structure, ETNA uses the following objective
function:

Lembed ¼ aLhigh þ cL1st þ kL2 þ xLnorm: (1)

The L1st loss preserves the local first-order structure of the
PPI network by maximizing the similarity of embeddings be-
tween vertices that are directly connected. On the other hand,
Lhigh captures global network topology by modifying the
standard autoencoder reconstruction loss to encourage pro-
teins that have similar network relationships to have similar
embeddings. These two losses are described in more detail be-
low. We also consider two regularization terms: L2 norm on
the autoencoder parameters to avoid overfitting and Lnorm ¼Pn
i¼1
kzik2

2 to avoid exploding norms. All hyperparameters are

tuned by cross validation (Section 2.1.4).

2.1.2 Preserving local first-order structure
In most real-world networks, the presence of a shared edge
between two vertices is a strong signal of similarity (Tang
et al. 2015), and this is true in PPI networks as well. Two

proteins that physically interact with each other are more
likely to be performing similar functions. The first-order prox-
imity captures this local pairwise structure between two verti-
ces. In ETNA, for a pair of vertices ðvi; vjÞ connected by an
edge, their latent embeddings should be similar. Thus, the ob-
jective function for first-order proximity is defined as:

L1st ¼
1

2jEj
Xn

i¼1

Xn

j¼1

Ai;j � logðcosðzi; zjÞÞ (2)

where jEj is the number of edges in the graph, n is the number
of vertices in the graph and cosðzi; zjÞ ¼ ziz>j =ðkzik2 � kzjk2Þ
reflects the similarity between vi and vj in the latent embed-
ding space. This objective function can be considered as half
of the traditional cross entropy formulation and only consid-
ers the positives (i.e., reported PPIs). There are two important
reasons for this: (i) Physical interactions are not the only crite-
ria to determine whether two proteins are functionally simi-
lar, and (ii) PPI network data are not yet complete and
definitely have false negatives (Supplementary Table S2).
Therefore, ETNA focuses on capturing the presence of
reported PPIs and minimizes the contribution of missing PPIs.

2.1.3 Preserving global structure through higher-order
proximity
Given a network, one straightforward way of calculating an
embedding using autoencoders is using the corresponding
row of the adjacency matrix as input for an individual vertex
(Wang et al. 2016), essentially embedding the network neigh-
borhood of each vertex. However, this formulation only

Figure 1. Overview of the ETNA method. ETNA’s framework is roughly divided into three main parts: (1) training an autoencoder to embed PPI networks,

(2) aligning the embeddings between species using orthologous proteins as anchors for cross-training, and (3) scoring pairs of genes across organisms

based on their cosine similarities in embedding space. The embeddings and cosine similarities can both be used for downstream tasks to predict

functional similarity across species.
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considers direct and 2-hop neighbors (i.e., “friends of
friends”) and ignores longer-range network topology. This is
potentially problematic as there are well-studied biological
relationships, such as the MAPK pathway (Seger and Krebs
1995), that can easily involve more than a chain of three
genes. In the past decade, random walk-based methods such
as DeepWalk (Perozzi et al. 2014) have been shown to learn
latent representations that successfully capture network topol-
ogy. Recently, the NetMF method has been proposed based
on a closed-form estimate of the similarity matrix that is im-
plicitly factorized in DeepWalk (Qiu et al. 2018). Compared
to the adjacency matrix, the NetMF matrix not only contains
information for direct connections, but also contains similar-
ity values between vertices that are not directly connected.
Using its rows as input enables ETNA to consider the higher-
order proximity of the PPI network. The NetMF matrix M 2
R

n�n is calculated from the adjacency matrix A as in (Qiu
et al. 2018):

M ¼ log
volðGÞ

T

�XT

i¼1

ðD�1AÞi
�

D�1

 !
� log b; (3)

where D is the diagonal degree matrix whose entry Di;i is vi’s

degree, volðGÞ ¼
Pn
i¼1

Di;i is the volume of graph G, T is the

context window size, and b is the negative sampling parame-
ter. Intuitively, Mi;j can be considered as a weighted count of
the number of paths from vi to vj that have lengths no >T.
ETNA uses the rows of M as input into its autoencoder and
estimates a reconstruction M̂ from the latent embedding.
Good reconstructions imply that higher-order proximity has
been well-captured in the latent embedding, and thus the ob-
jective function is defined as:

Lhigh ¼ BCEðrðM̂Þ;MÞ; (4)

where BCE is the binary cross entropy, defined as

BCEðY 0;YÞ ¼ 1
n

Pn
i¼1
ðYi � log Y 0i þ ð1� YiÞ � logð1� Y 0i ÞÞ, and r

is the sigmoid activation function. The use of the sigmoid here
is akin to having a sigmoid activation function prior to esti-
mating the reconstruction error, but incorporating it directly
into the loss estimation improves numerical stability.

2.1.4 Neural network architecture
A fixed architecture is used for the autoencoders (1 hidden
layer, with an embedding dimension of 128), and the same ac-
tivation function (LeakyReLU with a negative slope of 0.1) is
used throughout. A simple exploration of different neural net-
work architectures demonstrates that the number of hidden
layers and embedding dimensions did not affect prediction
performance much, especially considering computational
tradeoffs. While ReLU offers similar performance as
LeakyReLU, other choices of activation function result in
worse performance (Supplementary Fig. S1).

