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Understanding the etiology of disease requires comprehensive data-
driven methods capable of identifying and experimentally verifying 
candidate disease genes. Whereas quantitative genetics approaches 
provide a valuable, relatively unbiased source of candidate genes, 
they suffer from statistical and biological limitations (for example, 
lack of power because of sample size, multiple hypothesis testing, or 
variants with small effect sizes), thereby potentially missing a large 
fraction of disease-associated genes. Network-based methods have 
emerged as a useful set of tools to complement quantitative genetic 
studies, by leveraging the disease signals captured by these studies 
to further interpret and prioritize candidate disease genes. Tissue-
specific networks1,2 have been shown to be important, because they 
address many of the limitations (for example, coverage and lack of 
tissue specificity) of previous methods that rely on protein–protein 
physical-interaction networks3–5. Tissue specificity is especially criti-
cal, because tissue-specific gene expression and pathway regulation 
underlie human physiology, and their dysfunction often results in 
disease. Another major challenge is the inability to systematically 
screen and test candidate disease genes in humans, owing to technical 
and ethical limitations. Model organisms provide a powerful answer 
to that challenge6–8, but their most effective use requires reconciling 
human disease genetics with model-organism biology.

To address these issues, we developed disease-associated quantita-
tive unbiased estimation across species and tissues (diseaseQUEST), 
an integrated computationally driven approach that combines human 
quantitative genetics with in silico functional network representations 
of model-organism biology to systematically identify disease-gene 

candidates. Our approach leverages the disease signals in quantita-
tive human genetics studies (such as genome-wide association studies 
(GWAS)) as well as the functional pathway signals in cell-type- and 
tissue-specific networks, integrating large collections of ‘omics’ data in 
model organisms, to predict and experimentally screen candidate dis-
ease genes for their association with relevant phenotypes. Intuitively, 
these networks summarize functional relationships between genes in 
specific tissues or cell types, such that a functional relationship repre-
sents genes working together, either directly or indirectly, in a biologi-
cal pathway. The tissue specificity of this approach reflects the roles 
that tissue and cell-type diversity play in most complex human diseases 
and is critical for both the accuracy and the interpretation of disease-
gene predictions. In essence, diseaseQUEST enables computationally 
guided phenotype screens that identify the top gene candidates for the 
disease of interest, prioritizing areas for which the model system used 
by diseaseQUEST is informative for human disease biology.

We used diseaseQUEST to predict candidate genes for 25 human 
diseases and traits by using C. elegans as a model system. This applica-
tion of diseaseQUEST harnesses a semisupervised approach that we 
developed to generate tissue-specific functional networks, which are 
combined with human GWAS results to identify new disease-related-
gene candidates. We showed that diseaseQUEST can accurately iden-
tify disease genes across organ systems and demonstrated its ability 
to predict the tissue specificity of known longevity pathways by using 
only human GWAS genes as input.

We took advantage of the experimental tools in C. elegans  
that allow for high-throughput behavioral testing (thus making it  
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a valuable system to quickly assay disease-associated genes), as well as 
the worm’s short lifespan (enabling fast screening of age-related dis-
orders), to experimentally assay 45 candidate PD genes across 13,255 
individual worms. PD is the most common neurodegenerative move-
ment disorder worldwide, for which 70–95% of cases have unknown 
origins, thus reflecting the need for innovative approaches to identify 
disease-modifying genes. Knockdown of most of the diseaseQUEST 
PD-candidate genes caused motor defects in C. elegans, and neuronal 
knockdown of our top candidate, bcat-1, caused spasm-like curling 
and exacerbated α-synuclein-mediated degeneration of dopaminergic 
neurons. Notably, BCAT1 is normally highly expressed in areas of 
the brain that are affected by PD, and expression of BCAT1 is signifi-
cantly lower (false discovery rate (FDR) = 0.0227) in the substantia 
nigra in PD patients than unaffected individuals, thus suggesting that  
diseaseQUEST with high-throughput C. elegans behavioral screening 
can successfully identify and test new disease genes.

RESULTS
Combining tissue-specific model-system biology with human 
disease studies
diseaseQUEST includes three key components (Fig. 1a) within an 
integrated computational-experimental framework for discovery 
and directed experimental screening of disease-gene candidates. 
The Functional Representation module leverages a semisupervised 
approach for building tissue- and cell-type-specific model-organism  
functional networks (in this study, we built C. elegans networks, 
described below). The Disease Prediction module utilizes these 
model-organism networks and human quantitative genetic data to 
make candidate-disease-gene predictions. Finally, the Phenotypic 
Assay module experimentally tests these predictions in phenotyping 
screens in the model organism.

A semisupervised regularized Bayesian integration method to 
build tissue-specific functional networks
To enable diseaseQUEST to effectively leverage the wealth of cell-
type information available for many worm genes, we developed a new 
approach that efficiently extracts cell-lineage-specific signals from 
the compendium of C. elegans expression data and generates network 
representations of tissue- and cell-type-specific functional similarity 
for the Functional Representation module. We applied this semisu-
pervised, ontology-aware regularized Bayesian integration method to 
203 cell types and tissues in C. elegans, including not only tissues in 
the major organ systems but also hermaphrodite- and male-specific 
tissues, thereby providing networks of resolution down to specific cell 
types (for example, dopaminergic neurons; hyp 1, a specific hypo-
dermal cell; marginal cells; full list in Supplementary Data 1). Our 
approach addresses limitations in the knowledge of cell-type-specific 
gene expression and protein function by using semisupervised learn-
ing. The method supplements the limited number of known patterns 
of cell-type-specific expression or function with high-confidence pre-
dictions made from large collections of functional genomic data. This 
procedure enabled us to generate high-quality networks, even for cell 
types and tissues with few known cell-type-specific genes (for exam-
ple, the ASIR neurons or the V2l cells, with only 76 and 47 annotated 
cell-type-specific genes).

