
Parallel Algorithms for Masked Sparse Matrix-Matrix Products
Srđan Milaković

Rice University

Houston, TX, USA

sm108@rice.edu

Oguz Selvitopi

Lawrence Berkeley Nat. Laboratory

Berkeley, CA, USA

roselvitopi@lbl.gov

Israt Nisa

AWS AI

Palo Alto, CA, USA

nisisrat@amazon.com

Zoran Budimlić

Rice University

Houston, TX, USA

zoran@rice.edu

Aydın Buluç

Lawrence Berkeley Nat. Laboratory

Berkeley, CA, USA

abuluc@lbl.gov

ABSTRACT

Computing the product of two sparse matrices (SpGEMM) is a fun-

damental operation in various combinatorial and graph algorithms

as well as various bioinformatics and data analytics applications

for computing inner-product similarities. For an important class of

algorithms, only a subset of the output entries are needed, and the

resulting operation is known as Masked SpGEMM since a subset of

the output entries is considered to be “masked out”.

Existing algorithms forMasked SpGEMMusually do not consider

mask as part of multiplication and either first compute a regular

SpGEMM followed by masking, or perform a sparse inner product

only for output elements that are not masked out. In this work,

we investigate various novel algorithms and data structures for

this rather challenging and important computation, and provide

guidelines on how to design a fast Masked-SpGEMM for shared-

memory architectures. Our evaluations show that factors such as

matrix and mask density, mask structure and cache behavior play

a vital role in attaining high performance for Masked SpGEMM.

We evaluate our algorithms on a large number of real-world and

synthetic matrices using several real-world benchmarks and show

that our algorithms in most cases significantly outperform the state

of the art for Masked SpGEMM implementations.

ACM Reference Format:

Srđan Milaković, Oguz Selvitopi, Israt Nisa, Zoran Budimlić, and Aydın

Buluç. 2022. Parallel Algorithms for Masked Sparse Matrix-Matrix Products.

In 51st International Conference on Parallel Processing (ICPP ’22), August
29-September 1, 2022, Bordeaux, France. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3545008.3545048

1 INTRODUCTION

Masked sparse-sparse matrix multiplication (Masked SpGEMM) is

the problem of computing the product of two sparse matrices only

for the set of entries given by the nonzero structure of the mask. The

mask can be thought as a sparse matrix whose pattern determines

which elements should exist in the output matrix. While the first

use of this primitive was in the context of triangle counting [3], its

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICPP ’22, August 29-September 1, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9733-9/22/08.

https://doi.org/10.1145/3545008.3545048

applications include any multi-source graph traversal where the

mask serves as a filter to avoid rediscovery of previously discovered

vertices. A canonical example is the multi-source betweenness

centrality as implemented in GraphBLAS C API [12]. Recently,

Etter et al. [22] showed how to accelerate tree-based inference

methods using masked SpGEMM.

The existence of a mask in the multiplication introduces new

optimization opportunities as well as challenges. A simple way to

performMasked SpGEMM is to compute the multiplication as if the

mask does not exist and then apply the mask to the output matrix,

which causes unnecessary computation if the overlap between

the output matrix and the mask is low (see Figure 1). The mask

needs to be considered as part of the multiplication to attain good

performance, which is the focus of this work.

Most parallel SpGEMMmethods rely onGustavson’s algorithm [27],

in which a row or a column of the output matrix is computed by ac-

cumulating the partial results produced by scaling rows or columns

of one of the input matrices. Important design aspects of this al-

gorithm, such as parallelization granularity, data structures (i.e.,

accumulators) used in the merging of partial results or whether to

include a symbolic multiplication phase to determine the pattern

of the output matrix, need to be reconsidered when a mask is part

of the equation, even calling into question the viability of this algo-

rithm for certain cases. Consider the computation of a row of the

output matrix in which a considerable amount of flops is spent to

get the result. If the mask does not require most of the entries in that

row of the output matrix, one can avoid unnecessary computations

by computing the unmasked entries with inner products instead of

accumulating the scaled rows. Moreover, many graph algorithms

rely on operations involving the complement of the mask, which is

a way to express avoiding already visited nodes. This adds another

design and optimization dimension to the Masked SpGEMM. Hence,

not only the specific details of established SpGEMM algorithms

must be reexamined for Masked SpGEMM, but also the viability

of other less frequently-utilized algorithms and new issues arising

because of masking.

Our code implementing our algorithms and data structures is

available at https://github.com/PASSIONLab/MaskedSpGEMM.

Our contributions in this paper are:

• Wedescribe push- and pull-based algorithms forMasked SpGEMM,

and analyze/compare their memory behaviors.

https://doi.org/10.1145/3545008.3545048
https://doi.org/10.1145/3545008.3545048
https://github.com/PASSIONLab/MaskedSpGEMM

A B AB

mask mask ⊙ AB

plain

masked

Figure 1: Plain vs. Masked SpGEMM. The masked output en-

tries need not be computed. Also, mask may contain entries

for which the multiplication does not produce an output.

• We design four different data structures to be used as accumu-

lators in Masked SpGEMM: (i) Hash, (ii) Masked Sparse Accu-

mulator, (iii) Masked Compressed Accumulator, and (iv) Heap.

The Masked Compressed Accumulator is a novel accumulator we

specifically designed for Masked SpGEMM, while the remaining

three are enhancements to the accumulators utilized in plain

SpGEMM.

• Wediscuss how to adapt these accumulators forMasked SpGEMM

where the mask is complemented.

• In SpGEMM, a symbolic phase is often performed to compute

the pattern of the output matrix prior to the numeric phase. We

review the tradeoffs of including a symbolic phase when mask is

part of the SpGEMM.

• We conduct extensive experiments on both synthetic and real-

world matrices using graph processing applications to reveal the

best design choices for a fast Masked SpGEMM.

2 BACKGROUND AND NOTATION

SpGEMM forms the computational backbone of many applications

in linear algebra [7, 10, 26] and graph processing [3, 13, 25, 36–

39]. This paper targets the performance of masked SpGEMM for

graph processing as it is where the masked variant of SpGEMM is

mainly utilized. Many graph algorithms can be expressed in terms

of computations on sparse matrices due to the duality between

graph and matrices. Linear-algebraic formulations of these graph

algorithms are often hampered by the lack of fast masked SpGEMM

algorithms and implementation [1, 29]. Hence, our work is a step

forward in making GraphBLAS-based implementations of these

algorithms competitive with the state of the art In this direction,

GraphBLAS [12] is an effort to standardize the graph algorithm

primitives in the language of linear algebra with an extended set of

algebraic objects including semirings, upon which common sparse

matrix computations such as SpMV or SpGEMM can be generalized.

We denote the Masked SpGEMMwith C = M⊙ (AB) on a semir-

ing, whereM ∈ S𝑚×𝑛 is the mask, A ∈ S𝑚×𝑘 and B ∈ S𝑘×𝑛 are the

input sparse matrices, and C ∈ S𝑚×𝑛 is the output sparse matrix.

