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Abstract

A key challenge in precision medicine lies in understanding molecular-level underpinnings of complex human
disease. Biological networks in multicellular organisms can generate hypotheses about disease genes,
pathways, and their behavior in disease-related tissues. Diverse functional genomic data, including expression,
protein—protein interaction, and relevant sequence and literature information, can be utilized to build integrative
networks that provide both genome-wide coverage as well as contextual specificity and accuracy. By carefully
extracting the relevant signal in thousands of heterogeneous functional genomics experiments through
integrative analysis, these networks model how genes work together in specific contexts to carry out cellular
processes, thereby contributing to a molecular-level understanding of complex human disease and paving the
way toward better therapy and drug treatment. Here, we discuss current methods to build context-specific
integrative networks, focusing on tissue-specific networks. We highlight applications of these networks in
predicting tissue-specific molecular response, identifying candidate disease genes, and increasing power by
amplifying the disease signal in quantitative genetics data. Altogether, these exciting developments enable
biomedical scientists to characterize disease from pathophysiology to cellular system and, finally, to specific

gene alterations—making significant strides toward the goal of precision medicine.

© 2018 Published by Elsevier Ltd.

Networks as models of human biology

To realize the promise of precision medicine, we
must elucidate the immense molecular complexity that
forms the foundation of disease. Most human diseases
are polygenic, perhaps even “omnigenic” [1]. While
decades of targeted disease research and the rise of
large-scale quantitative genetics studies such as
genome-wide association studies (GWAS) have been
valuable in identifying genes and genetic variants that
may be linked to a wide range of diseases and
phenotypes, it is increasingly clear that there is a
“missing heritability” problem (i.e., even as the sample
sizes in these studies continue to grow, only a small
proportion of estimated heritability appears to be
explained by the identified variants) [2, 3].

Understanding complex disease at the molecular
level requires us to model specific molecular-level

0022-2836/© 2018 Published by Elsevier Ltd.

changes that lead to disease. These changes can
happen through a variety of mechanisms, for example,
regulatory abnormalities, modifications to protein inter-
actions, or effects on signaling cascades. Modern
genome-scale experimental techniques enable us to
monitor and probe these molecular events by providing
a wealth of data along multiple axes of cellular activity.
Diverse high-throughput data vary in relevance de-
pending on the biological process under study (e.g., a
specific tissue, disease, or pathway), as both experi-
mental technologies and perturbations capture differ-
ent biological signal with varying degrees of success.
Thus, integrative analysis of these data is paramount
because (1) many diseases/tissues of interest are
interrogated by multiple data sets; (2) each data set
holds a complex mixture of signals relevant not only to
the biological question or disease under study, but also
to many other biological events (e.g., cancer data sets
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have very strong immune signals, kidney disease data
have strong inflammation signals); and (3) individual
data sets are noisy, necessitating the identification of
strong, recurring signals in relevant data sets.

A powerful set of approaches (Box 1) has emerged
for integrating diverse data into functional maps of
human cellular biology. These network approaches
use a variety of machine learning and statistical
algorithms to integrate very large collections of noisy
and heterogeneous human “omics” data into functional
maps, or networks [4—6]. Intuitively, an edge between
two genes in these functional maps typically represents
the probability that the genes are, directly or indirectly,
participating in the same biological process or pathway
(e.g., innate immune response, microtubule polymeri-
zation, axonogenesis). The genome-wide gene net-
works that result from integration of these data allow
biologists to generate specific, experimentally testable
hypotheses and provide a systems-level view of
biological processes.

Biological network models have typically represented
general views of organismal biology, not resolved to
specific tissues or cell types. However, tissue and
cellular context is critical for interpreting the behavior of
genes and pathways, as gene function and interactions
can vary greatly between tissues and cell types, and
dysregulation of tissue- and cell-lineage-specific pro-
cesses underlies many diseases. For example, selec-
tive neuronal vulnerability is a key characteristic of
neurodegenerative diseases such as Parkinson's
disease, and the neuronal subtypes as well as affected
brain regions tend to be strong determinants of their
corresponding clinical phenotypes [7]. In Parkinson's
disease, the dopaminergic neurons in the substantia
nigra pars compacta area of the brain are particularly
susceptible to cell death, while highly similar dopami-
nergic neurons in the nearby ventral tegmental area are
much less vulnerable. Thus, to fully capture the
underlying biological processes relevant for a disease
like Parkinson's disease, brain-region-specific net-
works are necessary.

Below, we discuss approaches to construct tissue-
and cell-type-specific networks from integrations of
large collections of public functional genomic data, and
how such networks can be applied to study the
molecular basis of human disease (Fig. 1). We begin

with a discussion of methods that integrate heteroge-
neous data into networks and further technical innova-
tions that effectively “summarize” these data into
context-specific maps of the biological landscape of
specific tissues and cell types. We then examine
applications of these networks to the study of disease.
Finally, we argue for the importance of making these
networks and accompanying methods accessible to the
wider community through user-friendly interactive public
systems that are maintained over time.

Building tissue- and cell-type-specific
functional networks

Methods that construct tissue-specific networks have
historically been limited by the availability of experi-
mental data for specific tissues and cell types,
especially in humans. These direct approaches typi-
cally assemble available tissue-specific expression
data into gene correlation networks [8—11] or overlay
those expression data on global (non-tissue-specific)
protein—protein interaction networks [12—14]. More
sophisticated methods to construct context-specific
regulatory networks by integrating (as opposed to
simple overlaying) context-specific (e.qg., tissue- or cell-
type specific) expression data with a non-context-
specific network have also been recently developed
[15]. These approaches, while valuable, are applicable
only to tissues and cell types which can be readily
assayed [16] and depend almost entirely on the quality
of the available tissue- or cell-type-specific data. For
example, in cancer, where The Cancer Genome Atlas
and other initiatives have amassed large, high-quality
collections of diverse, genome-scale data to charac-
terize specific cancer types, there has been significant
progress in the development of network models, and
they have yielded invaluable insights into the cancer
landscape [17-21]. However, for the vast majority of
normal human tissues, direct experimental assay
remains infeasible (especially of living, and not
postmortem, tissue), requiring computational methods
that can infer tissue-specific interactions from large
heterogeneous data compendia.