Across all tissues and sex-specific systems, the networks were accu-
rate in predicting known tissue-specific functional associations in 
‘hold-out’ evaluations (in which a subset of genes with known func-
tional associations is ‘hidden’ from the system throughout training 
and is used to evaluate its performance) (Fig. 1b,c). Our semisuper-
vised framework captured tissue-specific function significantly better 

than a global, non-tissue-specific network representing the whole 
organism (Fig. 1b, one-sided Wilcoxon rank-sum test, P < 2.087 
×10−14; another example of a global non-tissue-specific approach is 
WormNet 3.0 (ref. 9), P < 3.66 × 10−15) or networks generated by a 
fully supervised framework approach1 (Fig. 1c, one-sided Wilcoxon 
rank-sum test, P < 2.52 × 10−13; to our knowledge, no other tissue-
specific worm networks have been described). Notably, individual 
neuron subsets, such as cholinergic and dopaminergic neurons, were 
among the top-performing tissue networks determined through the 
semisupervised approach, and they outperformed the whole nervous-
system network (Fig. 1b). We have made all these networks available 
for download and interactive exploration through a dynamic web 
interface (Worm Integrated in Specific Contexts (WISP), http://wisp.
princeton.edu/).

Predicting candidate human disease genes
The Disease Prediction module of diseaseQUEST then leverages the 
cell-type- and tissue-specific model-organism networks described 
above in concert with human disease genes from quantitative genet-
ics studies within a machine-learning framework to predict new 
candidate genes. Specifically, we identified the closest worm func-
tional orthologs10 of reported disease-associated genes in the GWAS 
Catalog11 as positive examples, and we used the support-vector 
machine-learning approach with the network neighborhoods of these 
genes as input to predict other genes with similar network topology. 
Intuitively, our approach learns coherent tissue-specific-network sig-
nals that are indicative of genes involved in a specific human disease 
as opposed to other diseases, then uses these patterns to predict new 
gene candidates.

For 25 diseases and traits (Supplementary Data 2) with sufficient 
number of GWAS genes (Supplementary Data 3), we observed strong 
predictive performance across all major disease categories (fivefold 
cross-validation, Fig. 2a). The results included accurate predictions 
for a number of cancers (for example, lung, melanoma, and ovar-
ian cancers), cardiovascular and muscular diseases (for example, 
hypertension and myocardial infarction), nervous-system diseases 
(for example, amyotrophic lateral sclerosis (ALS) and PD), and meta-
bolic and autoimmune diseases and traits (for example, longevity, 
obesity, and celiac disease). We also found that the diseaseQUEST 
predictions reflected many aspects of known disease biology (Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology 
(GO) enrichments in Supplementary Data 4–7). For example, ALS is 
characterized by motor neuron degeneration and muscle atrophy, and 
the diseaseQUEST predictions were enriched in genes associated with 
locomotion and muscle biology (Supplementary Data 4). Moreover, 
alternative splicing, MAP kinase signaling, and phosphatidylinosi-
tol signaling were among the most highly enriched terms, and these 
pathways were previously implicated in ALS through mouse mod-
els12–14. The disease predictions for schizophrenia, which are enriched 
in various aspects of RNA biology (alternative splicing and mRNA 
surveillance) and the ubiquitin–proteasome system (Supplementary 
Data 5), are similarly supported by findings from human studies15–17. 
Support for the diseaseQUEST predictions extends to cancer, includ-
ing ovarian and pancreatic carcinomas, in which the genetic basis 
for most disease cases is unknown. For example, the ovarian cancer 
predictions were enriched in genes that regulate fatty-acid metabo-
lism and mitochondrial function (Supplementary Data 6), and the 
pancreatic cancer predictions were highly associated with mRNA 
splicing/spliceosome factors (Supplementary Data 7), all associations 
that were consistent with prior literature18–20. These results demon-
strate that leveraging the data-driven disease signal from only GWAS 
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studies (i.e., without incorporating any prior disease knowledge into 
the prediction process), diseaseQUEST predictions identify known 
aspects of various diseases while making predictions for new genes 
and pathways that can be experimentally tested in model systems.

Recapitulating known aging biology and predicting tissue-
specific longevity genes
To further systematically evaluate the Functional Representation and 
Disease Prediction modules, we examined gene predictions for longev-
ity. This unique opportunity allows for evaluation of causality, not sim-
ply association, because thorough experimental studies in C. elegans  
have identified genes with clear causal associations with longevity. In 
fact, decades of small-scale experiments and large-scale screens have 
identified genes involved in the determination of C. elegans adult 
lifespan, many of which were later shown to influence lifespan in 
mammals21. As a test of diseaseQUEST 's predictive power, we assessed 
whether our tissue-specific network–based approach using only 
human-longevity GWAS genes as input could successfully predict 
these experimentally identified longevity genes in a data-driven man-
ner. By using the C. elegans network for the intestine, a tissue known 

to have many roles in lifespan regulation22,23, our method successfully 
predicted genes known to affect C. elegans adult lifespan (Fig. 2b and 
Supplementary Data 8, one-sided Wilcoxon rank-sum test, P < 5.619 
× 10−7, FDR < 5.7 × 10−5). For example, the top diseaseQUEST predic-
tions successfully identified several lifespan-associated components of 
the autophagy/TOR machinery (Supplementary Data 8), including 
let-363/MTOR, hlh-30/TFEB, aak-1/AMPK, atg-7/Atg7, unc-51/Ulk2, 
lin-45, and ife-2/EIF4E, and intestinal autophagy is indeed specifically 
required for the increased longevity associated with dietary restric-
tion in C. elegans24. These findings reveal that diseaseQUEST can be 
successfully used to predict causal disease genes that are amenable to 
phenotypic screening.