Although the graph algorithms evaluated in this work utilize vari-

ous semirings, we use the arithmetic semiring in our algorithms

to keep the discussions simple. A𝑖 𝑗 denotes a nonzero element of

A, and A𝑖∗ and A∗𝑗 respectively denotes 𝑖th row and 𝑗th column

of A. Note that we only utilize the pattern of the mask in Masked

SpGEMM, hence the values in the mask are not evaluated and the

Algorithm 1 Row-parallel Gustavson SpGEMM [27]

Input: Sparse matrices A, B
Output: Sparse matrix C
1: for each row A𝑖∗ in matrix A in parallel

2: for each nonzero A𝑖𝑘 in row A𝑖∗
3: for each nonzero B𝑘 𝑗 in row B𝑘∗
4: 𝑣𝑎𝑙𝑢𝑒 ← A𝑖𝑘 · B𝑘 𝑗
5: if C𝑖 𝑗 ∉ C𝑖∗ then
6: insert (C𝑖 𝑗 ← 𝑣𝑎𝑙𝑢𝑒) to C𝑖∗
7: else

8: C𝑖 𝑗 ← C𝑖 𝑗 + 𝑣𝑎𝑙𝑢𝑒

type of the mask elements does not matter. We denote a vector with

lowercase letters, i.e., v, and an element of a vector is denoted with

v𝑖 . We use the function nnz(·) to denote the number of nonzero ele-

ments in a matrix/vector, ncols(·) to denote the number of columns

in a matrix/vector, and flops(·) to denote the number of floating

point operations in a sparse matrix operation.

In our analyses, we assume that nnz(A), nnz(B), nnz(M) ≫ 𝑍 ,

where 𝑍 is the size of the last-level cache. For simplicity, we assume

that a cache line can hold𝐿words, and that integers used in indexing

and values used to store data are all the same size of a single word.

2.1 Storage Formats

Most popular formats for storing sparse matrices are Compressed

Sparse Row (CSR), Compressed Sparse Column (CSC), Coordinate,

and Doubly-Compressed Sparse Row/Column (DCSR/DCSC). In

this work, we use the CSR format inmost cases, with CSC only being

used in a single case to improve performance of the inner product.

We use CSR format for storing the mask. The CSR (CSC) format

uses three arrays to store a sparse matrix: an array containing row

(column) index pointers, an array containing column (row) indices

of nonzeros, and an array containing values of nonzeros.

2.2 Design Issues and Challenges

There are four challenges to designing an efficient parallel SpGEMM

algorithm running on multi-core systems: (i) irregular and random

memory accesses when retrieving rows or columns of a sparse

matrix, (ii) designing an accumulator to merge the partial results

(if any), (iii) determining the pattern of the output matrix, and (iv)

load imbalance. SpGEMM algorihms usually access the rows or

columns of the sparse matrices randomly and this causes SpGEMM

operation to be memory-bound rather than compute-bound, and

often results in poor cache behavior. The addition of a mask to the

SpGEMM only exacerbates these challenges.

A large portion of SpGEMM algorithms necessitate a data struc-

ture to accumulate the partial results to get the output matrix en-

tries. For example in algorithms that rely on Gustavson’s algo-

rithm [27], they may be used to accumulate the products in scaled

rows/columns that correspond to the same output entry (Algo-

rithm 1). Among common accumulators are sparse arrays [24, 35]

(SPA), heaps [2, 30], and hash tables [19, 34]. We investigate how

to enhance these accumulators for Masked SpGEMM and propose

a novel accumulator specifically designed for Masked SpGEMM.

Another issue is the unknown size and structure of the output

matrix, which renders memory management difficult for the output

2

matrix. Thus, SpGEMM algorithms sometimes perform two passes

to complete the multiplication: the first pass to figure out the size

and structure of the output matrix, referred to as the symbolic phase,
and the second pass to compute its entries, referred to as the numeric
phase. These are known as the two-phase algorithms, as opposed to

the one-phase algorithms which allocate a large-enough memory at

the beginning and perform the multiplication in a single numeric

phase. Because the pattern of the mask partially determines the

structure of the output matrix (note that the mask may contain

unmasked entries for which there is no output entry), so one can

possibly utilize the mask as a good starting point to approximate

the size and the structure of the output. This can potentially render

two-phase algorithms obsolete, a point we investigate in this work.

3 RELATEDWORK

SuiteSparse:GraphBLAS (SS:GB), which is the fastest compliant

GraphBLAS implementation on multicore processors, initially used

a dot-product algorithm for most masked SpGEMM calls [4]. Its

most recent version [17] also implements various hash-based and

SPA-based codes that exploit mask. As a complete library, SS:GB

supports multiple sparse matrix data structures, concepts such as

“pending tuples” and “zombies” to take advantage of lazy evaluation

in non-blocking mode of GraphBLAS, and graph specific optimiza-

tion such as iso-valued matrices where all nonzero entries in the

matrix have the same value. Therefore, it is not reasonable to per-

form an apples-to-apples comparison with our work, which focuses

on algorithmic differences among various methods for performing

masked SpGEMM. We are instead going to highlight the differences

between our masked SpGEMM algorithms and those implemented

in the latest version of SS:GB.

The GrB_mxm function of SuiteSparse:GraphBLAS, which covers

the case of Masked SpGEMM, works with 4 different matrix formats:

sparse, hypersparse, bitmap, and dense. The sparse case uses either

the CSR or CSC formats. The hypersparse case uses either DCSR

or DCSC [11]. Our work is focused on the CSR format to isolate

the algorithmic trade-offs involved in Masked SpGEMM. Our algo-

rithms do not parallelize the formation of individual rows as we

observed that there is plenty of coarse-grained parallelism across

rows to avoid any load imbalance on the multi-core processors

available today. The only other Masked SpGEMM implementation

we are aware of is the GPU implementation from the GraphBLAST

library [41], which is based on dot products.

4 CLASSIFICATION OF ALGORITHM

FAMILIES

Our work on masking out certain entries of the output in sparse ma-

trix computation has its primary motivations in the area of graph

processing. In particular, the concept of masking has been first

applied to sparse-matrix-vector multiplication to implement the

direction-optimized graph traversal [40]. The direction-optimization [6]

is also known as push-pull [8] in the graph processing community.

The standard way of processing a graph involves a frontier of active

vertices that “pushes” information to their out-neighbors. The pull

operation happens when the non-active (or previously unvisited,

depending on the application) vertices “pull” information from their

in-neighbors.

This analogy with graph processing allows us to provide a clas-

sification of Masked SpGEMM algorithms into two main classes.

The pull-based algorithms are those whose computation is mainly

driven by the mask. For each potential entry C𝑖 𝑗 in the output that

is not masked out (i.e., M𝑖 𝑗 ≠ 0), we “pull” information by inspect-

ing the input sparse matrices to see if they can generate that output

entry. The push-based algorithms are instead driven by the sparsity

of the input matrices first, and they often utilize the mask as a filter

before generating the output.

Below we provide a high-level comparison of these families of

algorithms in terms of their parallelism and cache utilization.

4.1 Pull-based Algorithms

Consider the naïve algorithm where for each M𝑖, 𝑗 ≠ 0, we perform

the sparse dot product A𝑖∗B∗𝑗 . Since such sparse dot products are

independent of each other, this algorithm has at least 𝑂 (nnz(M))-
way parallelism, excluding any parallelism that can be extracted

within the sparse dot product itself. We call this algorithm the

masked-naïve-pull method. This method is most efficiently imple-

mented when A is stored in a row-major sparse storage such as

CSR, and B is stored in a column-major sparse storage such as CSC

(or vice versa), which is what we assume is the case in this study.

The described method, however, has one drawback: its poor

temporal locality. Assume that we traverse the nonzeros of M in

row-major order. Since rows of A are accessed consecutively, there

is a significant reuse within rows. However, columns of B will

be accessed in a scattered manner, with very little reuse. Given

nnz(B) ≫ 𝑍 where 𝑍 is the fast memory (cache) capacity, we can

assume that each column access will fetch the whole column back

from the main (slow) memory. For simplicity, we assume that each

column of B is accessed the same number of times or each column

of B has the same number of nonzeros nnz(B)/𝑛. Either way, the
amount of memory traffic of this method is: nnz(A) + nnz(M)

(
1 +

nnz (B)
𝑛

)
.

