Space Complexity
Polynomial Space Complexity

PSPACE

- $L \in PSPACE \iff$ Exists a Deterministic Turing Machine M that Decides L using at most $O(n^k)$ Positions on the Tape.

NPSPACE

- $L \in NPSPACE \iff$ Exists a Non-Deterministic Turing Machine M that Decides L using at most $O(n^k)$ Positions on the Tape for each Path.

Theorem

- $PSPACE = NPSPACE$
Examples: Languages in PSPACE

Connected Graph -- $O(n)$

SAT -- $O(n)$

Traveling Salesman -- $O(n)$

Hamiltonian Circuit -- $O(n)$
Proofs: Languages in PSPACE

Connected Graph -- $O(n)$

Proof: Add a Bit to Keep Track of Marking

SAT -- $O(n)$

Proof: Examine All Truth Tables in Lexicographical Order

Traveling Salesman -- $O(n)$

Proof: Depth First Search

Hamiltonian Circuit -- $O(n)$

Proof: Depth First Search
Space and Time Complexity

Deterministic Polynomial

- Polynomial Time (P) implies Polynomial Space (PSPACE)
- Polynomial Space (PSPACE) does NOT imply Polynomial Time (P)

Non-Deterministic Polynomial

- Polynomial Time (NP) implies Polynomial Space (NPSPACE)
- Polynomial Space (NPSPACE) does NOT imply Polynomial Time (NP)
Space and Time Requirements for Decidable Languages

Theorem 1: Space Requirements ≤ Time Requirements

Proof: Obvious

Theorem 2: Time Requirements ≤ $O(c^{Space Requirements})$

Proof: For a Decidable Language the Turing Machine Cannot Loop.

Time Requirements ≤ Maximum Number of Possible Configurations of the Turing Machine on any Input

$$= \underbrace{Number \ of \ States}_{constant} \times \underbrace{(Number \ of \ Tape \ Configurations)}_{(Number \ of \ Tape \ Symbols)^{Space \ Requirements}} \times \underbrace{Number \ of \ Head \ Positions}_{Space \ Requirements}$$

$$\leq O(c^{Space \ Requirements})$$
Turing Machines for Decidable Languages

Properties

• Turing Machine Cannot Loop

• Maximum Number of Possible Configurations of Turing Machine on any Input is:
 \[\leq O(c^{\text{Space Requirements}}) \]

• *Time Requirements* \(\leq O(c^{\text{Space Requirements}}) \)
Savitch's Theorem

Exists a Non-Deterministic Turing Machine M that Decides L using at most $O(f(n))$ positions on the Tape

\Rightarrow

Exists a Deterministic Turing Machine M^ that Decides L using at most $O(f(n)^2)$ positions on the Tape.*

Assumptions

1. M examines the entire tape $\iff f(n) \geq n$.

2. M erases the tape and Halts in unique *accept* state.
Proof: Divide and Conquer:

- Build $\text{CanReach}(T, w, \text{conf}_1, \text{conf}_2, \text{tsteps})$ recursively

 If $\text{CanReach}(T, w, \text{conf}_1, \text{conf}_{\text{middle}}, \text{tsteps} / 2)$

 and $\text{CanReach}(T, w, \text{conf}_{\text{middle}}, \text{conf}_2, \text{tsteps} / 2)$, then TRUE, else FALSE

Base Cases: $\text{tsteps} = 0, 1$ trivial.

- By Theorem 2 there are only a bounded number of possible configurations.

 $\quad \text{maxconf} \leq O(c^{\text{Space Requirements}}) = O(c^{f(n)})$

- Recursively compute $M^* = \text{CanReach}(M, w, c_{\text{start}}, c_{\text{accept}}, t_{\text{maxconfs}})$.

 Each recursive call requires 2 Tape descriptions $= O(f(n))$ space

 Number of Recursive calls for each Path $= \log(\text{maxconf}) = O(f(n))$

- Deterministic machine M^* uses only $O\left(f(n)^2\right)$ memory.
Corollary 1: \(\text{PSPACE} = \text{NPSPACE} \)

Proof: \(\text{PSPACE} \subseteq \text{NPSPACE} \) Obvious

\(\text{NPSPACE} \subseteq \text{PSPACE} \) Savitch’s Theorem

Corollary 2: \(\text{P} \subseteq \text{NP} \subseteq \text{PSPACE} \)

Proof: \(\text{P} \subseteq \text{NP} \) Obvious

\(\text{NP} \subseteq \text{NPSPACE} = \text{PSPACE} \)
PSPACE–Complete Languages

PSPACE–Hard

- Every Language L^* in $PSPACE$ is Reducible in Polynomial TIME to L

 \[R : \{ x \in L^* \iff f(x) \in L \} \]

- L not Necessarily in $PSPACE$

PSPACE–Complete

- L is in $PSPACE$

- L is $PSPACE$–Hard
Theorem: Suppose that

i. L_1 is PSPACE–Complete

ii. L_2 is in PSPACE

iii. L_1 is Reducible in Polynomial Time to L_2

 -- Polynomial Time Mapping $R: \{x \in L_1 \iff f(x) \in L_2\}$

Then L_2 is PSPACE–Complete.

Proof: L_1 PSPACE–Complete \Rightarrow Every Language L in PSPACE is Reducible in Polynomial Time to L_1

\Rightarrow Every Language L in PSPACE is Reducible in Polynomial Time to L_2

\Rightarrow L_2 PSPACE–Complete
Reduction Proof for $PSPACE$–Completeness

L_1 $PSPACE$ – Complete

L_2 in $PSPACE$ \implies L_2 $PSPACE$ – Complete

Polynomial Time Reduction $R : \{x \in L_1 \iff f(x) \in L_2\}$

Need at Least One $PSPACE$–Complete Language to Get Started
Quantified Boolean Expressions

Definition

• Base Case: Boolean Expressions

• Exists: \(\exists P \) \(w \) \(P \) appears in \(w \) as an unbound variable

• All: \(\forall P \) \(w \) \(P \) appears in \(w \) as an unbound variable

Examples

• \(P \lor Q \lor \sim R \)

• \(\exists P (P \lor Q \lor \sim R) \)

• \(\forall R \exists P (P \land Q \land \sim R) \)
Quantified Boolean Formulas

Sentence
• Quantified Boolean Expression where ALL Variables are Bound

Examples
• $P \lor Q \lor \sim R$ NO
• $\forall R \exists P (P \land Q \land \sim R)$ NO
• $\exists Q \forall R \exists P (P \lor Q \lor \sim R)$ YES

QBF
• $\{w \mid w \text{ is a TRUE sentence}\}$
Theorem 1: QBF is in PSPACE.

Proof: Recursively evaluate the expression.

1. \(w \) Consists of All Literals (T or F) -- Simply Evaluate \(w \).

2. \(\forall P \; w \)
 - 2a. Substitute \(P = T \) and evaluate recursively
 - 2b. Substitute \(P = F \) and evaluate recursively
 \(\forall P \; w \) is in QBF if and only if both 2a and 2b evaluate to TRUE.

3. \(\exists P \; w \)
 - 2a. Substitute \(P = T \) and evaluate recursively
 - 2b. Substitute \(P = F \) and evaluate recursively
 \(\forall P \; w \) is in QBF if and only if either 2a and 2b evaluate to TRUE.

All three steps can be done in Linear Space.
Theorem 2: QBF is PSPACE–Complete.

Proof: QBF is in PSPACE (Theorem 1).

Must show QBF is PSPACE–Hard:

- Every Language \(L \) in PSPACE is Reducible in Polynomial Time to QBF

Will define \(R : L \to QBF \)

- \(M \) accepts \(w \) \(\iff \) \(R(w) \) is True

- \(M = \) Deterministic Turing Machine that Decides \(L \)

We follow Ideas in the Proof of Savitch’s Theorem.

Will use Tools from the Proof of the Cook-Levin Theorem.
Divide and Conquer

• Build \(\text{CanReach}(M, \text{conf}_1, \text{conf}_2, \text{tsteps}) \) Recursively.
 (Too Many Configurations -- Rows -- to Describe All \(\text{tsteps} \) Directly.)
 -- \(\text{conf}_1 \) and \(\text{conf}_2 \) are Described by Boolean Expressions
 (see Cook-Levin Theorem for SAT)

• \(\exists \text{conf}_{middle}(\text{CanReach}(M, \text{conf}_1, \text{conf}_{middle}, \text{tsteps} / 2) \)
 \(\land \text{CanReach}(M, \text{conf}_{middle}, \text{conf}_2, \text{tsteps} / 2) \)\)

• \(\exists \text{conf}_{middle}(\forall (c_3, c_4) \in \{(\text{conf}_1, \text{conf}_{middle}), (\text{conf}_{middle}, \text{conf}_2)\}) \)
 \(\text{CanReach}(M, c_3, c_4, \text{tsteps} / 2) \)
Configurations from Cook-Levin Theorem

Literals of $R(w)$

- $Tape(i, j, c) =$ Tape Symbol c Appears in Array Position (i, j)
- $State(i, j, q) =$ State Symbol q Appears in Array Position (i, j)

Conj #1: Symbols and States

- There is exactly one tape symbol c on the tape in every location.
- There is exactly one state symbol in each row.
Conj #1: Symbols and States

- There is exactly one tape symbol c on the tape in every location.
 -- In each tape location there is only 1 symbol
 \[T_{i,j} = (\exists c (Tape(i,j,c)) \land (\forall d \neq c (\neg Tape(i,j,d))) \]
 -- In every tape location there is only 1 symbol
 \[Tapes = \forall_{i,j} T_{i,j} \]

- There is exactly one state symbol in each row.
 -- In each tape location there is only 1 state
 \[Q_{i,j} = (\exists q (State(i,j,q)) \land (\forall p \neq q (\neg State(i,j,p))) \]
 -- For each row there is exactly 1 column where $Q_{i,j}$ is True
 \[States = \forall_{rows(i)} (\exists_{column(j)} Q_{i,j} \land (\forall_{columns(k \neq j)} \forall p \neg State(i,k,p))) \]

- Conj #1 = Tapes \land States
Analysis of Space Requirements

• Base Cases: $tsteps = 0, 1$ trivial.

• By Theorem 2 there are only a bounded number of possible configurations.
 -- $maxconf \leq O(c_{Space Requirements}) = O(c_{f(n)})$

• Recursively compute $CanReach(M, c_{start}, c_{accept}, t_{maxconf})$.
 -- Each recursive call requires 3 Tape descriptions $= O(f(n))$ space
 -- Number of Recursive Calls $= \log(maxconf) = O(f(n))$

• QBF expression constructed using only $O(f(n)^2)$ memory and time.
Sublinear Space Complexity

Two Tape Turing Machine

- Read Only Input Tape
- Read-Write Working Tape

L–*SPACE*

- $L^* \in L \iff$ Exists a 2 Tape Deterministic Turing Machine M that Decides L^* using at most $O(\log(n))$ Positions on the Second Tape.

NL–*SPACE*

- $L^* \in NL \iff$ Exists a Non-Deterministic Turing Machine M that Decides L using at most $O(\log(n))$ Positions on the Second Tape for each Path.
Observations

Examples
• Balanced Parentheses -- L-Space
• Undirected Path -- NL-Space

Hierarchy
• \(L - SPACE \subseteq NL - SPACE \subseteq PSPACE \)

Open Question
• \(L = NL ? \)

Theorems
• \(L \subseteq P \)
• \(NL \subseteq P \)
Theorem: \(L \subseteq P \)

Proof: Count configurations.

1. Number of possible positions for the read only head is \(n \).

2. Number of possible configurations of the read-write tape is:

 \[
 \text{Number of States} \times (\text{Number of Tape Configurations}) \times \text{Number of Head Positions}
 \]

 \[
 \leq O\left((\text{Space Configurations})^c\right) = O\left(\log(n)c^{\log(n)}\right) = O\left(\log(n)n^{\log(c)}\right)
 \]

 \[
 \{ c^{\log(n)} = n^{\log(c)} \}
 \]

3. Combining 1 and 2 yields a time bound of

 \[
 O\left(n\log(n)n^{\log(c)}\right) \leq O(n^k) \quad k > \log(c) + 2
 \]

 which is polynomial in \(n \).
Additional Results

1. $L \subseteq P$ (Proved)

2. $NL \subseteq P$ (Hard)

3. $L \subseteq NL \subseteq P \subseteq PSPACE$

4. $L = Co - L$ (Obvious)

5. $NL = Co - NL$ (Hard)
Space Complexity Classes

Definition
A function \(s(n) \) is space constructible if \(s(n) \) can be computed in \(O(s(n)) \) space.

* \(s : \text{unary} \rightarrow \text{binary} \)

Theorem
For any space constructible function \(s(n) \), there is a language \(L_{s(n)}^\text{Hard} \) that is deterministically decidable in \(O(s(n)) \) space, but not in \(o(s(n)) \) space.

Interpretation
More Space \(\Rightarrow \) More Languages