To evaluate the specificity of these predictions, we also calculated 
the predictive performance of general, non-tissue-specific networks 
and found that using the intestine network dramatically improved the 
performance (one-sided Wilcoxon rank-sum tests: intestine network 
P < 5.619 × 10–7 versus non-tissue-specific global network P < 0.001, 
WormNet 3.0 (ref. 9); P < 0.003, protein–protein interaction network 
P < 0.122). Furthermore, when predictive performance on longevity 
genes was compared across all 203 C. elegans tissue and cell type  
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Figure 1 Integrated computational-experimental diseaseQUEST framework for predicting gene candidates with potential relevance to human disease. 
(a) The integrated computational-experimental diseaseQUEST framework for predicting gene candidates with potential relevance for human disease. 
diseaseQUEST consists of three main modules: (i) Functional Representation, leveraging model-organism tissue-specific gene expression data derived 
from small-scale experiments as well as a functional genomics data compendium to construct tissue-specific functional networks in the model organism. 
Networks can be downloaded and explored through the WISP interface at http://wisp.princeton.edu/; (ii) Disease Prediction, combining the functional 
representations of model-organism tissue biology with quantitative genetics data (e.g., human disease GWAS genes) into a machine-learning framework 
(e.g., support vector machine (SVM)) to predict candidate disease genes; and (iii) Phenotypic Assay, evaluating all predictions computationally and 
experimentally screening top candidate-disease-gene predictions for a final shortlist of genes that are likely to have relevance to the human disease. 
(b,c) Evaluation of the tissue- and cell-type-specific networks. A random set of genes from the training gold standard was withheld, and a single global 
network was constructed, as well as two sets of tissue networks: one set constructed with a fully supervised method (without any predicted tissue-specific 
functional interactions in the gold standard) and the other set constructed with the semisupervised method. Performance was measured on the basis of 
the area under the receiver operator curve (AUROC, n = 203 individual tissue networks). All tissues with more than 100 positive network-edge examples 
in the evaluation standard are shown (n = 59). A comparison of the performance of the semisupervised tissue networks (y axis) against the global network 
(b, x axis) and fully supervised tissue networks (c, x axis) shows that the method is significantly better at recapitulating the held-out set of relationships 
(above the diagonal line), thus suggesting likely strong performance in predicting novel tissue- and cell-type-specific functional relationships.
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networks, the intestine and the larger alimentary-system networks 
were the best performing (Fig. 2c) among the 203 sets of predic-
tions, and many other tissues known to be relevant to longevity were 
also among the higher-ranked results (Fig. 2c and Supplementary  
Data 8), thus demonstrating a tight correspondence between the 
computational models and related biological knowledge. This analy-
sis is especially important because, in addition to demonstrating the 
accuracy and tissue specificity of diseaseQUEST predictions, it shows 
that human GWAS genes, although not guaranteed to be causal, as a 
group, provide an informative signal about disease causality sufficient 
to discover new candidates.

Applying diseaseQUEST to PD
We next focused on identifying candidate PD genes by using 
the full computational-experimental diseaseQUEST framework 
(Supplementary Data 9 and Fig. 3). The PD-candidate genes from the 
Disease Prediction module appeared to be relevant to human PD biol-
ogy, because they were significantly enriched in orthologs of known 
PD genes, according to Human Gene Mutation Database annotations, 
which were not used in any stage of the diseaseQUEST prediction 
process (one-sided Wilcoxon rank-sum test, P < 4.151 × 10−4). The 
predictions were also enriched in orthologs of human genes closest 
to the 43 significant single-nucleotide polymorphisms reported in 
a recent 23andMe PD GWAS study25 that was also independent of 
our analysis (one-sided Wilcoxon rank-sum test, P < 8.577 × 10−6). 
Furthermore, our predictions were enriched in significantly differen-
tially expressed genes in the substantia nigra of patients with sporadic 
PD26 (one-sided Wilcoxon rank-sum test, P < 9.009 × 10−3).

To interpret the processes and pathways represented in our top PD 
predictions, we examined them in the context of the dopaminergic 
neuron WISP functional network. These predictions formed four 
major clusters (Fig. 3a and Supplementary Data 10), including two 
clusters related to movement: cluster A was enriched in genes related 

to muscle movement, locomotion, and activity level, and cluster B 
was enriched in terms related to synapse density as well as motor 
neuron and nervous-system morphology. Clusters C and D were 
both enriched in metabolic processes, and cluster D also had strong 
aging/longevity and growth-pathway signals. Overall, the predictions 
were enriched in cellular components known to be dysregulated in 
PD27, such as lysosomes and phagosomes (Fig. 3b, Supplementary 
Fig. 1 and Supplementary Data 11).

Directed PD-candidate screens for age-dependent motility 
defects
We then used the Phenotypic Assay module to experimentally screen 
the top predictions for PD-associated phenotypes. Reasoning that 
age-dependent motility defects could be used to model human PD 
symptoms, we examined the top-ranked genes for the effects of can-
didate gene knockdown on swimming behavior with age. To prioritize 
the top-scoring predictions for experimental follow-up, we considered 
only worm genes with known human orthologs, and we split these top 
predictions into three tiers based on known and/or predicted human 
brain expression and C. elegans neuronal expression (Online Methods 
and Supplementary Data 12). To avoid developmental defects and to 
enhance RNA interference (RNAi) in neurons, we knocked down gene 
expression specifically in neuronal-RNAi-sensitive adults by feeding 
late larval stage (L4) larvae with bacteria encoding each of the top 45 
candidate genes’ double-stranded RNA. We then used CeleST28 to 
analyze the swimming behavior of young, mid-life, and older worms 
(days 2, 5, and 8; 13,255 worms across 1,823 videos, Supplementary 
Data 13 and Supplementary Fig. 2). Swimming slowed with age, and 
principal component analysis suggested that aging had a major effect 
on behavior (Supplementary Fig. 3).

However, knockdown of many (11 of 45) of the top PD candidates 
caused a drastic and significant spasm-like curling phenotype with 
age (Fig. 4a,b), which also corresponded with ‘stretch’ phenotypes  
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(25 of 45; Fig. 4c), both of which are atypical of normal aging. Notably, 
knockdown of scav-1, one of the PD GWAS orthologs (which was a 
‘positive’ example in our training and was also strongly predicted 
by our method to be PD related), caused obvious, severe curling  
(Fig. 4d), and all four of the PD GWAS-positive hits significantly 
affected stretch (Fig. 4c). Although we originally reasoned that age-
dependent defects in motility might be generally analogous to human 
motor disorders, scav-1’s motility defect suggests that these worm 
swimming phenotypes can be used to model several aspects of human 
parkinsonism, including resting tremors, which are also spasm-like.

To assess the specificity of the curling phenotype with regard to 
the PD predictions, we analyzed the top-scoring genes across a wide 
spectrum of disease predictions, including cancers and metabolic 
disorders, for curling. We tested the top predictions across 13 differ-
ent diseases in 23,662 worms, generating 4,441 snapshots that were 
analyzed for curling. Even though all genes tested are expressed in 
adult neurons29 (Supplementary Data 14), none of the non-PD dis-
ease-candidate genes caused a curling phenotype (Supplementary 
Fig. 3). This result demonstrates the specificity of the diseaseQUEST 
approach in identifying disease-specific genes.

bcat-1 and neurodegeneration
One of the most severe age-related curling defects was caused by 
adult-specific knockdown of bcat-1 (Fig. 5a,b and Supplementary 
Fig. 4), a BCAA transferase that is required for development30 but 
has not been previously linked to PD. BCAT1 catalyzes the first step 
in the catabolism of BCAAs, which play roles in glutamate metabo-
lism, mTOR signaling, obesity, and diabetes31–33. In C. elegans, bcat-1 
knockdown in wild-type adults was previously found to increase the 
endogenous accumulation of BCAAs (valine, leucine, and isoleucine) 
and to extend lifespan34, as we also observed. We treated wild-type 
(N2) animals (whose neurons are refractory to RNAi) with bcat-1 
short interfering RNA and found that curling was not induced, in con-
trast to the phenotype observed in neuronal-RNAi-sensitive worms, 
thus suggesting that the curling defect is due to bcat-1 downregulation 
in neurons (Fig. 5c and Supplementary Fig. 5). These findings are 
consistent with a role of bcat-1 in neuron-related disorders.

The possible role of BCAA metabolism in PD is intriguing. 
Although this role was not previously characterized in relation to 
PD, an analysis of Allen Brain Atlas data revealed that BCAT1 expres-
sion is high in PD-susceptible brain regions of healthy individu-
als (Fig. 5d, Supplementary Fig. 6 and Supplementary Data 15), 
whereas BCAT1 is significantly diminished in the substantia nigra in 
patients with sporadic PD26 (FDR = 0.0227; Fig. 5e). Furthermore, 
the levels of BCAAs in the urine of patients with PD correlate with 
disease severity35, and high levels of BCAAs may be damaging to 
neuron function36. Strikingly, adults with maple syrup urine disease 
(which results in high BCAA levels) experience movement disorders, 
including parkinsonism37, and exhibit loss of dopaminergic neurons 
in the substantia nigra and pontine nuclei38. In contrast, decreased 
BCAAs have been found to improve metabolic health in both mice 
and humans39,40, although motor and cognitive function were not 
tested in those studies.

bcat-1 decrease promotes dopaminergic neurodegeneration in 
a C. elegans model of PD
To further examine the role of bcat-1 in PD phenotypes, we used 
a well-established C. elegans model of dopaminergic neurode-
generation41. α-synuclein has been linked to PD both genetically  
and pathologically42, and worms expressing human α-synuclein 
in dopaminergic neurons exhibit progressive loss of dopamine  
neuron cell bodies and neurites43–45. Therefore, we tested whether 
bcat-1 RNAi influenced α-synuclein-mediated dopaminergic neu-
rodegeneration. Knockdown of bcat-1 in α-synuclein-expressing 
worms increased the loss of dopaminergic cell bodies and neur-
ites, and caused the remaining neurites to become irregularly  
shaped (Fig. 5f,g and Supplementary Fig. 7). These results  
suggest that bcat-1 exacerbates the effect of α-synuclein in  
dopaminergic neurons.

Our results demonstrated an association of bcat-1 with the major 
features of PD: (i) progressive, age-related motor dysfunction and (ii) 
degeneration of dopaminergic neurons in the context of α-synuclein 
toxicity. The presence of these features suggests that our model is 
specifically relevant to PD. Moreover, our findings suggest that BCAA 
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metabolism may provide an as-yet-unidentified link between seem-
ingly disparate neuropathologies in PD.

DISCUSSION
Here, we demonstrated the effectiveness of our diseaseQUEST frame-
work for integrative, cross-species analysis of disease-associated genes 
in revealing mechanisms underlying 25 human diseases and traits. 

Our framework revealed important underlying biological mecha-
nisms that can now be investigated in mammalian systems, such as 
the role of bcat-1 in PD.

Although we used reported GWAS genes for longevity and PD, 
as well as the C. elegans model system as a proof of principle, one 
of the primary advantages of this framework is its modularity.  
diseaseQUEST can be readily applied to any disease and any model 
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system (for example, mouse, fly, or zebrafish) for which a relevant 
high-throughput assay can be developed (Supplementary Note). 
This extensibility is critical, because researchers may prefer different 
model organisms depending on disease relevance and experimental 
convenience. For example, an entorhinal cortex–specific network 
in mice could be combined with Alzheimer’s disease GWAS46,47 to 
generate candidate AD genes by using a Phenotypic Assay module 
of novel object recognition48. Alternatively, a pronephron-specific 

network in zebrafish combined with cardiac arrhythmia GWAS stud-
ies49 and a heart-rate assay50 could be used to identify hypertension 
gene candidates. As network-based approaches to prioritize candidate 
disease genes continue to improve, the Disease Prediction module 
can also be updated to use state-of-the-art methods. A notable addi-
tional observation from our analysis, especially the longevity study, 
for which detailed experimental characterization of the process in 
worms is available, is that although not all GWAS-identified genes 
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are truly causal, as a group they possess strong signal that enables 
identification of novel disease candidates, including tissue-specific 
aspects of their biology.

Overall, our results underscore the importance of systematically 
integrating computational methods with experimental approaches, as 
well as combining experimental tools in model organisms, such that 
high-throughput behavioral analyses can be performed along with 
large-scale studies in human genetics, to further the understanding 
of complex diseases.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
We integrated 174 genome-level data sets spanning 56,179 expression- and 
interaction-based measurements from more than 3,578 publications in 
addition to small-scale expression assays derived from approximately 2,400 
publications, thus generating 203 tissue- and cell-type-specific networks for  
C. elegans. A semisupervised data-integration method based on regularized 
Bayesian integration was developed to perform data integration. Each of the 
203 networks was evaluated for tissue and functional signal. Worm tissue 
networks relevant to tissue-specific diseases represented in the GWAS Catalog 
were used to predict candidate disease genes, and top gene predictions for PD 
were screened via thrashing assays.

Data-compendium assembly. We downloaded and processed 24,270 physi-
cal-interaction results (based on more than 155 publications), 29,173 genetic 
interaction results (based on 3,258 publications), and 166 worm microar-
ray data sets (consisting of 2,736 microarray experiments). Processed data-
set values were discretized into representative bins for efficient storage  
and learning.

Physical-interaction data were downloaded from BioGRID52, IntAct53, and 
MINT54. Data from each database were separately discretized into four bins 
(0, 1, 2, and ≥3), depending on the number of experiments that supported 
presence of the corresponding interaction. Genetic-interaction data were 
downloaded from WormBase (WS241)55. For each pair of genes, the Fisher 
z-transformed Pearson correlation of interaction profiles (presence/absence 
of genetic interactions across all other genes) was calculated and discretized 
into one of the following seven bins: (−, −0.1), [−0.1, 0), [0, 0.1), [0.1, 0.25), 
[0.25, 0.5), [0.5, 0.75), or [0.75, ).

Experimentally defined transcription factor (TF)-binding sites were down-
loaded from JASPAR56, and the (1 kb) upstream region of each gene was 
scanned for the presence of TF-binding-site motifs with the MEME software 
suite57. For each pair of genes, the Fisher z-transformed Pearson correlation 
of TF binding profiles was calculated and discretized into one of the follow-
ing seven bins: (−, −1.5), [−1.5, −0.5), [−0.5, 0.5), [0.5, 1.5), [1.5, 2.5), [2.5, 
3.5), or [3.5, ).

Gene expression data sets were downloaded from the Gene Expression 
Omnibus (GEO) data repository58 maintained by NCBI. After duplicate sam-
ples were collapsed, genes with values missing in >30% of the samples were 
removed, and all other missing values were imputed as described in ref. 59. 
After normalization of expression within each gene per data set, the product of 
normalized expression scores per pair of genes in each sample was calculated 
and discretized into one of the following seven bins: (−, −1.5), [−1.5, −0.25), 
[−0.25, 0.25), [0.25, 1.5), [1.5, 2.5), [2.5, 3.5), or [3.5, ).

Semisupervised data integration and network evaluation. Construction of 
global functional-interaction gold standard. The global (tissue-naïve) func-
tional-interaction gold standard was constructed on the basis of coannotation 
(or absence thereof) of genes to expert-selected biological process terms from 
GO51 according to whether the term would be verifiable through specific 
molecular experiments. For each of the 309 selected terms, we obtained all 
GO annotations with experimental-evidence codes (i.e., EXP, IDA, IPI, IMP, 
IGI, and IEP).

Gene pairs coannotated to any of the selected terms (after propagation) 
were considered positive examples of the presence of a functional relation-
ship. Gene pairs lacking coannotation to any term were considered negative 
examples, except in cases in which the two genes were separately annotated 
to highly overlapping GO terms (hypergeometric P < 0.05) or coannotated to 
other higher-level GO terms that might still indicate the possible presence of 
a functional relationship60. The additional criteria were added to decrease the 
number of potential false negatives, and any gene pair that met either condition 
was excluded from the gold standard.

Construction of a tissue–gene expression standard. Gene annotations to 
tissue and cell type were obtained from curated anatomy associations from 
WormBase (WS241)55, as well as annotations from the C. elegans Tissue 
Expression Consortium61 and other small-scale expression analyses, as curated 
in ref. 62. No microarray or RNA-seq results were included in the tissue–gene 
gold standard. All annotations were mapped and propagated on the basis 
of the WormBase anatomy ontology, and only sufficiently well understood  

tissues (in terms of gene expression) were retained (more than ten direct 
gene annotations). A ‘tissue-slim’ was also defined to categorize the resulting 
tissues. These were system-level anatomy terms in the WormBase anatomy 
ontology (immediate children of ‘organ system’ and ‘sex-specific entity’, under  
‘functional system’).

Incorporation of tissue specificity into a functional gold standard. To con-
struct a tissue-specific functional gold standard for each tissue, we labeled 
each gene appearing in either positive or negative example gene pairs in the 
global functional gold standard with any known tissue annotations in the 
tissue–gene expression standard. An overlay of tissue–expression implies 
three possible types of edges for each gene pair in each tissue: between 
two genes both expressed in the tissue, bridging a gene expressed in the 
tissue and a gene expressed elsewhere, or exterior to genes in that tissue 
(i.e., neither gene has been annotated to the tissue). Because the goal of 
tissue-specific functional networks is to predict functional relationships 
between genes that are coexpressed in the tissue, positive examples in the 
tissue-specific functional-relationship gold standard included only between 
edges for positive examples of functional relationships. Negative examples of 
tissue-specific functional relationships included a combination of the other 
edge types, i.e., all three edge types among negative functional examples 
(between, bridging, and exterior), as well as bridging and exterior edges 
(relative to the current tissue) among positive functional examples from 
other tissues.

Supplementation of tissue-specific gold standard by using previously unla-
beled features. The tissue-specific functional gold standard was further sup-
plemented by gene pairs that did not meet the stringent requirements of being 
present in the global functional gold standard as a positive example and being 
a between edge, where both genes are annotated to the tissue. The two com-
ponents of our definition for a positive example of a tissue-specific functional 
interaction were satisfied as follows:

1. Functional interaction: there is a predicted functional interaction with 
high probability in the global functional network.

2. Tissue coexpression: the predicted tissue–gene expression (based on 
expression compendium)61 of both genes in a gene pair indicates probable 
expression in the tissue.

Each gene pair is thus assigned a weight representing the predicted prob-
ability of being a true-positive example of a tissue-specific functional rela-
tionship:

w i G j G FRij t t ij= ∈ ∈ =Pr( )Pr( )Pr( )1 , for genes i and j, with Gt as the set of 
genes expressed in tissue t, and FRij = I(functional relationship between genes 
i and j), where I is an indicator function.

For genes known to be in the gold standard and functionally interacting, 
it is clear that: Pr( ) Pr( ) Pr( )i G j G FR wt t ij ij∈ = ∈ = = ⇒ =1 1; for all other gene 
pairs, 0 1≤ ≤wij .

Data integration considering new features. Each tissue-specific functional 
network was learned by our semisupervised regularized Bayesian integra-
tion method. More specifically, we trained a naïve Bayesian classifier (while 
considering weights) for each tissue with a binary class node representing 
the indicator function for a functional relationship between a pair of genes 
conditioned on additional nodes representing each of the aforementioned data 
sets. The global and fully supervised tissue-specific regularized functional 
integrations were generated as described previously63 (for the fully supervised 
tissue-specific networks, unweighted tissue-specific gold standards were used 
in lieu of the global gold standard).