To address this challenge, recent work by Greene
et al. introduced a method that can simultaneously

Fig. 1. Tissue-specific functional interaction networks. Tissue-specific networks are constructed by integrating (a) hierarchy-
aware tissue-specific knowledge and a large human data compendium using a tissue-specific regularized Bayesian integration
method that (b) identifies and weights data sets based on their tissue-relevant signal. These integrative networks are used for
downstream (c) tissue-specific disease analyses. More specifically, to construct the tissue-specific functional interaction standard
(a), gene pairs are considered positive examples when they both participate in the same process (i.e., process co-membership)
and are expressed in the tissue of interest. Negative examples include gene pairs that either do not participate in the same
process or are expressed in other tissues (see Methods in Ref. [4] for more details). The tissue-specific regularized Bayesian
integration method can then use this gold standard to mine the signal from a large data compendium to construct tissue-specific
networks (b). As effective summaries of tissue-specific biology, the network can then be used as a representation of tissue-
specific biology to help generate hypotheses relevant for human disease. For example, the network itself can be used as input to
downstream machine learning methods to predict disease genes or reprioritize quantitative genetics data (see Fig. 2). The
network itself can also provide functional interpretations for any gene sets of interest (see Fig. 3).
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Box 1
Integrative network concepts

Term

Definition

Machine learning

Supervised machine learning

Bayesian integration

Integrative network

Functional network

Tissue-specific network

Support vector machine (SVM)

Network-wide association study
(NetWAS)

Noise

The application of methods that learn patterns from data, usually with the goal of modeling
the underlying structure and/or to make coherent predictions on new data

Machine learning tasks that are given a “gold standard,” which include examples of desired
outputs given input data, and the objective of the method is to model this “training” data
and make predictions for any new input data

Machine learning approaches that combine multiple sources of evidence (e.g., data sets)
and make probabilistic predictions, for example, the likelihood that two genes are
participating in the same pathway

A network that is constructed through the synthesis of heterogeneous data types

An integrative network where the nodes are genes, and edge weights correspond to the
posterior probability of a “functional relationship” (i.e., whether the genes perform
similar functions, for example, participating in the same pathway or mediating the same
interaction). These functional maps effectively summarize collections of genomic data
in a biologically meaningful way.

A functional network where edge weights represent the posterior probability of a tissue-
specific functional relationship between a gene pair, thus representing how pathways
and processes work in a particular tissue

A supervised machine learning method that projects input data into a high-dimensional
space and identifies the hyperplane that best separates input data points based on the gold
standard provided. Given a new data point, the model can then classify it accordingly.

A supervised machine learning method that integrates the noisy disease signal in GWAS
(as represented by genes with nominally significant p-values) together with the tissue
biology signal in tissue-specific functional networks to reprioritize genes potentially
associated with the disease/trait of interest.

Variation in the data that is spurious to the phenomenon actually being measured, in
contrast to “signal” (i.e., the “true” underlying pattern in the data due to the phenomena
being studied). For example, these variations could be a result of measurement errors
introduced when capturing the data; they could also be due to general stochastic
variation. One of the primary goals of machine learning is to separate signal from noise.

extract tissue or cell-type functional signals from large
and diverse genomic data collections, including for
tissues and cell types for which no tissue-specific
experimental data exist. This approach generated
genome-scale functional maps of 144 human tissues
and cell-types by integrating a collection of data sets
covering thousands of experiments from more than
14,000 distinct publications. Using a Bayesian inte-
gration technique, each data set was automatically
assessed for its relevance to each of the tissue- and
cell-lineage-specific functional contexts (Fig. 1a, b).
With this approach, networks could be constructed for
tissues with little or no directly assayed high-
throughput data by automatically up-weighting data
sets from related tissues and prioritizing these tissue-
relevant signals over other data. For example, the
method constructed a network for the dentate gyrus (a
brain tissue with limited data) by extracting relevant
signals from other (larger or related) tissues and cell
types in the nervous system [4]. The resulting
functional maps provided a detailed portrait of protein
function and interactions in specific human tissues and
cell lineages ranging in function (e.g., from B lympho-
cytes to the renal glomerulus) and in scale (e.g., from
the substantia nigra to the whole brain).

These tissue-specific networks can be used to
generate specific, testable hypotheses about gene

functions, interactions, and disease association
(Fig. 1c), which can then be experimentally validated.
In contrast with general networks, which assume that
the function of genes remains constant across tissues,
these tissue-specific maps answer targeted, tissue-
specific biological questions. For example, Greene
et al. hypothesized that the cell-lineage-specific inter-
actions of the gene IL1B in the blood vessel network
(the tissue where it has a key role in inflammation) could
accurately predict perturbation responses to IL-13
stimulation. To test this hypothesis, they profiled the
gene expression of aortic smooth muscle cells with
IL-18 stimulation and examined the genes whose
expression was upregulated. Specifically, the top
genes connected to /L1B in the blood vessel network
responded to IL-13 stimulation in blood vessel cells;
importantly, the blood vessel network was far more
predictive of this response than a general, non-tissue-
specific network or than networks from unrelated
tissues.

Predicting disease-associated genes
with integrative networks

The muliifactorial nature of most human diseases
renders them difficult to study. Targeted studies have
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provided a useful foundation—in many diseases, some
of the key genes and disease mechanisms are well
studied. Large-scale quantitative genetics studies have
provided further clues as to which genetic variants may
affect disease risk. Yet together, these studies are still
only able to explain at best a modest fraction of
predicted genetic variance [2].

Molecular interaction networks provide effective
summaries of cellular processes and thus represent
powerful tools for investigating disease genes in a way
that is complementary to experimental and quantitative
genetic studies. Intuitively, network-based approaches
for disease-associated gene prediction analyze net-
work patterns that are associated with genes known to
be involved in a specific disease (e.g., autism [22-25],
cancer [26-28]) and then identify additional candidate
genes based on shared interaction patterns. These
candidate genes serve as hypotheses of disease
association which can then be experimentally tested.
The power of such approaches is in the data-driven
nature of these predictions, which minimizes biases
toward well-studied genes and processes.