2.1.5 Cross-species network alignment using orthologs
To align the two previously independent embeddings, we use
orthologous proteins as “anchors” between two different spe-
cies. The underlying intuition is to encourage orthologous
protein pairs from the two species to have similar latent

features, all while keeping the distance relationship between
vertices within each network. Instead of arbitrarily assigning
source and target networks and having a directional projec-
tion, we use a cross-training method that pushes the embed-
dings of both networks toward a joint latent space
simultaneously (step 2 in Fig. 1). The final embedding in the
joint latent space thus contains distance relationships between
proteins across networks.

Specifically, the alignment process uses a cross-training
method inspired from language translation methods devel-
oped in NLP (Lauly et al. 2014). Recall that we defined a PPI
network as an undirected graph G ¼ ðV;EÞ, where jVj ¼ n.
Now, given a second PPI network G0 ¼ ðV 0;E0Þ with jV 0j ¼ n0

and a set of orthologous pairs H � V � V 0, consider an
orthologous pair ðhi; hi0 Þ 2 H: if hi and hi0 play similar roles in
their respective networks (i.e., the same “word” in different
languages), then we seek to identify a joint embedding (i.e., la-
tent semantic space in NLP or latent functional space for
PPIs). If such a joint embedding exists, then one way of think-
ing about the “translation” task is that once G’s encoder pla-
ces hi in the joint embedding, then G0’s decoder should be
able to reconstruct hi0 ’s neighborhood structure, and vice
versa. This intuition leads to the following objective function:

Lcross ¼ / �
P

i;i0 jðhi;hi0 Þ2H BCEðrðDeG0 ðEnGðmiÞÞÞ;m0i0 Þþ
BCEðrðDeGðEnG0 ðm0i0 ÞÞÞ;miÞ;

(5)

where fm1; . . . ;mng and fm01; . . . ;m0n0 g are the row vectors of
the corresponding NetMF matrices of G and G0, EN and DE
are abbreviations for encoder and decoder respectively.

The alignment process only updates the weights in the
encoders, since the alignment should happen in the latent
space rather than the reconstruction space. The training pro-
cess iterates between the embedding and alignment steps to
generate a joint embedding that preserves both within- and
between-species closeness. The reasoning here is that well-
trained individual network embeddings are too “rigid” to ac-
commodate between-species protein closeness. Therefore, one
of embedding process followed by one epoch of alignment
process is considered as one training block for ETNA, and the
number of training block epochs is determined by cross-
validation (Section 2.1.4).

2.1.6 Calculating the cross-species score matrix
After all training epochs are complete, the PPI embeddings
generated for each individual species are in a joint latent space
and can thus be compared directly. Here, we use the cosine
similarity between each pair of proteins across the two species
as a similarity score. More precisely, we compute a score ma-
trix S ¼ cosðZ;Z0Þ 2 R

n�n0 , where cosðA;BÞ ¼ A�B
jjAjjjjBjj. The

score matrix, S, contains pairwise similarities between all ver-
tices in G and G0 (step 3 in Fig. 1).

2.1.7 Hyperparameter tuning
For a given joint embedding, there are nine main hyperpara-
meters in the loss functions that are tuned: a, c, k, x for each
of the two individual network embeddings described in
Equation (1), and / at the cross training stage described in
Equation (5).

The search space for these nine hyperparameters is ex-
plored on a logarithmic scale (base 10). a controls the contri-
bution of Lhigh, which preserves the entire neighborhood
information of a vertex, so it is designed to be the dominant
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term in Lembed. Therefore, a has the search space ½100;103�,
whereas the search space for the auxiliary parameters is
½10�1;102�.

To determine the set of optimal hyperparameters, Bayesian
optimization using Gaussian Processes (as implemented in the
scikit-optimize package) is used to search for the optimal set
of hyperparameters from the search space with 100 calls un-
der 5-fold cross validation. The performance of the ranked
score matrix is optimized for using AUPRC, with the gold
standard being the functional similarity labels generated by
our GO slim, as described in Section 2.3. Importantly, though
our GO-based gold standard consists of gene pairs, cross-
validation folds were stratified by genes (including ortholo-
gous genes across species), and gene pairs where genes appear
in separate folds were entirely excluded. This ensures that
genes would only appear in individual folds and avoid data
leakage across folds. The selected hyperparameters are noted
in Supplementary Table S1.

During hyperparameter tuning, ETNA’s alignment perfor-
mance on validation and test sets were very similar
(Supplementary Table S4), suggesting that the tuning process
is not resulting in overfitting. In general, ETNA is robust to
the choice of hyperparameters and can consistently outper-
form existing methods even with random sets of hyperpara-
meters (Supplementary Fig. S2).

By design, Lhigh is the dominant term in Lembed, and as
such, for a new pair of species, we suggest starting with the
following hyperparameters: a ¼ 100, c ¼ 5, x ¼ 1, k ¼ 1,
and / ¼ 50. The optimal number of epochs depends on the
evolutionary distance between two species (# orthologs) and
the available PPI information (network completeness). For
species pairs with more input information: more complete PPI
(e.g., H. sapiens–S. cerevisiae) and more ortholog pairs (e.g.,
H. sapiens–M. musculus), we propose to use # epochs¼ 10.
For species pairs with less complete input information, we
suggest a larger number of epoch¼20. Using these “default”
parameters constitutes a good starting point and can achieve
strong performance even without hyperparameter tuning
(Supplementary Fig. S2).

2.2 PPI network and orthology data

PPI data for each of the six species studied in this work were
downloaded from BioGRID (v3.5.187) (Stark et al. 2006).
Using Entrez gene identifiers, we constructed an unweighted
and undirected species-specific PPI network, filtering out self-
loops. We also recursively filtered out vertices with the same
neighborhood structure, since with only topological informa-
tion as input, these are indistinguishable to our model.
Because these vertices are indistinguishable (typically vertices
that have a single edge), the filtered vertices are selected
randomly.

Supplementary Table S2 provides several summary statis-
tics for the PPI networks of each of the major model organ-
isms. We see that the coverage and completeness for different
organisms vary greatly. Unsurprisingly, the PPI network and
functional information for S. cerevisiae, the organism most
evolutionarily distant from human, is also the most complete
across all species (evident in the % of the genome with at least
one reported PPI, network density, as well as % of genes with
at least one GO annotation). All other species have different
trade-offs: a large proportion of the H. sapiens genome has
been probed for PPIs, and despite its much larger genome
size, it has the second most complete PPI network, but

proportionally, it is also the species with the lowest % of
genes with at least one GO annotation. The PPI networks of
M. musculus, D. melanogaster, and C. elegans vary in cover-
age (with D. melanogaster having the largest proportion of
genes having at least one reported PPI and C. elegans having
the fewest), but all have similar levels of network density,
reaffirming that in addition to the varying numbers of pro-
teins that are missing from the PPI, even among the proteins
with reported interactions, there are likely a large number of
missing edges.

Orthology data were downloaded from OrthoMCL (v6.1)
(Li et al. 2003), and they were mapped to Entrez gene identi-
fiers. In addition to use orthologs as anchors for the cross-
species network alignment, we also explored using gene pairs
at various BLAST bit score cutoffs (Supplementary Fig. S1).
The prediction performance is not drastically different,
though, notably, overly conservative bit score cutoffs that se-
verely limit the number of anchors does result in consistently
poorer performance.

2.3 Building a cross-species functional evaluation

standard

The Gene Ontology (GO) provides valuable gene function
annotations across species, where genes annotated to the
same terms can be considered as functionally similar. We used
GO (16 July 2020) (Consortium 2004) as the gold standard
to evaluate the ability of our embedding-alignment method to
capture cross-species functional similarity. We restricted
annotations to the Biological Process (BP) aspect, which
describes the molecular activities of genes, and used low
throughput experimental evidence codes (EXP, IDA, IMP,
IGI, IEP), excluding evidence code IPI (Inferred from Physical
Interaction) to avoid introducing any circularity to the evalua-
tions. All GO annotations were propagated through the “is
a” and “part of” relations. We restricted our set of GO terms
to a slim set representing specific diverse functions that
are present across H. sapiens, M. musculus, S. cerevisiae, D.
melanogaster, and C. elegans. We defined specificity as terms
with at least 10 genes and at most 100 genes annotated. This
annotation-driven slim set was combined with expert-curated
GO slim terms (Greene et al. 2015). Gene pairs from two dif-
ferent species were considered as positive labels if they shared
at least one GO term in our selected slim set and negative
otherwise.

We also wanted to evaluate our method on the full set of
GO terms (without being restricted to a slim set). To do so,
we calculated the Jaccard index between every pair of pro-
teins, i.e., the fraction of GO terms annotated to both proteins
in relation to the total number of GO terms annotated to ei-
ther protein.

2.4 Predicting genetic interactions

Genetic interactions for S. cerevisiae and S. pombe were
downloaded from BioGRID (v3.5.187) (Stark et al. 2006).
Gene pairs with reported “Synthetic Lethality” were regarded
as positive examples of Synthetic Lethality (SL). For each spe-
cies, an equal number of negative examples were subsampled
from pairs where both genes were present in the SL dataset
but not reported to show a genetic interaction. Using this gold
standard, we applied a support vector machine (SVM)
(Cortes and Vapnik 1995) with a radial basis function (rbf)
kernel. For a gene pair, the sum of the two corresponding
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embedding vectors was used as input. As in the cross-
validation with GO, folds were split by gene (instead of by
gene pair).

2.5 Cross-species gene set mapping

For each GO term in the slim set, annotated genes across the
two species were considered as matched sets. We calculated a
t-score for how closely annotated genes in one species were
connected with annotated genes in the other species, while
correcting for background network connectivity as in (Greene
et al. 2015). The final z-score was calculated based on a com-
parison against a null distribution of gene sets matching in
size and degree distribution to each GO term (sampled 100
times).

2.6 Clustering cross-species modules

The top 1% of all pairs in the score matrix were used to con-
struct an unweighted and undirected graph between human
and mouse, where edges are cross-species alignments between
genes. We then applied Louvain (Blondel et al. 2008) to clus-
ter the network vertices and visualized these clusters using
Gephi (Bastian et al. 2009) with the OpenOrd (Martin et al.
2011) layout algorithm (cut parameter¼0.6). Vertices with
degrees smaller than 20 were omitted from the final network.
For each cluster, we calculated enrichment of GO terms (hu-
man and mouse), human OMIM (Hamosh et al. 2005) and
GWAS (Manolio 2010) disease gene sets, and known human
drug targets from DrugBank (Wishart et al. 2006) using the
hypergeometric test. All resulting P-values were corrected for
multiple hypothesis testing using Benjamini–Hochberg
(Benjamini and Hochberg 1995).

2.7 Existing network alignment methods

We compared ETNA against three existing network align-
ment methods, MUNK (Fan et al. 2019), IsoRank (Singh
et al. 2008), and HubAlign (Hashemifar and Xu 2014). We
applied 5-fold cross-validation using the GO functional stan-
dard to choose hyperparameters for MUNK exactly as we did
for ETNA. Both HubAlign and IsoRank had more run-time
limitations. We were able to decrease our search space from
100 different hyperparameter settings to 10 to choose hyper-
parameters for HubAlign. For the 10 sets of different hyper-
parameters, we observed that HubAlign’s performance did
not vary greatly so the reported performance should be rea-
sonably optimized. However, because IsoRank needed several
days to converge, default parameters were used.

We tried to compare our results with the other network
alignment methods that do not use GO as input (for cross-
species anchors, Table 1) but were unable to run PrimAlign
(Kalecky and Cho 2018) (requires sequence alignment infor-
mation for all gene pairs) and L-GRAAL (Malod-Dognin and
Pr�zulj 2015) (error in the code). We were also unable to find a
way to give sequence similarity as input to SANA’s (Mamano
and Hayes 2017) code implementation and thus have also ex-
cluded it from the comparisons.

3 Results

3.1 ETNA outperforms existing network alignment

and embedding methods in capturing functional

similarity

We evaluated ETNA’s ability to capture functional similarity
given only PPI data and sequence-based orthologous gene

pairs. Since the majority of functional knowledge transfer
tasks involve starting or ending with a human phenotype, we
used ETNA to identify joint embeddings between human and
four of the major model organisms: M. musculus, S. cerevi-
siae, D. melanogaster, and C. elegans. For evaluation, we
took advantage of the fact that genes across species have been
annotated to the same GO terms.

More specifically, to evaluate whether ETNA’s joint em-
bedding captures functionally related gene pairs across spe-
cies, we examined the predictive performance of the pairwise
similarity score matrix (step 3 in Fig. 1) against a gold stan-
dard based on co-annotation of genes to the same GO term.
We compared ETNA with the predictions made by MUNK
(Fan et al. 2019), IsoRank (Singh et al. 2008), and HubAlign
(Hashemifar and Xu 2014). MUNK’s predictions are directed
from a source organism to a target organism, so we compared
ETNA with both of MUNK’s directions.

ETNA generates a more functionally accurate embedding
in all tested species pairs, especially for organisms with more
complete PPI networks (Table 2, Supplementary Table S3,
Supplementary Fig. S3). S. cerevisiae has the most complete
PPI network among all model organisms and is where ETNA
has the largest performance improvement over previous meth-
ods. Both D. melanogaster and C. elegans have very sparse
PPI networks (density < 0:2%), and their networks only
cover a limited number of protein coding genes. Performance
drops for all methods, and the difference between ETNA and
other methods is also correspondingly smaller. Overall, these
results suggest that with only PPI and sequence ortholog in-
formation, ETNA can infer the functional information be-
tween genes across species, and the predictive performance of
ETNA improves quickly as PPI networks become more
complete.

A gene can have multiple functions; thus, the functional
similarity between a pair of genes is more complex than the
presence or absence of a single shared GO annotation. To
capture this, we also used the Jaccard index to quantify how
much functionality (multiple GO terms) is preserved for

Table 2. AUPRC over random of ETNA, MUNK, IsoRank, and HubAlign for

predicting cross-species gene pairs that share GO annotations based on

5-fold cross validation.a

Species pair AUPRC (over random)

ETNA MUNK IsoRank HubAlign

H. sapiens !M. musculus 0.590
H. sapiens  M. musculus 0.805 0.452 0.561 0.459
H. sapiens ! S. cerevisiae 0.852
H. sapiens  S. cerevisiae 1.390 0.927 0.775 0.726
H. sapiens ! D. melanogaster 0.607
H. sapiens  D. melanogaster 0.724 0.650 0.594 0.532
H. sapiens ! C. elegans 0.515
H. sapiens  C. elegans 0.572 0.444 0.221 0.370

a AUPRC over random log 2
AUPRC

prior

� �� �
is calculated to facilitate

comparisons because each evaluation task has a different prior [proportion
of positive examples in the gold standard (Section 2.3); the prior is different
across organism pairs due to variability in the coverage of GO annotations
within each organism, likely from differing levels of research and curation
activity]. Thus, a score of 0 corresponds to random performance, and a
score of 1 to a 2-fold improvement over random. For the four pairs of
species (H. sapiens–M. musculus, H. sapiens–S. cerevisiae, H. sapiens–D.
melanogaster, H. sapiens–C. elegans), the random priors are 0.059, 0.043,
0.044, and 0.044 respectively. Because MUNK’s predictions require
choosing a source organism and a target organism, we present its
performance for both directions (the arrow points from source to target).
For each species pair, the top performance is shown in bold.

6 Li et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad529#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad529#supplementary-data


cross-species gene pairs. Intuitively, two genes that share the
same profile of GO terms will have a Jaccard index of 1. On
the other hand, if two genes are both annotated to several dis-
tinct GO terms but happen to share one annotation, using the
Jaccard index will downweight their similarity by the total
number of annotations. In addition to MUNK, IsoRank, and
HubAlign, we also generated two additional baselines: gene
pairs ranked by degree and random gene pairs. All of the
methods, including ranking by degree, have a higher Jaccard
index for higher ranked pairs and gradually converge to ran-
dom at around 5% of all pairs (Supplementary Fig. S5).

In examining the Jaccard index between the top 5000
ranked pairs of genes (without orthologs used for alignment)
from different methods, we found that ETNA consistently
outperforms other methods across species pairs (Fig. 2A).
Note that this trend is also consistent across top ranked pairs
(Supplementary Fig. S4), with and without orthologs, though
we only show 5000 of them (top ranked pairs) here. For the
sparsest PPI network, C. elegans, ETNA has comparable per-
formance to MUNK and is significantly better than the other
network alignment methods and baselines (P<10–6). ETNA
significantly outperforms all previous methods (one-sided
Wilcoxon rank-sum P< 10–16) in predicting multifunctional
similarity between H. sapiens with M. musculus, S. cerevisiae,
and D. melanogaster. This demonstrates that ETNA’s joint
embedding cannot only reflect whether two genes are related,
but also quantify the extent of their relationship.

When conducting this evaluation, we observed that two of
the methods, IsoRank and MUNK, strongly prioritized the
orthologs used to anchor the alignment across a species pair

(Fig. 2B). Unlike other methods, ETNA uses pairwise orthol-
ogy information alone rather than sequence similarity across
all pairs of genes. As IsoRank linearly combines sequence in-
formation with topological structures in its algorithm, orthol-
ogous pairs can be particularly favored in the alignment. On
the other hand, because nonorthologous pairs (most of the
pairs) naturally have less sequence similarity information,
they are mostly not prioritized. To systematically explore
these trends, we also compared each method’s performance
with and without orthologous pairs (Fig. 2B, H. sapiens–M.
musculus alignment; Supplementary Fig. S6, all other align-
ments), discovering that ETNA has consistently good perfor-
mance, beyond prioritizing orthologous pairs alone.

3.2 ETNA enables cross-species prediction of

genetic interactions

One advantage of a cross-species joint embedding is that we
can detect relationships beyond functional similarity captured
by GO. Synthetic lethality (SL) is a type of genetic interaction,
when two (or more) perturbing genes cause a deleterious ef-
fect on the organism that is unseen in the respective single
gene perturbations. SL has received increasing attention for
its potential application to cancer treatments (O’Neil et al.
2017), but the experimental detection of SL can be costly and
time consuming to perform, especially on higher order
organisms.

The systematic probing of genetic interactions in S. cerevi-
siae (Sce) (Tong et al. 2004, Costanzo et al. 2010) have
yielded rich datasets of SL relationships. Meanwhile, similar,
smaller scale efforts in a distantly related yeast, S. pombe

Figure 2. Jaccard index for top 5000 aligned pairs. (A) Box plots for top 5000 gene pairs for H.sapiens and four model organisms (M. musculus, S.

cerevisiae, D. melanogaster, C. elegans). Four methods (ETNA, MUNK, HubAlign, IsoRank) and two baselines (degree and random) are compared. ETNA

has the best performance in M. musculus (P< 10–16), S. cerevisiae (P< 10–16), D. melanogaster (P< 10–16), and comparable performance to MUNK in

C.elegans, demonstrating how ETNA’s joint embedding captures multi-functional similarity. All P-values reported are from Wilcoxon rank-sum test

(Conover 1999) to the second best method. (B) Jaccard index comparison between orthologous (ortho) pairs (in green, top) and nonorthologous (novel)

pairs (in blue, bottom) within top 5000 pairs of H. sapiens–M. musculus alignment. ETNA is better at prioritizing gene pairs beyond orthologs.
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(Spo), have resulted in interesting network comparisons
(Dixon et al. 2008), which together, provide a valuable re-
source to evaluate the cross-species predictive power of
ETNA. We were also curious to what extent SL relationships
in Sce could be used to predict the more limited number of H.
sapiens (Hsa) experimental SL data (Kessler et al. 2012,
Bailey et al. 2015, De Kegel et al. 2021).

To this end, we explored two paradigms for using cross-
species embeddings to predict SL:

1) Using SL pairs from both organisms to predict a held out
set of SL relationships

2) Using SL pairs reported in one species to predict the held
out SL relationships in the other

This second paradigm is clearly more challenging, but also
more closely mimics how we may use these embeddings in
practice, where specific types of data may only be richly avail-
able in one model organism. We evaluate how well we can
“transfer” the wealth of genetic interactions captured in one
species to the other species using only PPI and sequence infor-
mation, which are more readily available across species.
ETNA shows a significant performance increase across the
board in comparison to the only other existing method that
provides a joint embedding that can be used for downstream
tasks, MUNK (regardless of which directionality of MUNK
was used) (Table 3).

As expected, the predictive performance for predicting one
species’ SL relationships entirely based on examples from the
other species is lower than using SL information from both
species as input. Nevertheless, ETNA still performs very well
and also significantly better than MUNK. Due to MUNK’s
large embedding size, as well as the large number of SL pairs
reported in Sce (13,920 gene pairs), MUNK failed to converge
even after several days. To enable comparisons of ETNA with
MUNK for training on Sce, we also subsampled the number
of Sce SL pairs used for training to be the same number as the
target organism (Spo: 1,078 gene pairs, Hsa: 1,883 gene pairs,
Supplementary Table S5). By subsampling the training set, we
were able to obtain predictions from MUNK. We see that in
this direct comparison, ETNA still consistently outperforms
MUNK, though, as expected, there is a performance drop

compared with using the full set of available Sce training
examples (Table 3). In addition to demonstrating the strong
predictive performance of ETNA’s embeddings, this analysis
emphasizes how being able to customize embedding sizes in
ETNA is critical for downstream analyses, as it enables com-
putationally tractable prediction tasks that can leverage the
full set of training examples.

Notably, we also noticed MUNK’s joint embeddings can
result in inconsistent predictions between the two alignment
directions, and furthermore, sometimes the nonintuitive direc-
tion may perform better for a particular task. For example, af-
ter subsampling the gold standard for computational
tractability, when attempting to predict Hsa using only Sce
gene pairs (Sce ! Hsa), MUNK’s Sce  Hsa embedding per-
forms better, whereas the embedding that matches the direc-
tion of the prediction task has poor performance
(Supplementary Table S5). This highlights the importance of
having a bidirectional embedding. Together, these results
demonstrate how ETNA enables the knowledge transfer of
genetic interactions from a well-studied species to another.

3.3 Cross-species alignment improves predictive

performance of individual embeddings

To identify a joint network embedding, ETNA iterates be-
tween calculating individual embeddings (step 1) and per-
forming cross-training (step 2) to align the two spaces (Fig. 1).
This gives ETNA the opportunity to use information from the
other species to refine the encoding of individual networks.
We performed an ablation study on the individual network
embeddings to dissect the contribution of the cross-training
process and the NetMF matrix input M. To this end, we ex-
plored the extent to which the individual network embeddings
captured functional signal in the original species (as opposed
to the species that it is being aligned to), with and without
cross-training. We also checked the performance of still in-
cluding cross-training, but directly using the adjacency matrix
as input to the autoencoders instead of the NetMF matrix M
(Equation 3 in Section 2). In each paradigm, we calculated the
cosine similarity of latent embeddings for all gene pairs within
one species. We evaluated these similarity scores for their abil-
ity to recapitulate shared Gene Ontology (GO) annotations
between genes within the respective species.

Table 3. ETNA consistently outperforms MUNK in prediction of genetic interactions between S. cerevisiae (Sce)$ S. pombe and (Spo) and S. cerevisiae

(Sce)$ H. sapiens (Hsa).a

SL prediction task AUPRC AUROC

ETNA MUNK ETNA MUNK

Sce $ Spo Sce ! Spo Sce  Spo Sce $ Spo Sce ! Spo Sce  Spo
Sce þ Spo ! Sce 0.757 0.681 0.655 0.753 0.700 0.650
Sce þ Spo ! Spo 0.773 0.606 0.554 0.744 0.581 0.571
Sce ! Spo 0.762 - - 0.741 - -
Spo ! Sce 0.688 0.533 0.543 0.648 0.499 0.431

Sce $ Hsa Sce ! Hsa Sce  Hsa Sce $ Hsa Sce ! Hsa Sce  Hsa
Sce þHsa ! Sce 0.781 0.675 0.652 0.774 0.683 0.677
Sce þHsa ! Hsa 0.738 0.485 0.553 0.803 0.396 0.582
Sce ! Hsa 0.650 - - 0.687 - -
Hsa ! Sce 0.686 0.552 0.642 0.684 0.545 0.664

a For each SL prediction task, A! B indicates SL pairs in A were used for training to predict SL pairs in B (e.g. Sce þ Spo ! Sce indicates that SL gene
pairs from both Sce and Spo were used for training, and a set of held out SL gene pairs in Sce were used for evaluation). When SL pairs for two organisms are
used for training, equal numbers of positives were used (i.e. SL pairs were subsampled for the larger of the two organisms). Notably, ETNA is able to predict
genetic interactions across species well using only interactions reported in the other (Sce ! Spo, Spo ! Sce, Hsa ! Sce, and Sce ! Hsa). Each of the gold
standards has balanced positives and negatives (prior¼ 0.5). For prediction tasks based on Sce examples, MUNK failed to converge after several days of
training so we were unable to calculate prediction performance.
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Interestingly, we discovered that the alignment process not
only preserves the existing functional relationship captured by
the individual network embeddings, but also further improves
the predictive performance of the individual embeddings us-
ing information from the other network (Fig. 3). This suggests
that while finding an alignment between two spaces, ETNA’s
cross-training step also enables each individual network to le-
verage the information in the other network to refine its own
embeddings. This intuition may also be why cross-training
yields a larger performance improvement for H. sapiens than
for S. cerevisiae, since S. cerevisiae has a much more complete
PPI network. We observe a similar trend when comparing
ETNA with a modified version that uses the adjacency matrix
(instead of the NetMF matrix) as input. The NetMF matrix is
able to capture more distant relationships between genes, be-
yond simply that of the direct neighbors, and thus improves
the performance of the network embeddings dramatically.

3.4 ETNA’s joint embedding space captures

functional similarity of gene sets

Researchers also often encounter gene sets of interest, and as
many important biological processes are performed by the co-
operation of multiple proteins, beyond matching gene pairs
between two species, it is important to explore the functional
alignment of gene sets. We thus explored whether genes anno-
tated to the same GO term across two species were more sig-
nificantly connected to each other than expected by random.

To this end, as in Greene et al. (2015), we compared the
connectivity of the GO term split across species to a null dis-
tribution of random degree-matched gene sets of the same
size. Across the board, ETNA was able to identify significant

[after Bonferroni correction (Dunn 1961, Korthauer et al.
2019)] matches for over 75% of the GO terms shared be-
tween species (H. sapiens–S. cerevisiae: 94%, H. sapiens–M.
musculus: 75%, H. sapiens–D. melanogaster: 77%, and H.
sapiens–C. elegans: 82%), whereas other methods were only
able to match �25% of the GO terms at the same significance
threshold (Fig. 4). In this evaluation, we show that ETNA not
only captures pairwise gene relationships between two species
but also that functional groups are also meaningfully clus-
tered in the joint embedding space.

By taking a closer look at these z-scores, we found that
most of the high scoring GO terms described functions such
as RNA polymerase, transcription, etc. These functions have
been shown to be highly conserved through evolution across
eukaryotic organisms. As for GO terms that had a z-score be-
low the Bonferroni threshold, many were child nodes under
the umbrella GO term “response to stimulus.” One hypothe-
sis for why ETNA does not capture these functions as well is
that stimulus response may achieved through other types of
gene/protein interactions (e.g. via signal transduction, phos-
phorylation) rather than physically interacting, so when only
considering the PPI network as input, ETNA could miss these
relationships.

3.5 ETNA can reveal shared mechanisms of

fundamental biological processes and disease

pathology

So far, our evaluations have shown that ETNA captures
known functional biological processes. Taking a closer look
at the alignment between human and mouse, we wanted to
explore whether the top gene pairings can be used for

Figure 3. Predicting functional similarity using individual network embeddings in H. sapiens and S. cerevisiae with ETNA (red), embeddings without cross-

training (blue, ‘w/o ct’), and using the adjacency matrix as input (black, ‘adj input’). Lines show mean AUROC across 100 random sets of

hyperparameters, and ribbons denote the 95% confidence interval for predicting functional similarity [defined based on co-annotation to the same GO

term for all terms in the gold standard (Section 2.3)]. Cross-training and using the NetMF matrix instead of the adjacency matrix as input both lead to

significant improvements to ETNA’s predictive performance.
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functional knowledge transfer of other gene sets. Thus, we
took the top 1% of ETNA scores between human and mouse
and clustered the data, identifying functional modules. We
found 40 modules with at least 20 edges and performed en-
richment on GO terms (human and mouse), drug targets
[DrugBank (Wishart et al. 2006)], and known human disease
genes [annotated in OMIM (Hamosh et al. 2005) and GWAS
(Manolio 2010)]. There were a range of significantly enriched
terms in most modules, but here we highlight some of the top
clusters with interesting functions as a proof of concept with
the full set (Supplementary data). These modules covered a
range of disease mechanisms and key conserved core biologi-
cal processes, including transcription regulation, splicing, and
DNA damage repair (Fig. 5).

The network modules are roughly co-located with others of
similar function. For example, the two purple clusters are
enriched for immune-related GO terms, with the bottom mod-
ule also enriched for glucose-related terms and diabetes, and
the upper module enriched for diseases related to immunode-
ficiency. The darker purple module under the orange module
is also enriched for a distinct set of immune processes as well
as transcription-related GO terms and is located somewhat
between the immune modules and the regulation-specific
module. Another interesting cluster (blue, bottom-left) is
enriched for neuronal development related GO terms, mental
health diseases, and benzodiazepines, a class of drugs used to
treat anxiety. Finally, the blue cluster in the middle, while
near the large neuronal development cluster, is a distinct re-
gion of enrichment for neurological processes pertaining to
light processing and sensory system disease, as well as drugs
used to treat schizophrenia. Schizophrenia patients often have
sensory overload and their failure to handle environmental

stimuli is one of the key facets of the disease (Javitt 2009).
This also suggests that ETNA may uncover shared mecha-
nisms between diseases and drugs in new ways given addi-
tional information from other species. While we only
highlight a few specific examples here, there are many more
interesting connections that are ripe for exploration, and as
such, all models, embeddings, scores, and code are available
for download at https://github.com/ylaboratory/ETNA.

4 Discussion

In this study, we introduce ETNA as a method to transfer
functional information across species. Unlike traditional net-
work alignment methods that calculate a single score to cap-
ture similarity between a pair of genes, ETNA generates a
general purpose joint embedding, capturing functional rele-
vance between two genes as multi-dimensional vectors.
Instead of linearly combining topological structure and
orthologous information, ETNA introduces an autoencoder-
based framework that captures the nonlinearities, as well as
local and global relationships in network topology, then uses
cross-training to construct a joint embedding.

We have demonstrated that ETNA is capable of capturing
both pairwise and group functional relationships between hu-
man and other model organisms. Beyond inferring unanno-
tated gene functions from their closely related genes in other
organisms, ETNA’s embedding enables transfer of genetic in-
teraction knowledge from one species to another. As the num-
ber of possible pairs of genetic interactions has a
combinatorial relationship with the number of genes, and
gene knockout can be costly or intractable to perform at scale
on higher-order organisms, ETNA’s joint embedding provides

Figure 4. Evaluating cross-species GO term matching demonstrates that functional gene sets have consistently stronger correspondence than other

methods. The alignment between H. sapiens and four model organisms (M. musculus, S. cerevisiae, D. melanogaster, C. elegans) are considered. There

are 645, 292, 349, and 129 shared GO terms, respectively. We calculated a z-score for connectivity between genes annotated to the same GO term

across species against a null distribution generated from random degree-matched gene sets of the same size. The dotted line is the z-score that

corresponds to the Bonferroni corrected P-value¼.05.
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a new way to unravel gene relationships that are difficult to
detect experimentally. Finally, by exploring the human-mouse
functional landscape, we are able to identify interesting con-
nections between mouse functional studies with complex hu-
man diseases, setting the stage for potential opportunities for
translational studies.

Though we have applied ETNA to PPI networks here, the
methodological framework can be easily applied to other
types of biological networks. As shown in Table 2, the more
complete a PPI network is, the better ETNA can use this infor-
mation to create a more accurate joint embedding, so it would
be interesting to explore whether using predicted PPIs to sup-
plement experimentally derived networks would improve per-
formance. But beyond PPI networks, we can envision
alignment of metabolic or regulatory networks. Integrated
functional networks (Wong et al. 2015) designed to predict
functional similarities would also be natural to use as
input into ETNA. In addition, currently ETNA uses orthology
information as “anchors” to guide the cross-training
and alignment between networks. An interesting extension
of ETNA is to use weighted sequence similarities (or even
other types of anchor similarities) to guide the cross-training
step.

Furthermore, because the joint embedding of ETNA does
not require choosing a source and target, it opens possibilities
for extending the framework to simultaneously perform align-
ment for more than two species. We have found here that the
cross-training step enables ETNA to use information from
other species to refine individual embeddings, so we anticipate
that a “multiple-species network alignment” could result in
an even more accurate joint embedding and enable placing
model systems with limited experimental studies into the func-
tional landscape.
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Montréal Canada 2014.

Li L, Stoeckert CJ, Roos DS. Orthomcl: identification of ortholog groups
for eukaryotic genomes. Genome Res 2003;13:2178–89.

Malod-Dognin N, Pr�zulj N. L-graal: Lagrangian graphlet-based net-
work aligner. Bioinformatics 2015;31:2182–9.

Mamano N, Hayes WB. Sana: simulated annealing far outperforms
many other search algorithms for biological network alignment.
Bioinformatics 2017;33:2156–64.

Manolio TA. Genomewide association studies and assessment of the
risk of disease. N Engl J Med 2010;363:166–76.

Martin S, Brown WM, Klavans R et al. Openord: an open-source tool-
box for large graph layout. In: Visualization and Data Analysis, Vol.
7868, p. 786806. International Society for Optics and Photonics,
2011. https://doi.org/10.1117/12.871402.

Neyshabur B, Khadem A, Hashemifar S et al. Netal: a new graph-based
method for global alignment of protein–protein interaction net-
works. Bioinformatics 2013;29:1654–62.

O’Neil NJ, Bailey ML, Hieter P. Synthetic lethality and cancer. Nat Rev
Genet 2017;18:613–23.

Park CY, Wong AK, Greene CS et al. Functional knowledge transfer for
high-accuracy prediction of under-studied biological processes.
PLoS Comput Biol 2013;9:e1002957.

Patro R, Kingsford C. Global network alignment using multiscale spec-
tral signatures. Bioinformatics 2012;28:3105–14.

Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social rep-
resentations. In: ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, New York City, USA, 2014, 701–10.
https://doi.org/10.1145/2623330.2623732.

Qiu J, Dong Y, Ma H et al. Network embedding as matrix factorization:
unifying deepwalk, line, pte, and node2vec. In: ACM International
Conference on Web Search and Data Mining, Los Angeles, CA,
USA, 2018, 459–67. https://doi.org/10.1145/3159652.3159706.

Seger R, Krebs EG. The mapk signaling Cascade. FASEB J 1995;9:
726–35.

Singh R, Xu J, Berger B. Global alignment of multiple protein interaction
networks with application to functional orthology detection. Proc
Natl Acad Sci USA 2008;105:12763–8.

St Johnston D. The art and design of genetic screens: Drosophila mela-
nogaster. Nat Rev Genet 2002;3:176–88.

Stark C, Breitkreutz B-J, Reguly T et al. Biogrid: a general repository for
interaction datasets. Nucleic Acids Res 2006;34:D535–9.

Tang J, Qu M, Wang M et al. Line: large-scale information network em-
bedding. In: International Conference on World Wide Web,
Florence, Italy, 2015, 1067–77. https://doi.org/10.1145/2736277.
2741093.

Tong AHY, Lesage G, Bader GD et al. Global mapping of the yeast ge-
netic interaction network. Science 2004;303:808–13.

12 Li et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad529#supplementary-data
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1609/icwsm.v3i1.13937
https://doi.org/10.1117/12.871402
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/3159652.3159706
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2736277.2741093


Vijayan V, Saraph V, Milenkovi�c T. Magnaþþ: maximizing accuracy in
global network alignment via both node and edge conservation.
Bioinformatics 2015;31:2409–11.

Wang D, Cui P, Zhu W. Structural deep network embedding. In: ACM
SIGKDD Conference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, 2016, 1225–34. https://doi.org/10.1145/
2939672.2939753.

Wishart DS, Knox C, Guo AC et al. Drugbank: a comprehensive re-
source for in silico drug discovery and exploration. Nucleic Acids
Res 2006;34:D668–72.

Wong AK, Krishnan A, Yao V et al. Imp 2.0: a multi-species func-
tional genomics portal for integration, visualization and prediction
of protein functions and networks. Nucleic Acids Res 2015;43:
W128–33.

Joint embedding of biological networks for cross-species functional alignment 13

https://doi.org/10.1145/2939672.2939753
https://doi.org/10.1145/2939672.2939753

	Active Content List
	1 Introduction
	2 Materials and methods
	3 Results
	4 Discussion
	Acknowledgements
	Author contributions
	Data availability
	References