The regularized posterior probability of a tissue-specific functional rela-
tionship generated from our semisupervised method for any gene pair i and 
j was calculated as follows:
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where TFRij = I(tissue-specific functional relationship between genes i and j), 
where I is an indicator function; Dij

k  is the kth data set for which both genes i 
and j have data, and dij

k  is the actual experimental value for genes i and j.
The typical Pr( | )D d TFRij

k
ij
k

ij= =1  term in the naïve Bayes equation has 
been replaced with a weighted data-set probability function for purposes of 
regularization:
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Here, η is a pseudocount constant (set to 3 in our integration, as done 
previously)63, |Dk| is the number of discretization levels for data set Dk, and 
wij is the previously described gold-standard weight. Uk is the data-set mutual- 
information criterion for any data set Dk, with Ipairs∈negative(Dk;Di) as the 
mutual information between data sets Dk and Di for any gene pairs that are 
negative examples of functional interactions (on the basis of the tissue-naïve 
functional gold standard), and H(Dk) as the entropy of data set Dk.

Regularization was necessary because large-scale genomics data sets typi-
cally violate the assumption of conditional independence for naïve Bayes clas-
sifiers. As in ref.63, we calculated the nonbiological conditional dependency 
between data sets and weighted them accordingly, to minimize the negative 
effects of violating the conditional-independence assumption.

After training the Bayesian classifier for each tissue, we used each model 
to estimate the probability of tissue-specific functional interactions between 
all pairs of genes represented in the data compendium. Implementation of 
these integration procedures used the Sleipnir library for functional genom-
ics64, in which the weighted integration procedure has been added and is now 
publicly available.

Isotonic-regression adjustment of network probabilities. To further mitigate 
the effect of violating the conditional independence assumption for naïve 
Bayes classifiers (which results in posterior probability estimates being pushed 
toward 0 and 1), we used isotonic regression to calibrate the probabilities 
output by our method, as described in ref. 65.

Evaluation of tissue-specific functional relationships. We evaluated the global 
and all tissue-specific functional networks (with and without semisupervised 
learning) by using a random gene holdout (one-third of all genes) from the 
gold standard. Thus, for the global and tissue-specific functional networks 
trained without using unlabeled edges, all gene pairs for which either gene was 
present in the holdout were excluded from training. For the semisupervised 
tissue-specific functional networks, the same group of genes was held out at 
all stages of training (i.e., from the steps leading to the weighting of previ-
ously unlabeled features, including the tissue–gene expression standard for 
tissue–gene expression predictions and the functional-interaction standard 
used to generate the functional-interaction predictions). The set of gene pairs 
used for evaluation were pairs for which both genes were present in the hold-
out. All networks were evaluated on the basis of their AUROC.

Evaluation of tissue-specific functional networks generated by using pro-
gressively smaller subsamples (proportions: 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 
0.2, 0.4, 0.6, and 0.8) of the full worm compendium showed that our network-
construction method was robust to data-compendium size (Supplementary  
Fig. 8). Similarly, networks of progressively smaller subsamples of prior 
knowledge (i.e., tissue gene annotations; proportions: 0.05, 0.1, 0.15, 0.2, 0.4, 
0.6, and 0.8) showed that the approach is powerful in situations with limited  
prior knowledge.

Human GWAS gene prediction. Reported genes for GWAS represented in 
the GWAS Catalog11 were aggregated, and functional analogs were identi-
fied in worms10. When possible, GWAS diseases were mapped to the Disease 
Ontology. For each disease, the worm functional analogs were used as posi-
tive examples. Orthologs of all other genes reported in the GWAS Catalog 
(excluding genes reported in the same disease category, on the basis of the 
Disease Ontology slim) were used as negative examples. Each disease with 
a biologically relevant tissue network and at least five positive examples in 
its gold standard was retained. We then used this gold standard along with 
the relevant tissue network as features to predict additional disease genes, 
by using our previously validated network-based SVM prediction method66. 
SVM scores were converted to fold-over-random scores by first calculating 

probabilities with the Platt method67, then dividing the probability by the prior 
probability of candidate-gene prediction (based on the number of positives 
and negatives in the corresponding gold standard).

Clustering the top PD candidates in the dopaminergic neuron network. 
We created a dopaminergic neuron subnetwork, in which nodes were all 
PD candidate-gene predictions with a probability greater than twofold over 
random of being PD associated, and clustered the corresponding shared 
k-nearest-neighbors (SKNN) network by using the Louvain community-
finding algorithm68. Given any graph, we calculated the SKNN network 
by transforming each edge weight to the number of shared top k-nearest- 
neighbors (on the basis of ranking all neighbors by the original weights) 
and took the subnetwork defined by the top 5% of these edge weights. The 
Louvain algorithm was then used to cluster the resulting network. We used 
k = 50 for the clustering presented here but confirmed that the clustering 
was robust for k between 10 and 100. Furthermore, we subsampled 90% of 
the nodes and repeated the Louvain algorithm 1,000 times. For each pair of 
genes, a cluster co-membership score was calculated according to the propor-
tion of times the pair was partitioned to the same cluster. Pairs of genes with 
co-membership scores ≥0.2 are shown in Figure 4, in which the layout (by 
using gephi69) is based on the edge weights ≥0.65 in the dopaminergic neuron 
network. The layout was robust to different co-membership scores and edge-
weight cutoffs. The enrichment in GO biological process and WormBase 
phenotype terms in each cluster was calculated by using one-sided Fisher’s 
exact tests, with Benjamini–Hochberg multiple hypothesis testing correction 
to calculate the FDR.

Selection of PD genes for further experimental validation. After ranking 
of the gene predictions for PD, the list of genes was filtered for any genes with 
known human orthologs. Any genes with a chance greater than twofold over 
random of being a PD-associated gene were split into three tiers (in which 
each gene–ortholog pair would appear in only the highest matching tier; for 
example, if gene a–ortholog a was in Tier 1, even if it met the criteria for Tier 
2 or 3, it would not be included in those tiers):

Tier 1. The worm gene is annotated to be neuron expressed by WormBase, 
and at least one of its human orthologs is annotated to be brain expressed by 
HPRD

Tier 2. The worm gene is expressed in a neuron-specific RNA-seq library29, 
and at least one of its human orthologs is annotated to be brain expressed by 
HPRD.

Tier 3. The worm gene is either annotated to be neuron expressed by 
WormBase or is expressed in the neuron-specific RNA-seq library, and at 
least one of its human orthologs is expressed in many brain expression samples 
(as determined by the Gene Expression Barcode70).

Thrashing screen for age-related motor defects. RNAi clones were obtained 
from the Ahringer RNAi library. Candidate PD-related genes were tested for 
thrashing abnormalities at days 2, 5, and 8 of adulthood. Strain LC108 was 
synchronized from eggs onto HG plates seeded with OP50. At the L4 larval 
stage, worms were transferred via pipetting onto RNAi-seeded, IPTG-induced 
HG plates containing carbenicillin, IPTG, and 0.05 mM FUdR. Worms were 
transferred onto fresh RNAi-seeded HG plates on days 3 and 5 of the assay. 
Thrashing tests were performed as previously described28. Briefly, approxi-
mately four worms were picked at one time into a 10-µL drop of M9 buffer on 
a microscope slide. 30-s videos were captured with an ocular-fitted iPhone 5 
camera attached to a standard dissection microscope via an Arcturus Magnifi 
mount. Between 50 and 700 worms were imaged on each day for each strain 
tested. Images were captured with inverted colors, i.e., white worms on a black 
background, as required by the CeleST processing suite.

C. elegans strains. C. elegans strains were grown on nematode growth medium 
(NGM) plates seeded with OP50 Escherichia coli and maintained at 20 °C. 
The following strains were used in this study: wild-type worms of the N2 
Bristol strain, LC108 uIs69 (myo-2p::mCherry, unc-119p::sid-1), TU3311 
uIs60 (unc-119p::sid-1, unc-119p::yfp), CQ495 vsIs48 (unc-17p::gfp); uIs69  
(myo-2p::mCherry, unc-119p::sid-1), CQ435 vtIs7 (dat-1p::gfp); uIs69  
(myo-2p::mCherry, unc-119p::sid-1), CQ492 vtIs7 [dat-1p::g fp]; vIs69  
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[pCFJ90 (myo-2p::mCherry + unc-119p::sid-1)], and CQ434 baIn11 [dat-1p:: 
α-syn; dat-1p::gfp]; vIs69 [pCFJ90 (myo-2p::mCherry + unc-119p::sid-1)].

CeleST. Captured videos were analyzed for a variety of motility characteristics 
via CeleST Worm tracker software28. Individual frames were extracted, and 
images were converted to grayscale and sharpened via ImageMagick (http://
www.imagemagick.org/script/index.php/). After the user defined the bounding 
box for each video, CeleST automated the identification of individual worms 
and their procession throughout each image batch, as well as denoting periods 
in which confounding factors (such as worm overlap or disappearance from 
frame) led to censoring of the frames. Thereafter, a manual check of each worm 
was performed, in which the time course of each worm was displayed, and 
the user confirmed or rejected the software’s judgment for each defined block 
of time. The output of CeleST provides quantitative analysis of ten separate 
aspects of worm motility on an individual and collective basis.

RNAi treatment. For individual RNAi experiments, animals were synchro-
nized from eggs through bleaching and plated on HG plates seeded with OP50. 
At day 1 of adulthood, RNAi-seeded 100-mm NGM plates containing carbe-
nicillin and IPTG were induced with 0.1 M IPTG 1 h before worm transfer. 
Adult worms were picked onto RNAi plates and incubated at 20 °C. Worms 
were transferred onto fresh RNAi plates on days 3 and 5. Approximately 100 
worms were imaged for each strain on each day of testing.

Manual curling analysis. Manual analysis of the curling phenotype was used 
to complement the CeleST software, which underestimates the percentage 
of time spent curling. The quantification was performed with a standard 
EXTECH Instruments stopwatch. The percentage of time spent in a curled 
pose, as defined by the sum of the periods in which either the head or tail 
makes contact with a noncontiguous segment, was measured for each individ-
ual worm over the span of each video. Because multiple actors were involved in 
the measurement process, minimization of subjectivity was met by comparison 
of a sample by all involved. Measurement of a single condition was equally 
distributed among actors to further account for any variance in judgment or 
precision. More than 6,000 worms were individually measured for the assays 
in Supplementary Figures 4–6.

Microscopy. Animals treated with RNAi from day 1 through day 8 of adult-
hood were mounted on 2% agarose pads in M9 and sodium azide. Images were 
captured on a Nikon Eclipse Ti inverted microscope and processed in Nikon 
NIS elements software. At least 15 worms were imaged per condition in each 
replicate. For dopaminergic (dat-1p::GFP-labeled) neurons, cell bodies of the 
six head neurons were counted, and neurite morphology was examined by 
using the projections extending from the labeled head neurons. For dopamin-
ergic neuron imaging, neuronal RNAi-sensitive worms expressing dat-1p::GFP 
and dat-1p:α-synuclein were treated with control or bcat-1 RNAi from day 1 
of adulthood. Imaging of day 6 adults was performed on a Nikon A1 confocal 
microscope at 40× magnification, and z stacks were processed in Nikon NIS 
elements software. ADE and CEP cell bodies were counted, as well as neurites 
projecting anteriorly from CEP cell bodies.

Statistics and reproducibility. In Figure 4d, the mean ± s.e.m. is shown, 
and an unpaired two-sided t-test was performed, P = 1.15 × 10–13. L4440,  
n = 165 animals. scav-1 RNAi, n = 116 animals. T = 7.812, df = 279, 95% CI 
= (9.284, 15.54).

In Figure 5a, two-way ANOVA with Sidak’s multiple-comparison test was 
performed. Control: day 2, n = 492; day 5, n = 345; day 8, n = 573. bcat-1 
RNAi: day 2, n = 675; day 5, n = 714; day 8, n = 582. Curling day 8 control 
versus bcat-1 RNAi, t = 6.829, df = 3,375, 95% CI: (−2.364, −1.139), P = 3.04 
× 10–11. Stretch day 2 control versus bcat1 RNAi, t = 3.449, df = 3,375, 95% 
CI: (−0.054, −0.0098), P = 0.00171. Stretch day 5 control versus bcat1 RNAi, 
t = 8.502, df = 3,375, 95% CI: (−0.1115, −0.06256), P < 1 × 10–15. Stretch day 
8 control versus bcat1 RNAi, t = 14.58, df = 3,375, 95% CI: (−0.156, −0.1121), 
P < 1 × 10–15.

In Figure 5c, two-way repeated-measures ANOVA with Sidak’s multiple-
comparison test was performed. Control:unc-119p::sid-1, n = 119 animals; 
bcat-1 RNAi:unc-119p::sid-1, n = 133 animals; control:wild type, n = 98  

animals; bcat-1 RNAi:wild type, n = 103 animals. Multiple comparisons: 
Control:unc-119p::sid-1 versus bcat-1 RNAi:unc-119p::sid-1, t = 7.46, df = 449, 
95% CI: (−19.87, −9.477), P = 2.699 × 10−12. Control:wild type versus bcat-1 
RNAi:wild type, t = 0.2002, df = 449, 95% CI: (5.373, 6.254), P = 0.999. bcat-1 
RNAi:unc-119p::sid-1 versus bcat-1 RNAi:wild type, t = 9.585, df = 449, 95% 
CI: (14.2, 25.02), P < 1 × 10−15.

In Figure 5g, unpaired two-sided t-tests were performed. L4440, n = 45; 
bcat-1 RNAi, n = 61. Mean ± s.e.m. Top, t = 5.446, df = 104, 95% CI: (−1.34, 
−0.06248), P = 3.46 ×10−7. Bottom, t = 5.015, df = 104, 95% CI: (−1.38, 
−0.05988), P = 2.19×10−6. ****P < 0.0001. The experiment was repeated three 
times independently and yielded similar results.

In Supplementary Figure 3d, mean ± s.e.m. are shown. Control, n = 351; 
bcat-1, n = 420; cyb-2.1, n = 287; pxl-1, n = 289; frm-2, n = 279; mre-11, n = 
272; sma-4, n = 286; snt-4, n = 305; cdh-4, n = 285; lbp-2, n = 320; ani-3, n = 
300; hcp-1, n = 264; BE0003N10.1, n = 229; let-363, n = 284; hil-3, n = 270. 
n represents the number of animals per condition. One-way ANOVA with 
Tukey’s multiple-comparison test. Control versus bcat-1 RNAi, P = 4.33 × 
10−8. ****P < 0.0001.

In Supplementary Figure 4, mean ± s.e.m. are shown, Two-way ANOVA 
with Sidak’s multiple-comparison test was performed. Control: day 2, n = 492; 
day 5, n = 345; day 8, n = 573. bcat-1 RNAi: day 2, n = 675; day 5, n = 714; day 
8, n = 582. Body wave number day 2 control versus bcat-1 RNAi, t = 3.075, df 
= 3,375, 95% CI: (−0.2648, −0.03323), P = 0.0064.

In Supplementary Figure 5a, two-way repeated-measures ANOVA with 
Sidak’s multiple-comparison test was performed. Mean ± s.e.m. are shown. 
Control:unc-119p::sid-1, n = 28 animals; bcat-1 RNAi:unc-119p::sid-1, n = 41 
animals; control:wild type, n = 24 animals; bcat-1 RNAi:wild type, n = 30 ani-
mals. Multiple comparisons: Control:unc-119p::sid-1 versus bcat-1 RNAi:unc-
119p::sid-1, t = 3.156, df = 119, 95% CI: (−18.7, −1.491), P = 0.0121. Control:
wild type versus bcat-1 RNAi:wild type, t = 0.7787, df = 119, 95% CI: (−11.98, 
6.577), P = 0.9684. bcat-1 RNAi:unc-119p::sid-1 versus bcat-1 RNAi:wild type, 
t = 3,422, df = 119, 95% CI: (2.272, 18.55), P = 0.0051.

In Supplementary Figure 5b, two-way repeated-measures ANOVA with 
Sidak’s multiple-comparison test was performed. Mean ± s.e.m. are shown. 
Control:unc-119p::sid-1, n = 75 animals; bcat-1 RNAiiunc-119p::sid-1, n = 
86 animals; control:wild type, n = 73 animals; bcat-1 RNAi:wild type, n = 
76 animals. Multiple comparisons: Control:unc-119p::sid-1 versus bcat-
1 RNAi:unc-119p::sid-1, t = 4.305, df = 306, 95% CI: (−10.68, −2.546), P = 
0.000135. Control:wild type versus bcat-1 RNAi:wild type, t = 0.8621, df = 306, 
95% CI: (−5.595, 2.847), P = 0.948. bcat-1 RNAi:unc-119p::sid-1 versus bcat-1 
RNAi:wild type, t = 4.576, df = 306, 95% CI: (2.952, 11.06), P = 000041.

In Supplementary Figure 7, unpaired two-sided t-tests were performed. 
Mean ± s.e.m. are shown. L4440, n = 45; bcat-1 RNAi, n = 61. t = 0.4156, df 
= 104, 95% CI: (−0.3112, 0.2033), P = 0.6785. The experiment was repeated 
three times independently and yielded similar results.

Code availability. The semisupervised integration procedure has been inte-
grated into our Sleipnir library for functional genomics68 (https://libsleipnir.
bitbucket.io/), the entire codebase can be downloaded from Supplementary 
Software, and we have also provide a diseaseQUEST docker image (https://
github.com/FunctionLab/diseasequest-docker/; Supplementary Note).

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The authors declare that the data supporting the findings 
of this study are available within the paper and its supplementary infor-
mation files. Source data for Figures 4a,c and 5a have been provided in  
Supplementary Data 13.
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Software and code
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Data collection Thrashing analysis was completed using the CeleST software suite (Restif et al. PLoS Comput. Biol. 2014) and described in more detail in 
Online Methods.

Data analysis The semi-supervised integration procedure has been integrated into our Sleipnir library for functional genomics64 (https://
libsleipnir.bitbucket.io/), the entire codebase can be downloaded from Supplementary Software, and we also provide a diseaseQUEST 
docker image (https://github.com/FunctionLab/diseasequest-docker, Supplementary Note 1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
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The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Source data for Figs 
4A,C, and 5A have been provided in Supplementary Table S13.
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Sample size No predetermined sample size was calculated. We tested as many animals for the control and each candidate gene as was possible due to 
handling, imaging, and analysis constraints.

Data exclusions No data were excluded from the analyses.

Replication All attempts at replication were successful and are presented.

Randomization For the thrashing-based screen, subsequent follow up of curling defects, and imaging of neurodegeneration, isogenic animals were treated 
identically until adulthood. Animals were then randomly selected onto plates containing either control or experimental RNAi. For video and 
image acquisition, animals were randomly selected from plates for analysis.

Blinding For the thrashing-based screen, the control and experimental RNAi conditions were each assigned a numeric code. The investigators were 
subsequently blinded throughout the experiment, including during RNAi treatment, video capture, and video analysis. The investigators were 
not blinded to the experimental conditions during follow-up data collection and analysis of bcat-1.
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