Most biological/biomedical research is concentrated
on genes and processes that already have some
evidence of association with high impact outcomes
(e.g., disease). Thus, genes that are already well
studied continue to be studied even more, creating
strong biases toward existing knowledge (known as
literature bias, see Ref. [29]). Network-based disease
prediction can mitigate literature bias by enabling
researchers to find candidate genes which are not
well represented in the current literature but exhibit
strong support for pathogenic involvement in genomic
data. In addition, the genome-wide ranking enables
additional downstream functional interpretations for key
dysregulated processes that would otherwise be
intractable given only a handful of previously studied
disease-associated genes.

These approaches initially used protein-protein
physical interaction networks (PPI) [30-32]. PPI
networks have not only the advantage of representing
direct physical interactions, but also the limitation of
relatively sparse coverage, especially in the context of
tissue-specific networks. This can be addressed with
tissue-specific functional networks [4] as described
above. Another challenge for these approaches is that
for many complex human diseases, only a limited
number of disease-associated genes are well studied.
To address this challenge, the general idea of
predicting candidate disease-associated genes based
on network interaction patterns similar to those of
known disease-related genes has recently been
extended to use an evidence-weighted machine
learning approach [4, 22]. Specifically, in addition to
using only high-confidence (e.g., experimentally veri-
fied) disease genes as training examples/gold standard
for the machine leaming classifier, genes with weak
association (e.g., based on text mining) are also
considered. The various gold standard gene sets are

weighted according to their respective levels of
confidence (e.g., experimentally verified genes receive
much more weight than text-mining based associa-
tions) which the classifier takes into account during
training. This approach was successfully used to
predict hundreds of likely autism-associated genes
using a brain-specific functional network [22].

Re-prioritizing quantitative genetic
studies results with network models

Researchers have long recognized the need and
power of distilling disease complexity by examining
known disease genes and results from quantitative
genetics studies in the context of biological networks.
Nevertheless, it is becoming increasingly clear that the
importance of considering molecular networks in
interpreting the genetics of human disease may still
have been underestimated. A recent study under-
scored this point: Yang et al. [33] addressed the
problem of “missing heritability” in quantitative genetics
studies by considering all common variants together
(including those with effect sizes far below significance)
and demonstrated that this explains most of the
estimated heritability. This study and others have
given rise to theories such as the omnigenic hypothesis
[1]: genes can affect each other through their tightly
interconnected networks, and as such, genes that have
little direct bearing on a particular disease may, in
aggregate, affect core disease pathways and influence
disease risk. Thus, while quantitative genetics studies
such as GWAS are valuable in providing unbiased
glimpses into the genetic basis of disease, to fully
realize their promise and identify core disease-
associated genes, it is crucial to develop methods
that analyze the results of these studies in the context of
relevant biological networks.

One such method is network-wide association
study (NetWAS) [4], which integrates tissue-specific
networks with the results from standard GWAS as a
means to reprioritize every gene in the genome for
potential disease association. The method is pre-
mised on the idea that the top GWAS associations
are enriched for disease-relevant genes, even if they
fall below statistical significance. NetWAS con-
structs a support vector machine (SVM) where the
classifier features are edges from a tissue-specific
network, and labeled examples are drawn from the
GWAS result (Fig. 2). Briefly, nominally significant
genes (e.g., p-value <0.01) from the GWAS are
positive examples and random genes above the
significance threshold negative examples in the
SVM classification. The result is a genome-wide re-
ranking of genes driven by their network similarity—in
a relevant tissue—to the top GWAS-associated
genes. The power of the NetWAS approach is derived
from the fact that it is discovery-driven; only genes
from the GWAS itself are used as training input, as
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Fig. 2. Genome-wide candidate disease gene prediction using tissue-specific networks. Based on the shared network
connectivity patterns of disease-associated genes, two approaches to disease gene prediction are as follows: (A) using an
evidence-weighted machine learning approach that considers known disease genes with varying levels of confidence as
positive examples and unrelated genes as negatives to rank all genes in the genome based on disease association, and
(B) using nominally significant genes in a GWAS study as positive examples and non-significant genes as negatives to re-
prioritize all genes in the genome. By using a tissue-specific network synthesized from a large collection of heterogeneous
data to drive the prioritization of candidate disease genes, the problem of literature bias (where focus is concentrated on
genes that have been previously characterized in a relevant disease context) is somewhat ameliorated.

opposed to genes from the potentially biased (and
often sparse) prior disease knowledge. By fusing the
biological models captured by the tissue-specific
networks with the disease signal inherent in quantita-
tive genetics studies, NetWAS has been successfully
applied to generate hypotheses related to the
molecular basis of a range of diseases, including
obesity, type 2 diabetes, and systemic lupus erythe-
matosus [4].

Other network approaches include methods based
on PPI networks and prior disease knowledge [34—41].
These methods rank candidate genes from a genomic
interval by their connectivity to known causal genes in
protein—protein interaction networks. These ap-
proaches can be helpful in analyzing GWAS studies
results, but their performance is highly dependent on

the coverage and relevance of available protein—
protein interactions and known disease gene associ-
ations. In general, when choosing an approach for
generating candidate disease genes, scientists must
balance the need for an accurate method (and well-
conducted evaluations of predictions) with the chal-
lenge of avoiding serious biases toward well-studied
disease genes and pathways.

Network-based functional interpretation
of genes and gene sets
Networks are not only essential for the identification

of candidate disease genes and pathways, but also for
the functional interpretation of dysregulated processes
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[28, 42]. By leveraging integrated networks that
effectively summarize the functional landscape of a
relevant context to study the corresponding disease,
researchers can identify core disease pathways or
processes on which a number of genetic variants
converge. For example, in autism, likely disease-
associated genes in some of the most common copy
number variant regions appear connected to core
autism genes by affecting cognition, brain develop-
ment, and axonogenesis. Furthermore, a network-
based view of disease-associated genes (both known
and strongly predicted candidates) provides hypothe-
ses of precisely how these genes are associated with
the disease and assigns functional roles for previously
uncharacterized candidate genes. For example, in the
aforementioned autism study, by analyzing the func-
tional connectivity of top autism-associated gene
predictions in the brain-specific network, autism-
associated brain-specific functional modules can be
identified. One of the top candidates, DIP2C, was
previously uncharacterized (Fig. 3) but functionally
localized to the module representing Rho and insulin-

like growth factor receptor pathways. Thus, network-
based analyses can guide follow-up experiments on
DIP2C to characterize its role in the cellular dysregu-
lation in autism.

Integrated, tissue-specific networks can also be
used to study the higher level topology of relationships
between diseases, an important question both for
differential diagnosis and treatment development.
Greene et al. created data-driven maps quantifying
the molecular relationships between diseases in the
context of the tissue-specific functional networks. For
example, using the substantia nigra network to chart
out a disease map for Parkinson's disease highlighted
both documented disease associations (e.g., basal
ganglion disease, lysosomal storage disease) and
more subtle connections (e.g., inherited metabolic
disorder, thyroid cancer). This type of inter-disease
association analysis provides an additional perspec-
tive on disease genetics and the crosstalk between
their underlying pathways, which could ultimately lead
to new insights into the molecular characterization of
diseases.

Fig. 3. Functional interpretations of disease genes using tissue-specific networks. Autism-associated functional
modules identified by clustering of predicted autism-associated genes in a brain-specific functional network. The functional
role of a previously uncharacterized gene can be hypothesized based on localization into the Rho and insulin-like growth

factor receptor pathway module.
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Making networks accessible to biomedical
researchers through dynamic, interactive
interfaces

Many of the integrated networks and associated
analyses are available publicly through high-quality
web interfaces, enabling broad access by biomedical
researchers (Table 1). These resources are critical in
making computational methods accessible to bench
biologists, empowering them to generate testable
hypotheses from data-driven, integrative analyses.
Many feature dynamic, interactive visualizations, en-
couraging data exploration even for users without
specific computational expertise. In addition, many
resources enable researchers to apply integrated
network analyses (e.g., GWAS reprioritization) to their
own data [4]. These applications typically perform the
analyses using server-side resources and, importantly,
do not require users to install specialized software. By
showcasing user-friendly interfaces and enabling
access to sophisticated analyses, these integrated
network resources can complement the tools of
modern biologists to interpret and guide experiments.

Future directions

Here, we have primarily discussed approaches to
leverage integrated networks for studying the genetic
basis of disease. However, lifestyle and environmental
factors (e.g., diet, exercise, sleep deprivation) also
heavily contribute to the multifactorial nature of most
complex human diseases. Unfortunately, the molecular-
level effects of these non-genetic factors and potential
gene-by-environment interaction effects are difficult
to systematically probe and measure. The sheer
amount of potential variation and confounding factors
severely hampers the power of large-scale analysis
efforts such as environment-wide association studies
[43, 44]. Nevertheless, similar to the discovery that
tissue-specific networks are powerful “signal filters” that
can accentuate the signal captured in known disease
gene associations and quantitative genetics studies, an
important future research direction will be the effective
development and application of integrative network
methods for the study of environmental effects under-
lying disease development.

Table 1. Public resources of integrated networks

One line of research that can not only help uncover
environmental effects on disease, but also further
advance studies characterizing the genetic basis of
disease, is the development of methods that can tightly
integrate the precision and power of model organism
studies with human data. A key methodological and
conceptual challenge here is how to effectively fuse
model organism studies with human disease informa-
tion under a single framework, rather than making
discoveries separately (e.g., genetic screens in model
organisms, GWAS studies in humans) and using the
other purely for verification. Network-based methods
have already been shown to be highly beneficial for
cross-organism gene annotation transfer by consider-
ing not only sequence similarity but also conservation
of biological function between orthologs [45, 46]. They
demonstrate dramatic improvement in predicting
gene—pathway membership and highlight the syner-
gistic advantage of cross-organism analyses. Devel-
oping further cross-organism network-based
approaches is thus also likely to benefit the study of
human disease.

As high-throughput omics technologies continue to
improve and large-scale data collection becomes more
prevalent, new opportunities and challenges in
network-based analyses are also emerging. An impor-
tant future direction will be fueled by the increase in
higher-resolution longitudinal data—the development
of dynamic network models to not only model specific
biological contexts (e.g., brain, intestine, kidney), but
how these contexts change over time (e.g., the
development of the brain, age-associated degenera-
tive disorders), in reaction to stimuli (e.g., molecular
effects of traumatic brain injury), and potentially,
crosstalk between contexts (e.g., the gut-brain con-
nection and how it is affected by circadian rhythm). In
addition, epigenetic factors, positioned at the interface
between the environment and the genome, also have a
profound impact on disease risk both within and across
generations [47-50]. This realization, together with the
development of innovative experimental methods,
have brought forth several large-scale efforts to catalog
the epigenome, including ENCODE [51], Roadmap
[62], FANTOM [53], and BLUEPRINT [54], and these
data have fueled significant progress in predicting the
functional effects of noncoding variation using sophis-
ticated computational methods [55-57]. These

Type

Network analyses

HumanBase [4] hb.flatironinstitute.org

STRING [58] string-db.org
FunCoup [59] funcoup.sbc.su.se
IMP [60] imp.princeton.edu

GeneMania [61] genemania.org

144 integrated human tissue networks

Multi-organism networks
Multi-organism networks
Multi-organism networks

Multi-organism networks

NetWAS for re-prioritizing GWAS data
Candidate disease gene prediction
Multi-gene query

Multi-gene query

Multi-gene query

Custom function prediction analysis
Multi-gene query

Multi-gene query
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advances in elucidating the impact of genetic variation
on epigenetic factors are the first steps toward
unraveling the complex interplay between the genome,
epigenome, and environment, especially in the context
of disease. Important next steps include better
understanding the effects of environment on epigenetic
variation, of epigenetic variation on gene expression,
and of epistatic interactions. By modeling this interplay
from a systems perspective in a manner that incorpo-
rates genetic variation, researchers could capture
individual differences in their network representations,
thus addressing an underlying assumption of all current
network-based approaches—that single networks
(even context-specific ones) are identical across
individuals. In the long run, such approaches will be
critical in integrating molecular-level models with
whole-organism physiology and eventually are likely
to become an integrated part of not only biomedical
research, but also the development and application of
precision medicine diagnoses and treatments.

Acknowledgments

V.Y. was supported in part by US NIH grant T32
HGO003284. This work was supported by the NIH
(RO1 GM071966). O.G.T. is a senior fellow of the
Genetic Networks program of the Canadian Institute
for Advanced Research (CIFAR).

Received 1 April 2018;

Received in revised form 15 June 2018;
Accepted 3 July 2018

Available online 9 July 2018

Keywords:

integrative networks;
quantitative genetics data;
tissue specificity

Equal contributions. Abbreviations used:

GWAS, genome-wide association studies; PPI, protein-
protein interaction; NetWAS, network-wide association
study; SVM, support vector machine.

References

[1] E.A. Boyle, Y.l. Li, J.K. Pritchard, An expanded view of
complex traits: from polygenic to omnigenic, Cell 169 (2017)
1177-1186.

[2] E.E. Eichler, J. Flint, G. Gibson, A. Kong, S.M. Leal, J.H.
Moore, J.H. Nadeau, Missing heritability and strategies for
finding the underlying causes of complex disease, Nat. Rev.
Genet. 11 (2010) 446-450.

[3] T.A.Manolio, F.S. Collins, N.J. Cox, D.B. Goldstein, L.A. Hindorff,
D.J. Hunter, M.I. McCarthy, E.M. Ramos, L.R. Cardon, A.

Chakravarti, J.H. Cho, A.E. Guttmacher, A. Kong, L. Kruglyak, E.
Mardis, C.N. Rotimi, M. Slatkin, D. Valle, A.S. Whittemore, M.
Boehnke, A.G. Clark, E.E. Eichler, G. Gibson, J.L. Haines, T.F.C.
MacKay, S.A. McCarroll, P.M. Visscher, Finding the missing
heritability of complex diseases, Nature 461 (2009) 747-753.

[4] C.S. Greene, A. Krishnan, A.K. Wong, E. Ricciotti, R.A. Zelaya,
D.S. Himmelstein, R. Zhang, B.M. Hartmann, E. Zaslavsky, S.C.
Sealfon, D.I. Chasman, G.A. Fitzgerald, K. Dolinski, T. Grosser,
O.G. Troyanskaya, Understanding multicellular function and
disease with human tissue-specific networks, Nat. Genet. 47
(2015) 569-576.

[5] S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios, Q. Morris,
GeneMANIA: a real-time multiple association network
integration algorithm for predicting gene function, Genome
Biol. 9 (2008) S4.

[6] C. Huttenhower, E.M. Haley, M.A. Hibbs, V. Dumeaux, D.R.
Barrett, H.A. Coller, O.G. Troyanskaya, Exploring the human
genome with functional maps, Genome Res. 19 (2009)
1093-1106.

[7] S. Saxena, P. Caroni, Selective neuronal vulnerability in

neurodegenerative diseases: from stressor thresholds to

degeneration, Neuron 71 (2011) 35-48.

E. Pierson, Gtex Consortium, D. Koller, A. Battle, S.

Mostafavi, K.G. Ardlie, G. Getz, F.A. Wright, M. Kellis, S.

Volpi, E.T. Dermitzakis, Sharing and specificity of co-

expression networks across 35 human tissues, PLoS

Comput. Biol. 11 (2015), e1004220.

[9] J.L. Min, G. Nicholson, I. Halgrimsdottir, K. Almstrup, A. Petri,
A. Barrett, M. Travers, N.W. Rayner, R. Magi, F.H. Pettersson,
J. Broxholme, M.J. Neville, Q.F. Wills, J. Cheeseman, GIANT
Consortium, MolPAGE Consortium, M. Allen, C.C. Holmes,
T.D. Spector, J. Fleckner, M.l. McCarthy, F. Karpe, C.M.
Lindgren, K.T. Zondervan, Coexpression network analysis in
abdominal and gluteal adipose tissue reveals regulatory
genetic loci for metabolic syndrome and related phenotypes,
PLoS Genet. 8 (2012), e1002505.

[10] M.P. Keller, Y. Choi, P. Wang, D.B. Davis, M.E. Rabaglia, A.T.
Oler, D.S. Stapleton, C. Argmann, K.L. Schueler, S. Edwards,
H.A. Steinberg, E. Chaibub Neto, R. Kleinhanz, S. Tumer, M.K.
Hellerstein, E.E. Schadt, B.S. Yandell, C. Kendziorski, A.D. Attie,
A gene expression network model of type 2 diabetes links cell
cycle regulation in islets with diabetes susceptibility, Genome
Res. 18 (2008) 706—716.

[11] R. Dobrin, J. Zhu, C. Molony, C. Argman, M.L. Parrish, S.
Carlson, M.F. Allan, D. Pomp, E.E. Schadt, Multi-tissue
coexpression networks reveal unexpected subnetworks associ-
ated with disease, Genome Biol. 10 (2009) R55.

[12] A.J. Comish, I. Filippis, A. David, M.J.E. Stemberg, Exploring the
cellular basis of human disease through a large-scale mapping of
deleterious genes to cell types, Genome Med. 7 (2015) 95.

[13] O. Magger, Y.Y. Waldman, E. Ruppin, R. Sharan, Enhancing
the prioritization of disease-causing genes through tissue
specific protein interaction networks, PLoS Comput. Biol. 8
(2012), €1002690.

[14] A.Bossi, B. Lehner, Tissue specificity and the human protein
interaction network, Mol. Syst. Biol. 5 (2009) 260.

[15] Y. Wang, D.-Y. Cho, H. Lee, J. Fear, B. Oliver, T.M.
Przytycka, NetREX: Network Rewiring using EXpression—
Towards Context Specific Regulatory Networks, 2017,
https://doi.org/10.1101/126664.

[16] GTEx Consortium, The Genotype-Tissue Expression (GTEX)
project, Nat. Genet. 45 (2013) 580-585.

[17] P. Dao, Y.-A. Kim, D. Wojtowicz, S. Madan, R. Sharan, T.M.
Przytycka, BeWith: a between-within method to discover

8


http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0005
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0005
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0005
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0010
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0010
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0010
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0010
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0015
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0015
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0015
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0015
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0015
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0015
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0015
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0020
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0020
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0020
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0020
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0020
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0020
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0025
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0025
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0025
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0025
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0030
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0030
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0030
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0030
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0035
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0035
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0035
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0040
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0040
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0040
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0040
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0040
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0045
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0050
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0050
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0050
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0050
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0050
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0050
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0050
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0055
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0055
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0055
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0055
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0060
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0060
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0060
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0065
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0065
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0065
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0065
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0070
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0070
https://doi.org/10.1101/126664
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0080
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0080
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0085
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0085

2922

Review: Enabling precision medicine: integrative networks

relationships between cancer modules via integrated analy-
sis of mutual exclusivity, co-occurrence and functional
interactions, PLoS Comput. Biol. 13 (2017), e1005695.

[18] B. Wang, A.M. Mezlini, F. Demir, M. Fiume, Z. Tu, M. Brudno,
B. Haibe-Kains, A. Goldenberg, Similarity network fusion for
aggregating data types on a genomic scale, Nat. Methods 11
(2014) 333-337.

[19] D. Silverbush, S. Cristea, G. Yanovich, T. Geiger, N.
Beerenwinkel, R. Sharan, ModulOmics: Integrating Multi-
Omics Data to Identify Cancer Driver Modules, 2018, https:/
doi.org/10.1101/288399.

[20] D.-Y. Cho, T.M. Przytycka, Dissecting cancer heterogeneity
with a probabilistic genotype—phenotype model, Nucleic
Acids Res. 41 (2013) 8011-8020.

[21] R. Shen, Q. Mo, N. Schultz, V.E. Seshan, A.B. Olshen, J.
Huse, M. Ladanyi, C. Sander, Integrative subtype
discovery in glioblastoma using iCluster, PLoS One 7
(2012), e35236.

[22] A.Krishnan, R. Zhang, V. Yao, C.L. Theesfeld, A.K. Wong, A.
Tadych, N. Volfovsky, A. Packer, A. Lash, O.G. Troyanskaya,
Genome-wide prediction and functional characterization of
the genetic basis of autism spectrum disorder, Nat. Neurosci.
19 (2016) 1454-1462.

[23] T.-L. Lee, M.J. Raygada, O.M. Rennert, Integrative gene
network analysis provides novel regulatory relationships,
genetic contributions and susceptible targets in autism
spectrum disorders, Gene 496 (2012) 88-96.

[24] N.N. Parikshak, R. Luo, A. Zhang, H. Won, J.K. Lowe, V.
Chandran, S. Horvath, D.H. Geschwind, Integrative function-
al genomic analyses implicate specific molecular pathways
and circuits in autism, Cell 155 (2013) 1008-1021.

[25] F. Hormozdiari, O. Penn, E. Borenstein, E.E. Eichler, The
discovery of integrated gene networks for autism and related
disorders, Genome Res. 25 (2015) 142—-154.

[26] Y.-A. Kim, D.-Y. Cho, T.M. Przytycka, Understanding
genotype-phenotype effects in cancer via network ap-
proaches, PLoS Comput. Biol. 12 (2016), e1004747.

[27] H.-Y. Chuang, E. Lee, Y.-T. Liu, D. Lee, T. Ideker, Network-
based classification of breast cancer metastasis, Mol. Syst.
Biol. 3 (2007) 140.

[28] M.D.M. Leiserson, F. Vandin, H.-T. Wu, J.R. Dobson, J.V.
Eldridge, J.L. Thomas, A. Papoutsaki, Y. Kim, B. Niu, M.
McLellan, M.S. Lawrence, A. Gonzalez-Perez, D. Tamborero, Y.
Cheng, G.A. Ryslik, N. Lopez-Bigas, G. Getz, L. Ding, B.J.
Raphael, Pan-cancer network analysis identifies combinations of
rare somatic mutations across pathways and protein complexes,
Nat. Genet. 47 (2015) 106-114.

[29] C.S. Greene, O.G. Troyanskaya, Accurate evaluation and
analysis of functional genomics data and methods, Ann. N. Y.
Acad. Sci. 1260 (2012) 95-100.

[30] J. Xu, Y. Li, Discovering disease-genes by topological
features in human protein-protein interaction network, Bioin-
formatics 22 (2006) 2800-2805.

[31] J. Chen, B.J. Aronow, A.G. Jegga, Disease candidate gene
identification and prioritization using protein interaction
networks, BMC Bioinf. 10 (2009) 73.

[32] S. Navlakha, C. Kingsford, The power of protein interaction
networks for associating genes with diseases, Bioinformatics
26 (2010) 1057-1063.

[33] J. Yang, B. Benyamin, B.P. McEvoy, S. Gordon, A.K.
Henders, D.R. Nyholt, P.A. Madden, A.C. Heath, N.G.
Martin, G.W. Montgomery, M.E. Goddard, P.M. Visscher,
Common SNPs explain a large proportion of the heritability
for human height, Nat. Genet. 42 (2010) 565-569.

[34] S. Kohler, S. Bauer, D. Horn, P.N. Robinson, Walking the
interactome for prioritization of candidate disease genes, Am.
J. Hum. Genet. 82 (2008) 949-958.

[385] O. Vanunu, O. Magger, E. Ruppin, T. Shlomi, R. Sharan,
Associating genes and protein complexes with disease via
network propagation, PLoS Comput. Biol. 6 (2010),
e1000641.

[36] J. Zhu, Y. Qin, T. Liu, J. Wang, X. Zheng, Prioritization of
candidate disease genes by topological similarity between
disease and protein diffusion profiles, BMC Bioinf. 14 (Suppl. 5)
(2013) S5.

[37] E.J. Rossin, K. Lage, S. Raychaudhuri, R.J. Xavier, D. Tatar,
Y. Benita, International Inflammatory Bowel Disease
Genetics Constortium, C. Cotsapas, M.J. Daly, Proteins
encoded in genomic regions associated with immune-
mediated disease physically interact and suggest underlying
biology, PLoS Genet. 7 (2011), e1001273.

[38] P. Jia, S. Zheng, J. Long, W. Zheng, Z. Zhao, dmGWAS:
dense module searching for genome-wide association
studies in protein—protein interaction networks, Bioinformatics
27 (2010) 95-102.

[39] P. Jia, L. Wang, A.H. Fanous, C.N. Pato, T.L. Edwards,

International Schizophrenia Consortium, Z. Zhao, Network-

assisted investigation of combined causal signals from

genome-wide association studies in schizophrenia, PLoS

Comput. Biol. 8 (2012), e1002587.

Network-based multiple sclerosis pathway analysis with

GWAS data from 15,000 cases and 30,000 controls, Am. J.

Hum. Genet. 92 (2013) 854-865.

[41] Y. Liu, M. Brossard, C. Sarnowski, A. Vaysse, M. Moffatt, P.
Margaritte-Jeannin, F. Llinares-Lépez, M.H. Dizier, M.
Lathrop, W. Cookson, E. Bouzigon, F. Demenais, Network-
assisted analysis of GWAS data identifies a functionally-
relevant gene module for childhood-onset asthma, Sci. Rep.
7 (2017) 938.

[42] E. Cerami, E. Demir, N. Schultz, B.S. Taylor, C. Sander,
Automated network analysis identifies core pathways in
glioblastoma, PLoS One 5 (2010), e8918.

[43] M.A. Hall, S.M. Dudek, R. Goodloe, D.C. Crawford, S.A.
Pendergrass, P. Peissig, M. Brilliant, C.A. McCarty, M.D.
Ritchie, Environment-wide association study (EWAS) for
type 2 diabetes in the Marshfield Personalized Medicine
Research Project Biobank, Pac. Symp. Biocomput. (2014)
200-211.

[44] D.P. McGinnis, J.S. Brownstein, C.J. Patel, Environment-
wide association study of blood pressure in the National
Health and Nutrition Examination Survey (1999-2012), Sci.
Rep. 6 (2016), 30373.

[45] C.Y. Park, A.K. Wong, C.S. Greene, J. Rowland, Y. Guan,
L.A. Bongo, R.D. Burdine, O.G. Troyanskaya, Functional
knowledge transfer for high-accuracy prediction of under-
studied biological processes, PLoS Comput. Biol. 9 (2013),
e1002957.

[46] M.D. Chikina, O.G. Troyanskaya, Accurate quantification of
functional analogy among close homologs, PLoS Comput.
Biol. 7 (2011), e1001074.

[47] M.K. Skinner, Environmental stress and epigenetic transge-
nerational inheritance, BMC Med. 12 (2014), https://doi.org/
10.1186/s12916-014-0153-y.

[48] S. Sharma, T.K. Kelly, P.A. Jones, Epigenetics in cancer,
Carcinogenesis 31 (2009) 27-36.

[49] J.-Y. Hwang, K.A. Aromolaran, R.S. Zukin, The emerging field
of epigenetics in neurodegeneration and neuroprotection, Nat.
Rev. Neurosci. 18 (2017) 347-361.

[40


http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0085
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0085
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0085
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0090
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0090
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0090
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0090
https://doi.org/10.1101/288399
https://doi.org/10.1101/288399
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0100
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0100
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0100
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0105
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0105
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0105
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0105
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0110
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0110
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0110
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0110
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0110
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0115
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0115
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0115
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0115
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0120
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0120
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0120
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0120
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0125
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0125
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0125
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0130
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0130
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0130
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0135
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0135
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0135
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0140
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0140
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0140
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0140
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0140
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0140
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0140
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0145
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0145
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0145
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0150
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0150
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0150
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0155
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0155
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0155
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0160
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0160
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0160
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0165
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0165
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0165
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0165
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0165
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0170
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0170
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0170
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0175
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0175
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0175
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0175
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0180
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0180
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0180
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0180
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0185
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0185
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0185
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0185
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0185
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0185
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0190
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0190
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0190
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0190
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0195
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0195
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0195
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0195
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0195
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0200
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0200
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0200
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0205
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0205
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0205
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0205
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0205
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0205
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0210
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0210
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0210
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0215
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0215
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0215
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0215
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0215
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0215
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0220
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0220
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0220
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0220
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0225
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0225
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0225
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0225
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0225
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0230
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0230
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0230
https://doi.org/10.1186/s12916-014-0153-y
https://doi.org/10.1186/s12916-014-0153-y
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0240
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0240
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0245
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0245
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0245

Review: Enabling precision medicine: integrative networks

2923

[50] A.P. Feinberg, The key role of epigenetics in human disease
prevention and mitigation, N. Engl. J. Med. 378 (2018)
1323-1334.

[51] The ENCODE Project Consortium, An integrated encyclope-
dia of DNA elements in the human genome, Nature 489
(2012) 57-74.

[52] Roadmap Epigenomics Consortium, A. Kundaje, W. Meuleman,
J. Emst, M. Bilenky, A. Yen, A. Heravi-Moussavi, P. Kheradpour,
Z. Zhang, J. Wang, M.J. Ziller, V. Amin, J.W. Whitaker, M.D.
Schultz, L.D. Ward, A. Sarkar, G. Quon, R.S. Sandstrom, M.L.
Eaton, Y.-C. Wu, A.R. Pfenning, X. Wang, M. Claussnitzer, Y.
Liu, C. Coarfa, R.A. Harris, N. Shoresh, C.B. Epstein, E.
Gjoneska, D. Leung, W. Xie, R.D. Hawkins, R. Lister, C. Hong,
P. Gascard, A.J. Mungall, R. Moore, E. Chuah, A. Tam, T.K.
Canfield, R.S. Hansen, R. Kaul, P.J. Sabo, M.S. Bansal, A.
Carles, J.R. Dixon, K.-H. Farh, S. Feizi, R. Karlic, A.-R. Kim, A.
Kulkarni, D. Li, R. Lowdon, G. Elliott, T.R. Mercer, S.J. Neph, V.
Onuchic, P. Polak, N. Rajagopal, P. Ray, R.C. Sallari, K.T.
Siebenthall, N.A. Sinnott-Armstrong, M. Stevens, R.E. Thurman,
J. Wu, B. Zhang, X. Zhou, A.E. Beaudet, L.A. Boyer, P.L. De
Jager, P.J. Famham, S.J. Fisher, D. Haussler, S.J.M. Jones, W.
Li, M.A. Marra, M.T. McManus, S. Sunyaev, J.A. Thomson, T.D.
Tisty, L.-H. Tsai, W. Wang, R.A. Waterland, M.Q. Zhang, L.H.
Chadwick, B.E. Bernstein, J.F. Costello, J.R. Ecker, M. Hirst, A.
Meissner, A. Milosavljevic, B. Ren, J.A. Stamatoyannopoulos, T.
Wang, M. Kellis, Integrative analysis of 111 reference human
epigenomes, Nature 518 (2015) 317-330.

[53] R. Andersson, C. Gebhard, I. Miguel-Escalada, |. Hoof, J.
Bornholdt, M. Boyd, Y. Chen, X. Zhao, C. Schmidl, T. Suzuki,
E. Ntini, E. Arner, E. Valen, K. Li, L. Schwarzfischer, D. Glatz,
J. Raithel, B. Lilje, N. Rapin, F.O. Bagger, M. Jgrgensen, P.R.
Andersen, N. Bertin, O. Rackham, A.M. Burroughs, J.K.
Baillie, Y. Ishizu, Y. Shimizu, E. Furuhata, S. Maeda, Y.
Negishi, C.J. Mungall, T.F. Meehan, T. Lassmann, M. ltoh, H.
Kawaji, N. Kondo, J. Kawai, A. Lennartsson, C.O. Daub, P.
Heutink, D.A. Hume, T.H. Jensen, H. Suzuki, Y. Hayashizaki,
F. Muller, A.R.R. Forrest, P. Carninci, M. Rehli, A. Sandelin,
An atlas of active enhancers across human cell types and
tissues, Nature 507 (2014) 455-461.

[54] L. Chen, B. Ge, F.P. Casale, L. Vasquez, T. Kwan, D. Garrido-
Martin, S. Watt, Y. Yan, K. Kundu, S. Ecker, A. Datta, D.
Richardson, F. Burden, D. Mead, A.L. Mann, J.M. Ferandez, S.
Rowilston, S.P. Wilder, S. Farrow, X. Shao, J.J. Lambourne, A.

Redensek, C.A. Albers, V. Amstislavskiy, S. Ashford, K.
Berentsen, L. Bomba, G. Bourque, D. Bujold, S. Busche, M.
Caron, S.-H. Chen, W. Cheung, O. Delaneau, E.T. Dermitzakis,
H. Elding, I. Colgiu, F.O. Bagger, P. Flicek, E. Habibi, V.
lotchkova, E. Janssen-Megens, B. Kim, H. Lehrach, E. Lowy, A.
Mandoli, F. Matarese, M.T. Maurano, J.A. Morris, V. Pancaldi, F.
Pourfarzad, K. Rehnstrom, A. Rendon, T. Risch, N. Sharifi, M.-M.
Simon, M. Sultan, A. Valencia, K. Walter, S.-Y. Wang, M.
Frontini, S.E. Antonarakis, L. Clarke, M.-L. Yaspo, S. Beck, R.
Guigo, D. Rico, J.H.A. Martens, W.H. Ouwehand, T.W. Kuijpers,
D.S. Paul, H.G. Stunnenberg, O. Stegle, K. Downes, T. Pastinen,
N. Soranzo, Genetic drivers of epigenetic and transcriptional
variation in human immune cells, Cell 167 (2016) 1398—1414.
e24.

[65] J. Zhou, O.G. Troyanskaya, Predicting effects of noncoding
variants with deep learning-based sequence model, Nat.
Methods 12 (2015) 931-934.

[56] G.R.S. Ritchie, I. Dunham, E. Zeggini, P. Flicek, Functional
annotation of noncoding sequence variants, Nat. Methods 11
(2014) 294-296.

[57] D. Lee, D.U. Gorkin, M. Baker, B.J. Strober, A.L. Asoni, A.S.
McCallion, M.A. Beer, A method to predict the impact of
regulatory variants from DNA sequence, Nat. Genet. 47
(2015) 955-961.

[58] D. Szklarczyk, J.H. Morris, H. Cook, M. Kuhn, S. Wyder, M.
Simonovic, A. Santos, N.T. Doncheva, A. Roth, P. Bork, L.J.
Jensen, C. von Mering, The STRING database in 2017:
quality-controlled protein—protein association networks,
made broadly accessible, Nucleic Acids Res. 45 (2017)
D362-D368.

[59] C. Ogris, D. Guala, E.L.L. Sonnhammer, FunCoup 4: new
species, data, and visualization, Nucleic Acids Res. 46
(2018) D601-D607.

[60] A.K. Wong, A. Krishnan, V. Yao, A. Tadych, O.G. Troyanskaya,
IMP 2.0: a multi-species functional genomics portal for integra-
tion, visualization and prediction of protein functions and
networks, Nucleic Acids Res. 43 (2015) W128-W133.

[61] K. Zuberi, M. Franz, H. Rodriguez, J. Montojo, C.T. Lopes,
G.D. Bader, Q. Morris, GeneMANIA prediction server 2013
update, Nucleic Acids Res. 41 (2013) W115-W122.


http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0250
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0250
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0250
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0255
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0255
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0255
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0260
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0265
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0270
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0275
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0275
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0275
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0280
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0280
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0280
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0285
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0285
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0285
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0285
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0290
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0290
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0290
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0290
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0290
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0290
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0295
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0295
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0295
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0300
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0300
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0300
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0300
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0305
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0305
http://refhub.elsevier.com/S0022-2836(18)30744-7/rf0305

	Enabling Precision Medicine through Integrative Network Models
	Networks as models of human biology
	Building tissue- and cell-type-specific functional networks
	Predicting disease-associated genes with integrative networks
	Re-prioritizing quantitative genetic studies results with network models
	Network-based functional interpretation of genes and gene sets
	Making networks accessible to biomedical researchers through dynamic, interactive interfaces
	Future directions
	Acknowledgments
	References