4.2 Push-Based algorithms

There are many push-based SpGEMM algorithms. In this section,

we focus on the most well-known row-by-row version due to Gus-

tavson [27], also shown in Algorithm 1. In this algorithm, the 𝑖th

row of the output is computed as a linear combination of 𝑘th rows

of B where A𝑖𝑘 ≠ 0. This algorithm naturally parallelizes over rows

as there are no dependencies. However, using a sparse accumulator

(SPA) increases the cache load as one dense vector per row is used

for accumulation. To overcome this, researchers have used data

structures ranging from priority queues to hash tables to merge

sparse rows of B.
The formation of C𝑖∗ exhibits five memory access patterns:

(1) Unit-stride read access to nonzeros within a row of A.
(2) Random-like read access to row pointers of B.
(3) Stanza-like read access to nonzeros of B: small blocks (stanzas)

of consecutive elements are fetched from effectively random

locations in memory.

(4) Random-like read and write access to the sparse accumulator

(the scatter/accumulate step) for updating values.

(5) Unit-stride write access for outputting C𝑖∗.
3

The choice of the data structure only changes the 4th type of

access where we can improve cache utilization with more compact

data structures. The first three memory access patterns are canoni-

cal for row-by-row algorithms, i.e., they persist even if we replace

the SPA with a priority queue or a hash table. As long as we use the

push paradigm, those three memory accesses are also not affected

by the use of a mask.

To analyze memory traffic costs, we make two reasonable as-

sumptions: (1) the cache line length 𝐿 is smaller than the matrix

dimension, i.e. 𝑛 > 𝐿, and (2) the bandwidth of the first matrix is

larger than the cache size, i.e. 𝛽 (A) > 𝑍 . The matrix bandwidth

𝛽 (A) is the smallest non-negative integer 𝑘 such that A𝑖 𝑗 ≠ 0 for

|𝑖 − 𝑗 | > 𝑘 . Corollaries of Assumption 2 when performing AB using

a row-by-row algorithm are (a) row pointers of B are not cached,

and (b) accesses to column ids and values of distinct rows of B are

not cached.

The memory traffic incurred due to the first pattern is trivially

𝑂 (nnz(A)). The memory cost of the second pattern is 𝑂 (nnz(A) ·
𝐿) due to assumption 2. The third pattern incurs 𝑂 (flops(AB))
memory traffic, again due to the assumption 2. We do not analyze

the last two steps in this section because they depend on whether

we use the mask or not, and what particular data structure we use

to store the mask.

4.3 High-level Comparison

Let us use fixed input sparsity 𝑑 = nnz(𝐵)/𝑛 = nnz(𝐴)/𝑛 for the

sake of comparison. When both the input matrices get denser, the

push-based row-by-row algorithms gets expensive quadraticly with

𝑑 , because in that case 𝑂 (flops(AB)) = 𝑑2𝑛. However, pull-based
dot-product algorithm gets expensive only linearly with 𝑑 .

On the other hand, when the mask gets asymptotically sparser

than the input, say for 𝑑𝑚 = nnz(𝑀)/𝑛≪ 𝑑 , the pull-based algo-

rithms tend to outperform push-based algorithms, regardless of the

choice of mask data structure.

5 OUR ALGORITHMS

We describe four novel algorithms for Masked SpGEMM: Hash,

Masked Sparse Accumulator (MSA), Mask Compressed Accumu-

lator (MCA), and Heap. Three of these algorithms –Hash, MSA,

and Heap– are novel improvements to the SpGEMM algorithms de-

scribed in [11, 20, 33], whereas MCA, to the best of our knowledge,

is a completely new algorithm specifically developed for Masked

SpGEMM. All algorithms belong to the category of row-by-row

push-based algorithms (Section 4.2). The computational flow of

row-by-row Masked SpGEMM algorithms is illustrated Figure 2.

Each row C𝑖∗ is calculated as element-wise multiplication ofM𝑖∗
and linear combination of each row B𝑘∗ for which A𝑖𝑘 ≠ 0, i.e.,

C𝑖∗ = M𝑖∗ ⊙
∑
A𝑖𝑘≠0

A𝑖𝑘B𝑘∗. Notice that the calculation of each

row can be seen as a row vector-matrix multiplication (SpGEVM)

followed by mask operation v⊺ = m⊺ ⊙ (u⊺B). In order to sim-

plify the algorithm explanations, without loss of generality, in this

section we describe different algorithms for computing Masked

SpGEVM. Extrapolating Masked SpGEVM algorithms to devise

Masked SpGEMM algorithms is straightforward.

5.1 Accumulator

A key component in all the Masked SpGEVM algorithms is the

accumulator, which is basically a data structure to merge scaled

rows and can be considered as a set union operation. The design

and the implementation of the accumulator has a significant impact

on memory hierarchy behavior and therefore on the performance

of Masked SpGEVM, and is the key differentiating feature between

our proposed algorithms, so a more detailed description of the accu-

mulator warrants its own subsection. We describe the accumulator

as a generic interface that can be implemented differently by using

various data structures in order to generate an output vector v (i.e.,

a row of C).
The accumulator accumulates products u𝑘B𝑘 𝑗 with the same col-

umn index 𝑗 and discards all the values v𝑗 for which v𝑗 = 0. In order

to reduce the number of unnecessary operations, the accumulator

can altogether skip calculating the products that will be discarded.

That is, the accumulator may calculate only the products u𝑘B𝑘 𝑗
for which m𝑗 ≠ 0. Consequently, a more complex data structure

than the Sparse Accumulator of Gilbert et al. [24] is needed. In

particular, an accumulator for Masked SpGEVM needs to be able to

differentiate between three states: SET, ALLOWED, and NOTALLOWED.
Our accumulator interface contains three procedures:

• setAllowed(key) marks the values that should not be dis-

carded and have the potential to be in the output matrix.

• insert(key, value) inserts a key-value pair into the accumu-

lator. Since the value that is being inserted may be discarded,

the insert procedure allows the second argument (value) to be

a lambda function that will only be evaluated if the value it

computes will not be discarded.

• remove(key) accumulates all previously inserted values with

the specified key and returns the value of the corresponding key.

If no values with the specified key were previously inserted, or if

setAllowed is never called for the specified key, the procedure

remove returns none. After the function remove is called, all

values with the specified key are removed from the accumulator.

We next describe how the four accumulators implement this

interface and how they are used to perform SpGEVM.

5.2 Masked Sparse Accumulator (MSA)

Internally, MSA uses two dense arrays, 𝑣𝑎𝑙𝑢𝑒𝑠 and states, each with

ncols(v) length. values stores the accumulated values, and states
stores information about the state of the entries in values, which
may be one in of three states NOTALLOWED, ALLOWED, and SET. Ini-
tially, all of them are in the NOTALLOWED state and the only valid

transition from this state is to the ALLOWED state, which is achieved

by setAllowed. insert changes the state from ALLOWED to SET.
When key-value pair (𝐾,𝑉) is inserted into the MSA, if key 𝐾 was

previously marked as ALLOWED and if no values with key 𝐾 were

previously inserted, the respective is updated as SET and valueskey
is set to 𝑉 . Otherwise, if key 𝐾 was previously marked as SET –

meaning that some value with key 𝐾 was previously inserted– the

value𝑉 is accumulated with the previous result. remove returns the

accumulated value with the specified key if the accumulated value

was previously set and returns none otherwise. Figure 3 shows MSA

state automaton.

4

for i = 1:n
 Ci* = Mi* .* (Ai* x B)

m

c

mask A B Accumulator

a1

a3

a4

a7

C
Figure 2: Row-wiseMasked SpGEMMusing an accumulator to compute output row C𝑖∗. The rows corresponding to the column

indices of entries in row A𝑖∗ are merged and filtered through the respective mask entries to compute C𝑖∗. This merging and

filtering process can be performed in a number of ways.

AllowedNot Allowed Set
SETALLOWED INSERT

INSERT

() ()

()
INIT()

REMOVE ()

Figure 3: MSA states automaton

SpGEVM algorithm that uses MSA as accumulator is given in

Algorithm 2 and has three main steps. First, the algorithm initializes

MSA and by using the mask elements it marks the values in the

MSA that should not be discarded as ALLOWED. Second, the algo-
rithm finds all products u𝑘B𝑘 𝑗 for which u𝑘 ≠ 0 and B𝑘 𝑗 ≠ 0, and

inserts them into MSA. Finally, the algorithm gathers all nonzero

values from MSA, and resets the states in MSA. To improve the

performance of this last gather operation, the algorithm only it-

erates over the entries that are present in the mask. Additionally,

the values are gathered in the same order as they are ordered in

the mask. This has the benefit of being stable: if, for example, the

values in the mask are sorted by column indices, the values in the

output vector v will also be sorted by column indices. Figure 4

shows masked SpGEVM algorithm that generates output vector v
using MSA, where the mask acts a filter to determine which output

entries are valid or invalid.

TheMSA algorithm can also be used if themask is complemented.

When the mask is complemented, the default state for the accumula-

tor becomes ALLOWED, and for each element in the mask we invoke

setNotAllowed instead of setAllowed. Additionally, if the mask

is complemented we have an additional array to keep track of the

elements that were inserted into the accumulator. This allows us to

gather the accumulated values without iterating through the whole

array. Similar strategy was used by Gustavson [27].

MSA initialization takes 𝑂 (ncols(u)) operations, and comput-

ing the output vector v takes 𝑂 (nnz(m) + flops(uB)) operations.
Therefore, the algorithm takes 𝑂 (ncols(v) + nnz(m) + flops(uB))
operations.

5.3 Hash Accumulator

In practice, the arrays in the MSA accumulator are too large to fit

in L1 cache, even though they usually have only a few nonzeros, so

indexing an element of these arrays usually incurs a cache miss in

the MSA algorithm [35]. To overcome this issue, we utilize a hash

map instead of dense arrays for storing values and states, reducing

cache misses but increasing access overhead. To reduce the hash

accesses, we store both the accumulated value and its state as a pair

Algorithm 2 MSA Masked SpGEVM

Input: Sparse row vectors m, u, and a sparse matrix B
Output: Sparse row vector v
1: 𝑎𝑐𝑐𝑢𝑚 ← init(𝑛𝑐𝑜𝑙𝑠 (B))
2: for each nonzero m𝑗 in m
3: 𝑎𝑐𝑐𝑢𝑚.setAllowed(𝑗)
4: for each nonzero u𝑘 in u
5: for each nonzero B𝑘 𝑗 in row B𝑘∗
6: 𝑎𝑐𝑐𝑢𝑚.insert(𝑗, _ → u𝑘B𝑘 𝑗)
7: for each nonzero m𝑗 in m
8: 𝑣𝑎𝑙𝑢𝑒 = 𝑎𝑐𝑐𝑢𝑚.remove(𝑗)
9: if 𝑣𝑎𝑙𝑢𝑒 ≠ 𝑛𝑜𝑛𝑒 then

10: v𝑗 ← 𝑣𝑎𝑙𝑢𝑒

states

values

setAllowed()

mask

Sparse Accumulator

(a) Set allowed keys

B1*

states

values

insert()

Sparse Accumulator

(b) MSA += u1 × B1∗

B3*

states

values

insert()

Sparse Accumulator

(c) MSA += u3 × B3∗

B4*

values

states

insert()

Sparse Accumulator

(d) MSA += u4 × B4∗

B7*

values

states

insert()

Sparse Accumulator

(e) MSA+= u7 × B7∗

v

values

states

remove()

mask

(f) Move values to v

Figure 4: Masked SpGEVM algorithm using Masked Sparse

Accumulator (MSA).

in one single hash map, using open addressing with linear probing,

no resizing support since we know it will have nnz(m) values, and
a load factor of 0.25 to reduce collisions. Others [20, 33] use similar

hash accumulators for plain SpGEMM.

5

Allowed Set
INSERT INSERT() ()INIT()

REMOVE ()

Figure 5: MCA states automaton

Algorithm 3MCA Masked SpGEVM

Output: Sparse row vectors m, u, and a sparse matrix B
Input: Sparse row vector v
1: 𝑎𝑐𝑐𝑢𝑚 ← init(𝑛𝑛𝑧 (m))
2: for each nonzero u𝑘 in u
3: 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 ← 𝑀𝑎𝑘𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟 (B𝑘∗)
4: for each (𝑖𝑑𝑥,m𝑗) in 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 (m)
5: while 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 ∧ 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 < 𝑗 do

6: 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 ← 𝑁𝑒𝑥𝑡 (𝑟𝑜𝑤𝐼𝑡𝑒𝑟)
7: if 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 ∧ 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 = 𝑗 then

8: 𝑎𝑐𝑐𝑢𝑚.insert(𝑖𝑑𝑥, u𝑘B𝑘 𝑗)
9: for each (𝑖𝑑𝑥,m𝑗) in 𝐸𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 (m)
10: 𝑣𝑎𝑙𝑢𝑒 = 𝑎𝑐𝑐𝑢𝑚.remove(𝑖𝑑𝑥)
11: if 𝑣𝑎𝑙𝑢𝑒 ≠ 𝑛𝑜𝑛𝑒 then

12: v𝑗 ← 𝑣𝑎𝑙𝑢𝑒

The time complexity of SpGEVM is 𝑂 (nnz(m) + flops(uB)) op-
erations, since initialization does not depend on ncols(v) but on the

number of nonzeros in mask m. Hash accumulator has a smaller

memory footprint than MSA, but accessing individual values re-

quires computing the hash.

5.4 Mask Compressed Accumulator (MCA)

Mask Compressed Accumulator (MCA) algorithm is based on the

observation that the number of elements in the accumulator cannot

be greater than the number of nonzeros in mask m. The MCA

accumulator uses size 𝑛𝑛𝑧 (m) for the 𝑣𝑎𝑙𝑢𝑒𝑠 and 𝑠𝑡𝑎𝑡𝑒𝑠 arrays.

The previously described MSA and Hash algorithms use column

indices to index the accumulator. However, column indices can-

not be used to index the MCA accumulator because ncols(B) is
greater than or equal to nnz(m), i.e., the length of the arrays in the

MCA accumulator. Therefore, we need another way to index the

MCA accumulator. Since the indices should be in range [0, nnz(m)),
when we have a nonzero element in mask with index 𝑗 , and when

u𝑘 ≠ 0 and B𝑘 𝑗 ≠ 0, we can use the number of nonzero elements

in m𝑗 with column index smaller than 𝑗 . The MCA accumulator

needs only two states ALLOWED and SET because by relying on the

mask elements, it readily ensures no key can be in NOTALLOWED
state. Figure 5 shows MCA state automaton algorithm and Figure 6

shows masked SpGEVM algorithm that generates output vector v
using MCA.

For sorted input, the index for the MCA accumulator can be

calculated quickly. For each nonzero in u the algorithm iterates

through m at most once, and it accesses the entries in B𝑘∗ once for
which u𝑘 ≠ 0 and B𝑘 𝑗 ≠ 0. Hence, the algorithm takes 𝑂 (nnz(u) ·
nnz(m) + flops(uB)) time.

5.5 Masked Heap SpGEVM Algorithm

In this section we describe a Masked SpGEVM algorithm based on

column-columnHeap algorithm developed by Buluç andGilbert [11].

Like the base algorithm, our heap algorithm requires that the in-

dices in mask m and column indices in matrix B are sorted. To

compute the output vector v, our algorithm uses a min-heap. The

heap initially contains nnz(u) row iterators that point to the first el-

ement of rows {B𝑘∗ | u𝑘 ≠ 0}. The iterators in the heap are ordered

based the column index of the element they point to. By popping

the top iterator from the heap, incrementing it, and pushing the

incremented iterator back to the heap, we can iterate through set

S = {B𝑘 𝑗 |u𝑘 ≠ 0} in sorted order without having to construct the

sorted set in memory. This is similar to the multi-way merge from

[28]. Since the indices in mask m are also sorted, we can easily

find the intersection between the mask and set S by performing a

2-way merge. For all elements B𝑘 𝑗 that belong to the intersection,

the algorithm calculates u𝑘B𝑘 𝑗 products and inserts the result to

the output. If the last inserted product has the same column index

as the product currently being inserted, the result of the current

product is added to the last product. Otherwise, a new entry is

added to the output. Algorithm 4 shows the pseudo-code for the

masked heap SpGEVM algorithm and Algorithm 5 shows the insert

procedure for the heap.

The heap iterates through themask, and pops flops(uB) elements

from the heap. The complexity of the algorithm is 𝑂 (nnz(m) +
log

2
nnz(u) · flops(uB)), since the maximum heap size is nnz(u).

Compared to MSA and Masked Hash algorithm, heap algorithm

has smaller memory footprint but greater asymptotic complexity

due to the logarithmic factor. To alleviate this, we can exploit the

fact that only the elements in the intersection m ∩ S will be used
to form the output and we can check whether the element will

be a part of the intersection before we push it to the heap. Such

a check might require us to iterate through the whole mask. For

this reason, we configure the algorithm to inspect only a portion

of the mask m before pushing an element to the heap by using

the NInspect parameter (Algorithm 5), which controls the length

of the portion of the mask to be checked. If this parameter is 0,

the algorithm is identical to the algorithm described earlier. If it is

1, the algorithm inspects only the current mask element and has

complexity 𝑂 (nnz(m) + (𝛼 + (1 − 𝛼) · log
2
nnz(u)) · flops(uB)),

where 𝛼 depends on the input and 𝛼 ∈ [0, 1]. In our experiments

we test 1 and∞ for the NInspect parameter.

For mask complement, the only difference is that instead of

computing u𝑘B𝑘 𝑗 products for the elements in intersection m ∩ S,
we compute the products for the elements in set difference S \m.

When mask is complemented, NInspect parameter is always 0.

6 SYMBOLIC AND NUMERIC PHASES

The size and the pattern of the outputmatrix in theMasked SpGEMM

are not known before the multiplication. To allocate the needed

space and form the output matrix, there are twomethods: one-phase

and two-phase approaches.

In the one-phase approach, the Masked SpGEMM is performed

all at once, first allocating temporary memory large enough to store

the output matrix, executing the Masked SpGEMM, and then copy

the values from the temporary memory to the output matrix. This

is often deemed inefficient in plain SpGEMM, especially when the

compression factor is large. However, mask can provide a good

initial approximation for the size of the output matrix, making

6

B1*

mask

values

states Mask
Compressed
Accumulator

(a) MCA = u1 × B1∗

Mask
Compressed
Accumulator

mask

B3*

values

states

insert({2})

(b) MCA+ = u3 × B3∗

Mask
Compressed
Accumulator

B4*

mask

values

states

insert({1,2})

(c) MCA+ = u4 × B4∗

Mask
Compressed
Accumulator

B7*

mask

values

states

insert({2})

(d) MCA+ = u7 × B7∗

Mask
Compressed
Accumulator

mask

values

states

v

remove({0,1,2})

(e) Moving the result to v

Figure 6: Masked SpGEVM algorithm using Mask Compressed Accumulator (MCA).

Algorithm 4 Heap Masked SpGEVM

Input: Sparse row vectors m, u, and a sparse matrix B
Output: Sparse row vector v
1: 𝑚𝐼𝑡𝑒𝑟 ← 𝑀𝑎𝑘𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟 (m)
2: for each u𝑘 in u
3: insert(𝑃𝑄,𝑀𝑎𝑘𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑜𝑟 (B𝑘∗),𝑚𝐼𝑡𝑒𝑟)
4: 𝑝𝑟𝑒𝑣𝐾𝑒𝑦 ← 𝑛𝑜𝑛𝑒

5: while ¬𝑃𝑄.𝑖𝑠𝐸𝑚𝑝𝑡𝑦 () do
6: 𝑚𝑖𝑛𝐼𝑡𝑒𝑟 ← 𝑃𝑄.𝑝𝑜𝑝𝑀𝑖𝑛()
7: while𝑚𝐼𝑡𝑒𝑟 ∧𝑚𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 < 𝑚𝑖𝑛𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 do

8: 𝑚𝐼𝑡𝑒𝑟 ← 𝑁𝑒𝑥𝑡 (𝑚𝐼𝑡𝑒𝑟)
9: if ¬𝑚𝐼𝑡𝑒𝑟 then
10: break

11: if 𝑚𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 =𝑚𝑖𝑛𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 then

12: 𝑘 ←𝑚𝑖𝑛𝐼𝑡𝑒𝑟 .𝑟𝑜𝑤𝐼𝑑

13: 𝑗 ←𝑚𝑖𝑛𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑

14: if 𝑝𝑟𝑒𝑣𝐾𝑒𝑦 =𝑚𝑖𝑛𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 then

15: v𝑗 ← v𝑗 + u𝑘B𝑘 𝑗 {v𝑗 is the last value in v}
16: else

17: 𝑝𝑟𝑒𝑣𝐾𝑒𝑦 ←𝑚𝑖𝑛𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑

18: v𝑗 ← u𝑘B𝑘 𝑗 {v𝑗 is the last value in v}
19: insert(𝑃𝑄, 𝑁𝑒𝑥𝑡 (𝑚𝑖𝑛𝐼𝑡𝑒𝑟),𝑚𝐼𝑡𝑒𝑟)

one-phase approaches more viable for Masked SpGEMM. Since a

large portion of the output matrix may be discarded by the mask,

copying values from the temporary memory might be cheaper than

executing the symbolic phase.

In the two-phase approach, we first execute a symbolic multi-

plication that only inspects the row and column indices from the

inputs to computes the number of nonzeros in the output matrix,

then allocate memory for the output matrix and execute the actual

multiplication. The former is known as the symbolic and the latter

is known as the numeric phase.

The trade-off between these two approaches is in memory foot-

print vs. amount of computation. The two-phase approach reduces

the memory footprint at the expense of increased computation.

We evaluate both approaches for the algorithms described in our

work since the addition of the mask to the multiplication has the

potential to alter the balance between these trade-offs for plain

SpGEMM.

Algorithm 5 Insert procedure for Heap Masked SpGEVM

1: procedure insert(PQ, rowIter, mIter, NInspect)

2: if ¬𝐼𝑠𝑉𝑎𝑙𝑖𝑑 (𝑟𝑜𝑤𝐼𝑡𝑒𝑟) then
3: return

4: if 𝑁𝐼𝑛𝑠𝑝𝑒𝑐𝑡 = 0 then

5: 𝑃𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑤𝐼𝑡𝑒𝑟);
6: return

7: 𝑡𝑜𝐼𝑛𝑠𝑝𝑒𝑐𝑡 ← 𝑁𝐼𝑛𝑠𝑝𝑒𝑐𝑡

8: while 𝐼𝑠𝑉𝑎𝑙𝑖𝑑 (𝑟𝑜𝑤𝐼𝑡𝑒𝑟) ∧ 𝐼𝑠𝑉𝑎𝑙𝑖𝑑 (𝑚𝐼𝑡𝑒𝑟) do
9: if 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 =𝑚𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 then

10: 𝑃𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑤𝐼𝑡𝑒𝑟);
11: return

12: else if 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 < 𝑚𝐼𝑡𝑒𝑟 .𝑐𝑜𝑙𝐼𝑑 then

13: 𝑟𝑜𝑤𝐼𝑡𝑒𝑟 ← 𝑁𝑒𝑥𝑡 (𝑟𝑜𝑤𝐼𝑡𝑒𝑟)
14: else

15: 𝑚𝐼𝑡𝑒𝑟 ← 𝑁𝑒𝑥𝑡 (𝑚𝐼𝑡𝑒𝑟)
16: 𝑡𝑜𝐼𝑛𝑠𝑝𝑒𝑐𝑡 ← 𝑡𝑜𝐼𝑛𝑠𝑝𝑒𝑐𝑡 − 1
17: if 𝑡𝑜𝐼𝑛𝑠𝑝𝑒𝑐𝑡 = 0 then

18: 𝑃𝑄.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑤𝐼𝑡𝑒𝑟);
19: return

7 EXPERIMENTAL SETUP

We conduct our experiments on both synthetic and real-world

graphs. The synthetic graphs are preferred for controlled experi-

ments in which we vary degree or size of the graphs and investi-

gate their effects on various performance metrics. For the synthetic

graphs, we utilize Erdős-Rényi graphs as well as graphs generated

with R-MAT generator [14], with parameters identical to those used

in the Graph500 benchmark [32].

For real-world graphs, we use the same set of 26 graphs that

Nagasaka et al. [33] used, which are all from SuiteSparse Matrix

Collection [18] whose various properties are listed in Table 1.

We conduct our experiments on two different systems:Haswell

with Intel Xeon E5-2698 processors (two sockets per node, 2.3 GHz,

32 total cores, 128GB) andKNLwith Intel Xeon Phi 7250 processors

(one socket per node, 1.4 GHz, 68 cores, 96 GB). All algorithms

are implemented in C++, compiled with gcc v10.1 with -O3 flag.

Threads are pinned to cores using GOMP_CPU_AFFINITY. As a

baseline, we use SuiteSparse:GraphBLAS version 5.1.4 compiled

with the same parameters as above. With the exception of scaling

experiments, we use 32 threads on Haswell and 68 threads on KNL

in all experiments.

7

Table 1: Real-world graphs used in our experiments. All

numbers are in millions.

Graph n nnz (A) flops (A2) nnz (A2)
2cubes_sphere 0.101 1.65 27.45 8.97

cage12 0.130 2.03 34.61 15.23

cage15 5.155 99.20 2,078.63 929.02

cant 0.062 4.01 269.49 17.44

conf5_4-8x8-05 0.049 1.92 74.76 10.91

consph 0.083 6.01 463.85 26.54

cop20k_A 0.121 2.62 79.88 18.71

delaunay_n24 16.777 100.66 633.91 347.32

filter3D 0.106 2.71 85.96 20.16

hood 0.221 10.77 562.03 34.24

m133-b3 0.200 0.80 3.20 3.18

mac_econ_fwd500 0.207 1.27 7.56 6.70

majorbasis 0.160 1.75 19.18 8.24

mario002 0.390 2.10 12.83 6.45

mc2depi 0.526 2.10 8.39 5.25

mono_500Hz 0.169 5.04 204.03 41.38

offshore 0.260 4.24 71.34 23.36

patents_main 0.241 0.56 2.60 2.28

pdb1HYS 0.036 4.34 555.32 19.59

poisson3Da 0.014 0.35 11.77 2.96

pwtk 0.218 11.63 626.05 32.77

rma10 0.047 2.37 156.48 7.90

scircuit 0.171 0.96 8.68 5.22

shipsec1 0.141 7.81 450.64 24.09

wb-edu 9.846 57.16 1,559.58 630.08

webbase-1M 1.000 3.11 69.52 51.11

We benchmark three different applications on real-world graphs:

(i) Triangle Counting, (ii) 𝑘-truss, and (iii) Betweenness Central-

ity. Triangle Counting computes the total number of triangles in

a graph, using one Masked SpGEMM operation along with a re-

duction. 𝑘-truss finds the edges that are supported by at least 𝑘-2

other edges, using Masked SpGEMM in an iterative manner where

the graph keeps changing due to pruning of some edges. The Be-

tweenness Centrality measures how central is a node in the graph

by computing the ratio of shortest paths that node is on [23], using

a multi-source two-stage algorithm [9]. This algorithm consists of

a forward and backward stage.The forward stage utilizes a com-

plemented Masked SpGEMM while the backward stage utilizes

a non-complemented SpGEMM. All these algorithms are imple-

mented within the GraphBLAS specifications, substituting Masked

SpGEMM operations with calls to different algorithms investigated

in this work to measure their performance.

8 EXPERIMENTAL RESULTS

In this section we compare several algorithms on three bench-

marks: Triangle Counting, 𝑘-truss, and Betweenness Centrality. We

evaluated the following schemes: Inner (pull-based inner-product-

parallel algorithm from Section 4.1),MSA (push-based algorithm

using masked sparse accumulator from Section 5.2), Hash (push-

based algorithm using hash accumulator from Section 5.3),MCA

(push-based algorithm using compressed mask accumulator from

Section 5.4), Heap (push-based algorithm using a heap accumu-

lator with 𝑁𝐼𝑛𝑠𝑝𝑒𝑐𝑡 = 1 from Section 5.5), HeapDot (push-based

algorithm using a heap accumulator with 𝑁𝐼𝑛𝑠𝑝𝑒𝑐𝑡 = ∞ from

Inner Hash MSA MCA Heap HeapDot

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

1
2
4
8

16
32
64

128

(a) dimension = 2
12 × 212

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

1
2
4
8

16
32
64

128

(b) dimension = 2
14 × 214

D
eg

re
e

of
 A

 a
nd

 B

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

1
2
4
8

16
32
64

128

(c) dimension = 2
16 × 216

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

1
2
4
8

16
32
64

128

(d) dimension = 2
18 × 218

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

1
2
4
8

16
32
64

128

(e) dimension = 2
20 × 220

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

1
2
4
8

16
32
64

128

(f) dimension = 2
22 × 222

Degree of M
Figure 7: The best performing schemes with varying input

and mask density.

Section 5.5), and two variants of Masked SpGEMM from SuiteS-

parse:GraphBLAS [16] (SS:GB) library: SS:DOT, a pull-based algo-

rithm similar to Inner, and SS:SAXPY, a push-based algorithm that,

depending on the problem, can use SPA-like data structure or a

hash table to accumulate values.

Each of our algorithms can be executed with and without a

symbolic phase, which are respectively indicated with suffixes 2P

and 1P. In total, we evaluate 14 algorithms, 10 of which are proposed

in this work, 2 are based on the previous work [41], and 2 of them

from SS:GB are used as baseline.

8.1 Effect of Input Matrix and Mask Density

In this section we investigate the performance of our Masked

SpGEMM algorithms with changing mask and input matrix density.

These experiments are conducted on Haswell. Figure 7 plots the

best performing algorithm for multiple different Erdős-Rényi inputs

by varying the degree of the mask in 𝑥 axis and the degrees of the

input matrices in 𝑦 axis.

When mask is much sparser than A and B, Inner has the best
performance, which is because Inner is able to avoid a great amount

of unnecessary operations that the other algorithms suffer from.

WhenA andB are much sparser thanmask, on the other hand, Heap

and HeapDot perform the best. In all other cases where mask and

input matrix density are comparable, MSA and Hash show the best

performance, with MSA performing better on smaller matrices and

Hash on larger ones – which can be attributed to MSA’s worsening

cache utilization as the matrices get larger.

8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Haswell

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

MSA-1P
MSA-2P
Hash-1P
Hash-2P
MCA-1P
MCA-2P
Heap-1P
Heap-2P

HeapDot-1P
HeapDot-2P

Inner-1P
Inner-2P

Figure 8: Triangle Counting: our algorithms

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Haswell

fr
a

c
ti
o

n
 o

f
te

s
t

c
a

s
e

s

Parallel runtime relative to the best

MSA-1P

Hash-1P

MCA-1P

SS:SAXPY

SS::DOT

Figure 9: Triangle Counting: our algorithms vs. SS:GB.

8.2 Triangle Counting

We next benchmark performance of all schemes on Triangle Count-

ing benchmark. For optimal performance, vertices in the origi-

nal graph should be sorted in non-increasing order of their de-

grees [31]. After relabeling, the number of triangles is given by as

𝑠𝑢𝑚(L. ∗ (L2)), where L is the lower triangular matrix. This method

is known to be among the fastest ways to compute Triangle Count-

ing [15]. In our experiments, we only report the Masked SpGEMM

execution time.

Relative Performance of Masked SpGEMM Algorithms. Fig-

ure 8 shows the performance profiles of all our algorithms tested

on all real graphs. In the performance profile plots [21], a point

(𝑥,𝑦) indicates that the scheme for that point is within 𝑥 factor of

the best obtained result in 𝑦 fraction of the test cases. The closer a

scheme’s line is to the 𝑦 axis, the better is its performance.

In this benchmark, the best performing scheme is MSA-1P, out-

performing all other algorithms for 65% of the test cases, followed

by MCA-1P. These are followed by Inner and Hash schemes, with

Heap and HeapDot being the worst. Observe that the one-phase

variant of each algorithm performs better than than its two-phase

variant. We exclude two-phase variants and heap-based schemes

from our discussions in this section to keep our plots more readable.

Figure 9 compares the performance of our three best performing

algorithms against the SS:GB algorithms. We can see that all our

algorithms outperform SS:GB algorithms in almost all cases. Per-

formance profiles are almost identical on KNL and shown in Figure

Figure 10.

Scaling with Input Size. Figure 11 shows the performance on

Haswell and KNL for R-MAT matrices with scale ranging from 8

to 20. MSA-1P obtains the highest GFLOPS rates on both KNL and

Haswell. Hash-1P and MCA-1P are slower than MSA-1P but they

have similar trends. SS:GB algorithms have bad performance for

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

KNL

F
ra

c
ti
o

n
 o

f
te

s
t

c
a

s
e

s

Parallel runtime relative to the best

MSA-1P

Hash-1P

MCA-1P

SS:SAXPY

SS::DOT

Figure 10: Triangle Counting: our algorithms vs. SS:GB.

 0

 2

 4

 6

 8

 10

 12

 14

8 10 12 14 16 18 20

Haswell

G
F

L
O

P
S

Scale

 0

 1

 2

 3

 4

 5

 6

 7

 8

8 10 12 14 16 18 20

KNL

G
F

L
O

P
S

Scale

Figure 11: Triangle Counting: varying R-MAT scale.

 0

 2

 4

 6

 8

 10

 12

 14

1 4 8 16 32

HaswellHaswell

G
F

L
O

P
S

Number of Threads

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 4 8 16 32 64

KNL

G
F

L
O

P
S

Number of Threads

Figure 12: Triangle Counting: strong scaling (varying thread

count) on R-MAT scale 20.

small inputs, however, as input size increases, SS:SAXPY gets closer

to MSA-1P.

Scaling with Thread Count. Figure 12 shows the scalability anal-

ysis on Haswell and KNL for R-MAT matrix with scale 20, on up

to 32 threads on Haswell, and up to 68 threads on KNL, with all

algorithms scaling well in all cases.

8.3 𝑘-truss

For 𝑘-truss benchmark, we use 𝑘 = 5 and report the sum of flops

required to perform all Masked SpGEMM operations divided by

total time required to execute them.

Relative Performance of Masked SpGEMM Algorithms. Fig-

ure 13 shows the performance of all our algorithms on all real

graphs except wb-edu (excluded for its long running time).

MSA performs the best on Haswell while Inner performs fairly

well on both, likely due to themask getting sparser as𝑘-truss prunes

the graph more with each iteration. MSA’s better performance on

Haswell can be attributed to the existence of a large L3 cache (40MB,

whereas KNL has no L3 cache), hiding the cache misses due to large

accumulator arrays in MSA to an extent. The 1P schemes again

perform better than 2P. Heap-based methods are noncompetitive,

so we exclude them from our plots in the rest of this section.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8

Haswell

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8

KNL

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

Figure 13: 𝑘-truss: Performance of the proposed schemes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8

Haswell

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8

KNL

fr
a
c
ti
o
n
 o

f
te

s
t
c
a
s
e
s

Parallel runtime relative to the best

Figure 14: 𝑘-truss: our algorithms vs. SS:GB

 0

 2

 4

 6

 8

 10

 12

 14

 16

8 10 12 14 16 18 20

Haswell

G
F

L
O

P
S

Scale

 0

 2

 4

 6

 8

 10

 12

 14

8 10 12 14 16 18 20

KNL

G
F

L
O

P
S

Scale

Figure 15: 𝑘-truss: varying R-MAT scale.

Figure 14 compares the performance of our four best performing

algorithms against the SS:GB algorithms. Our schemes MSA-1P

and Inner-1P perform significantly better than SS:GB schemes on

Haswell and KNL, respectively.

Scaling with Input Size. Figure 15 shows the algorithm perfor-

mance on Haswell and KNL for R-MAT matrices with scale ranging

from 8 to 20. Inner and SS:DOT increase their GFLOPS rate well with

increasing matrix scale, while MSA-1P does this only on Haswell.

The pull-based algorithms seem to attain better GFLOPS rates in

the 𝑘-truss benchmark. This benchmark shows that the algorithms

that are deemed inefficient for plain SpGEMM can attain quite good

performance when mask becomes part of the multiplication and

can lead to highest GFLOPS rates.

8.4 Betweenness Centrality

Betweenness Centrality consists of a forward and backward stage,

and uses both a complemented and non-complemented Masked

SpGEMM. For this benchmark, we use TEPS [5], which is batch_size×
num_edges/total_time as performance metric (batch size = 512).

Relative Performance of Masked SpGEMM Algorithms. Fig-

ure 17 shows the performance of all our algorithms on all real

graphs except cage15, delaunay_n24, and wb-edu (excluded for

 0

 500

 1000

 1500

 2000

 2500

8 10 12 14 16 18 20

Haswell

M
T

E
P

S

Scale

 0

 200

 400

 600

 800

 1000

 1200

 1400

8 10 12 14 16 18 20

KNL

M
T

E
P

S

Scale

Figure 16: Betweenness Centrality: varying R-MAT scale.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4

Haswell

fr
a

c
ti
o

n
 o

f
te

s
t

c
a

s
e

s

Parallel runtime relative to the best

MSA-1P

Hash-1P

MSA-2P

Hash-2P

SS:SAXPY

Figure 17: Betweenness Centrality: our schemes vs. SS:GB.

their long running time). We benchmarked the Masked SpGEMM

in forward and backward stages separately, but the trends were

similar so we only present the overall performance. MCA is not

included in these results because it does not support complemented

Masked SpGEMM. We excluded Heap, Inner, and SS:DOT since

they were prohibitively slow.

In this benchmark, MSA-1P obtains the best performance in all
test instances. 1P schemes again outperform 2P.

Scaling with Input Size. Figure 12 shows the algorithm perfor-

mance on Haswell and KNL for R-MAT matrices with scale ranging

from 8 to 20. The schemes based on push-based algorithms, i.e.,

MSA-1P, Hash-1P, and SS:SAXPY are able increase their MTEPS

rate with increasing matrix scale. The mask in Betwenness Cen-

trality can get quite dense, so the poor cache utilization of SS:DOT

becomes a very serious bottleneck. In addition, the matrix B is

transposed in the library before each Masked SpGEMM, increasing

overhead.

9 CONCLUSIONS AND FUTUREWORK

In this paper, we presented four novel algorithms (with 10 total

variations) for performing parallel masked sparse-sparse matrix

multiplication.

We investigatedMasked SpGEMMoperation from various design

and optimization standpoints to evaluate whether the challenges

posed for plain SpGEMM still hold, and examined if some of the

uncommon design choices can be reevaluated when mask is part of

the multiplication. We discovered that the mask and matrix density

both have a critical effect on the performance of different design

choices. Surprisingly, we discovered that inner-product-based algo-

rithm can be competitive in certain benchmarks with high mask

sparsity on systems with small cache size. We have shown that com-

puting the Masked SpGEMM in a single phase usually performs

better than approaches in which a symbolic multiplication is run

prior to actual multiplication, in stark contrast with the conven-

tions of plain SpGEMM computations where two-phase approaches

10

are often more preferable. We ran extensive experiments on two

very different machines, with large sets of matrices, on several real-

world benchmarks, and demonstrated that in almost all cases our

methods significantly outperform the SuiteSparse:GraphBLAS [16]

library, which is, to the best of our knowledge, the fastest Masked

SpGEMM implementation in existence to-date.

As future work, we will investigate hybrid algorithms that can

use different accumulators in the sameMasked SpGEMMdepending

on the density of the mask and parts of matrices being processed,

as well as exploiting fine-grain parallelism within single row pro-

cessing.

ACKNOWLEDGMENTS

This work is supported by the Office of Science of the DOE un-

der contract number DE-AC02-05CH11231. We used resources of

the NERSC supported by the Office of Science of the DOE under

Contract No. DE-AC02-05CH11231.

REFERENCES

[1] Ariful Azad, Mohsen Mahmoudi Aznaveh, Scott Beamer, Mark Blanco, Jinhao

Chen, Luke D’Alessandro, Roshan Dathathri, Tim Davis, Kevin Deweese, Jesun

Firoz, et al. 2020. Evaluation of graph analytics frameworks using the GAP bench-

mark suite. In 2020 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 216–227.

[2] Ariful Azad, Grey Ballard, Aydın Buluç, James Demmel, Laura Grigori, Oded

Schwartz, Sivan Toledo, and Samuel Williams. 2016. Exploiting Multiple Levels

of Parallelism in Sparse Matrix-Matrix Multiplication. SIAM Journal on Scientific
Computing 38, 6 (2016), C624–C651.

[3] Ariful Azad, Aydin Buluç, and John Gilbert. 2015. Parallel triangle counting

and enumeration using matrix algebra. In International Parallel and Distributed
Processing Symposium Workshops. IEEE, 804–811.

[4] Mohsen Aznaveh, Jinhao Chen, Timothy A Davis, Bálint Hegyi, Scott P Kolodziej,

Timothy G Mattson, and Gábor Szárnyas. 2020. Parallel GraphBLAS with

OpenMP. In Proceedings of the SIAM Workshop on Combinatorial Scientific Com-
puting. SIAM, 138–148.

[5] David A Bader, John Feo, John Gilbert, Jeremy Kepner, David Koester, Eugene

Loh, Kamesh Madduri, Bill Mann, and Theresa Meuse. 2006. HPCS scalable

synthetic compact applications 2: graph analysis. SSCA 2 (2006), v2.

[6] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing

breadth-first search. In SC’12: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–10.

[7] Nathan Bell, Steven Dalton, and Luke N. Olson. 2012. Exposing Fine-Grained

Parallelism in Algebraic Multigrid Methods. SIAM Journal on Scientific Computing
34, 4 (2012), C123–C152.

[8] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten

Hoefler. 2017. To push or to pull: On reducing communication and synchroniza-

tion in graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. 93–104.

[9] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. The Journal
of Mathematical Sociology 25, 2 (2001), 163–177.

[10] W. Briggs, V. Henson, and S. McCormick. 2000. A Multigrid Tutorial, Second
Edition (second ed.). Society for Industrial and Applied Mathematics.

[11] Aydin Buluc and John R Gilbert. 2008. On the representation and multiplication of

hypersparse matrices. In IEEE International Symposium on Parallel and Distributed
Processing. IEEE, 1–11.

[12] Aydin Buluç, Tim Mattson, Scott McMillan, José Moreira, and Carl Yang. 2017.

Design of the GraphBLAS API for C. In International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). IEEE, 643–652.

[13] Aydin Buluç and John R. Gilbert. 2012. Parallel Sparse Matrix-Matrix Multiplica-

tion and Indexing: Implementation and Experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170–C191.

[14] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
Recursive Model for Graph Mining. 442–446.

[15] Timothy A. Davis. 2018. Graph algorithms via SuiteSparse: GraphBLAS: tri-

angle counting and K-truss. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). 1–6.

[16] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algo-

rithms in the Language of Sparse Linear Algebra. ACM Trans. Math. Softw. 45, 4,
Article 44 (Dec. 2019), 25 pages.

[17] Timothy A Davis. 2022. Algorithm 10xx: SuiteSparse:GraphBLAS: parallel graph

algorithms in the language of sparse linear algebra. (2022). draft manuscript.

[18] Timothy A Davis and Yifan Hu. 2011. The University of Florida sparse matrix

collection. ACM Trans. Math. Softw. (TOMS) 38, 1 (2011), 1–25.
[19] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. 2017.

Performance-portable sparse matrix-matrix multiplication for many-core ar-

chitectures. In IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). 693–702.

[20] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. 2018. Multi-

threaded sparse matrix-matrix multiplication for many-core and GPU architec-

tures. Parallel Comput. 78 (2018), 33–46.
[21] Elizabeth D. Dolan and Jorge J. Moré. 2002. Benchmarking optimization software

with performance profiles. Mathematical Programming 91, 2 (01 Jan 2002), 201–

213.

[22] Philip A Etter, Kai Zhong, Hsiang-Fu Yu, Lexing Ying, and Inderjit Dhillon. 2021.

Accelerating Inference for Sparse Extreme Multi-Label Ranking Trees. arXiv
preprint arXiv:2106.02697 (2021).

[23] Linton C. Freeman. 1977. A Set of Measures of Centrality Based on Betweenness.

Sociometry 40, 1 (1977), 35–41.

[24] John R Gilbert, Cleve Moler, and Robert Schreiber. 1992. Sparse matrices in

MATLAB: Design and implementation. SIAM J. Matrix Anal. Appl. 13, 1 (1992),
333–356.

[25] John R. Gilbert, Steve Reinhardt, and Viral B. Shah. 2008. A Unified Framework

for Numerical and Combinatorial Computing. Computing in Science Engineering
10, 2 (2008), 20–25.

[26] Andreas Griewank and Uwe Naumann. 2003. Accumulating Jacobians as chained

sparse matrix products. Mathematical Programming 95, 3 (01 Mar 2003), 555–571.

[27] Fred G Gustavson. 1978. Two fast algorithms for sparse matrices: Multiplication

and permuted transposition. ACM Transactions on Mathematical Software (TOMS)
4, 3 (1978), 250–269.

[28] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching. Addison Wesley Longman Publishing Co., Inc., USA.

[29] Hochan Lee, David Wong, Loc Hoang, Roshan Dathathri, Gurbinder Gill, Vish-

wesh Jatala, David Kuck, and Keshav Pingali. 2020. A Study of APIs for Graph

Analytics Workloads. In 2020 IEEE International Symposium on Workload Charac-
terization (IISWC). IEEE, 228–239.

[30] W. Liu and B. