Computable Functions
Part I: Non–Computable Functions
Computable and Partially Computable Functions

Computable Function

- Exists a Turing Machine M
 - M Halts on All Input
 - $M(x) = f(x)$

Partially Computable Function

- Exists a Turing Machine M
 - M Does Not Halt on All Input
 - If M Halts on x, then $M(x) = f(x)$
Examples

Computable

• $f(n) = n + 1$

• Simple Turing Machine in Unary

Partially Computable

• $\text{steps}(<M, w>) = \# \text{ operations performed by } M \text{ on } w \text{ before } M \text{ Halts}$

• Simple Turing Machine
 -- Run M on w
 -- Count Operations

• Not Computable
 -- Otherwise Could Solve Halting Problem
Non Partially Computable Functions

Turing Machines is Countable

- # Turing Machines with N States = # Transition Functions
- Transition Functions = 5-tuples $(State, Symbol, State, Symbol, L/R)$
- # Turing Machines with N States = $2 \mid Q \mid^2 \mid \Sigma \mid^2$
- Countable Union of Countable Sets is Countable

Functions $N \rightarrow [0,1]$ is Uncountable

- # Functions $N \rightarrow [0,1] = # \text{Subsets of } N$
- # Subset of $N = P(N)$ -- Uncountable
- Most Functions are Not Partially Computable
Busy Beaver Problems

Problems

- $S(n) = \text{Maximum number of operations a Turing Machine with } n \text{ states can perform on a Blank tape and then Halt}$

- $\Sigma(n) = \text{Maximum number of 1’s that a Turing Machine with } n \text{ states can write on a Blank tape and then Halt.}$
Busy Beaver and the Halting Problem

Algorithm for Busy Beaver

1. Build all Turing machines with \(n \) states
 -- finite number of lists of 5-tuples
2. Run each machine on a blank tape -- universal Turing machine
3. Take the maximum value of 1’s

Observation

- Algorithm Fails because some Turing machines do not Halt
- Algorithm would work only if we could solve the Halting Problem
Theorem 1: There is no Turing Machine B that computes $S(n)$.

Proof: Suppose such a Turing Machine B did exist.

Let M be a Turing Machine with n States.

To Determine if M Halts on ε, Build the following Turing Machine:

- Using B, Compute $S(n)$
- Run M on ε
- If M Halts before $S(n)+1$ Steps, Accept
- Otherwise Reject

This Turing Machine Decides $H_{\varepsilon} = \{< M > \mid M \text{ Halts on } \varepsilon\}$

But H_{ε} is Undecidable. Hence B Cannot Exist.
Theorem 2: There is no Turing Machine B that computes $\Sigma(n)$ (in binary).

Proof: Suppose such a machine B did exist.

Let B_n be the Turing Machine with n states that starts with a blank tape, writes $\Sigma(n)$ 1’s, and Halts. Now define two new machines:

- A -- writes n in binary on a blank tape
- C -- converts binary to unary

Then

- $|A| \approx \log(n)$ (print 1, move to right, go to next state)
- $|C| = \text{constant}$ (there is an algorithm for converting binary to unary)
- $|B| = \text{constant}$

So the machine ABC takes a blank tape and writes n 1’s on the tape.

But for large n, we have $|ABC| < |B_n| = n$ Contradiction.

Hence B cannot exist.
Busy Beaver

Values

• $B(1) = 1$
• $B(2) = 4$
• $B(3) = 6$
• $B(4) = 13$
• $B(5) \geq 4098$

Observation

• $B(n) \neq O(f)$ for any computable function f
• $f \left(B(n) \right) < B(n + 1)$ for all computable f for arbitrary many values of n
Part II: Self Description and Recursion
Theorem: \textit{Min is Not Semi-Decidable.}

Proof: \textit{Min} is Semi-Decidable \Rightarrow Can Enumerate \textit{Min}

To show \textit{Min} is not Semi-Decidable:

First build $M^\#$

To Run $M^\#$ on any String w

1. Construct a Description $< M^\# >$ of $M^\#$ (Chapter 25)
2. Find a Turing Machine M' in the List for \textit{Min} with $|< M' >| > |< M^\# >|$
3. Compute $M'(w)$.

Then

4. M' in the List for \textit{Min} $\Rightarrow M'$ is a Minimal Machine
5. $M^\#(w) = M'(w) \Rightarrow M^\#$ is equivalent to M'
6. $|< M^\# >| < |< M' >| \Rightarrow M'$ NOT a Minimal Machine \text{ CONTRADICTION}
Self Description and Recursion

Problem

Construct a Turing Machine M that:

1. Writes a Description of M
2. Performs some Operations W

Observations

1. We need to know M to write a Description of M
2. But . . . the Definition of M, Depends on M!
Attempts at Self Description

Construction of M -- First Try
1. Write $\langle W \rangle$
2. Perform W
No! This Machine Describes W, not M

Construction of M -- Second Try
1. Write $\langle \langle W \rangle, W \rangle$
2. Perform W
No! This Machine Describes the Machine that
 Writes a Description of the Machine that
 Writes a Description of W and Performs W.
 Does NOT Describe M
Solution: Part I

The Turing Machine B

- On Tape #2, Write a Description of the Turing Machine A that writes the symbols already on Tape #1.
 -- Tape #1: \(s_1 s_2 \cdots s_n \)
 -- Tape #2: \(s_1 R s_2 R \cdots s_n R \)

- Copy the Contents of Tape #2 in front of the Contents of Tape #1.
 -- Tape #1: \(s_1 R s_2 R \cdots s_n R s_1 \cdots s_n \)

- Observations
 -- The Output of \(B \) Depends on the Content of Tape #1
 -- The Program for \(B \) is Independent of the Contents of Tape #1
 -- The Description of \(B \) is Independent of the Contents of Tape #1.
Solution: Part II

The Turing Machine A

- Write $<B,W>$ on Tape #1

- Observations

 -- The Program for A Depends Only on W; B is Fixed

 -- The Description of A Depends Only on W.

The Solution

- Write $<A>$, $$, $<W>$

- Perform W
Analysis of Solution

Analysis of A, B, W

- A: Writes $$, $<W>$
- B: Writes $<A>$ in front of $$, $<W>$ \Rightarrow Writes $<A>$, $$, $<W>$
- W: Perform W.

Conclusion

- A, B, W Writes a Description of A, B, W
- Performs W
Virus

Virus Program

• Write a Description of the Virus Program

• For Each Address in the Address Book
 -- Mail a Description of the Virus Program to the Address
 -- Perform Some Malicious Operations
The Recursion Theorem

Let T be a Turing Machine that Computes a Partially Computable Function
$$t(a,b) = T(a,b).$$

Then there is a Turing Machine R that Computes a Partially Computable Function
$$r(x) = T(<R>,x).$$

Proof: Description of $R(x)$:

- Write a Description $<R>$ of R
- Perform $r(x) = T(<R>,x)$
The Fixed Point Theorem

Let

- \(S = \{ <M> | M \text{ is a Turing Machine} \} \)
- \(f : S \rightarrow S \) be a Computable Function

Then there exists a Turing Machine \(F \) such that

- \(f(<F>) = <G> \)
- \(F \iff G \) (\text{\(F \) and \(G \) Behave the Same on All Inputs})

Proof: Description of \(F(x) \):

- Write \(<F> = \) a Description of \(F \)
- Compute \(<G> = M_f(<F>) = f(<F>) \)
 - \(M_f = \text{Turing Machine that Computes} \ f \)
- Run \(G \) on \(x \)
Symbols for Encoding Turing Machines

<table>
<thead>
<tr>
<th>Eleven Symbols</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>Non-Halting State</td>
</tr>
<tr>
<td>y</td>
<td>Accepting State</td>
</tr>
<tr>
<td>n</td>
<td>Rejecting State</td>
</tr>
<tr>
<td>a</td>
<td>String</td>
</tr>
<tr>
<td>L</td>
<td>Move Left</td>
</tr>
<tr>
<td>R</td>
<td>Move Right</td>
</tr>
<tr>
<td>(</td>
<td>Grouping for Transition Functions</td>
</tr>
<tr>
<td>)</td>
<td>Grouping for Transition Functions</td>
</tr>
<tr>
<td>,</td>
<td>Separator for Transition Functions</td>
</tr>
<tr>
<td>0</td>
<td>Symbol for Encoding States and String</td>
</tr>
<tr>
<td>1</td>
<td>Symbol for Encoding States and Strings</td>
</tr>
</tbody>
</table>
Godel Numbering for Special Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Godel Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>0000</td>
</tr>
<tr>
<td>y</td>
<td>0001</td>
</tr>
<tr>
<td>n</td>
<td>0010</td>
</tr>
<tr>
<td>a</td>
<td>0011</td>
</tr>
<tr>
<td>L</td>
<td>0100</td>
</tr>
<tr>
<td>R</td>
<td>0101</td>
</tr>
<tr>
<td>(</td>
<td>0110</td>
</tr>
<tr>
<td>)</td>
<td>0111</td>
</tr>
<tr>
<td>,</td>
<td>1000</td>
</tr>
</tbody>
</table>
Godel Numbering for Turing Machines

Godel Function

- \(Godel : Turing\ Machine \rightarrow N \)
 - \(< M > = \) Encoding of \(M \) = Encoding of Transition Functions
 - \(< M > = \) Long Binary String (Use Godel Numbering for Special Symbols)
- \(Godel(M) = \) Number Represented by Long Binary String Encoding \(< M > \)
- \(< M > \neq < N > \Rightarrow Godel(M) \neq Godel(N) \)
Godel Numbering for Partially Computable Functions

Godel Function

• $Godel : \text{Partially Computable Functions} \to \mathbb{N}$

 -- $F = \text{Partially Computable Function}$

 -- $M_F = \text{Turing Machine with Lowest Godel Number that Computes } F$

• $Godel(F) = Godel(M_F)$

• $\varphi_k = \text{Partially Computable Function with Godel Number } k$
The s–m–n Theorem

Let \(k = \text{Godel Number of a Partially Computable Function with } m+n \text{ arguments.} \)

Then there Exists a Computable Function \(s_{m,n} \) such that

1. \(j = s_{m,n}(k,u_1,\ldots,u_m) \) is the Godel Number of a Partially Computable Function

2. \(\phi_j(y_1,\ldots,y_n) = \phi_k(u_1,\ldots,u_m,y_1,\ldots y_n) \)

Proof: Define Turing Machine \(M_{m,n} \) to Compute \(s_{m,n} \):

\[
M_{m,n}(k,u_1,\ldots,u_m):
\]

- Construct \(M_j(w) \):
 - Write \(u_1,\ldots,u_m \) to the Left of \(w \)
 - Move Head to Left of \(u_1 \)
 - Apply \(\phi_k \)
- Return \(j \)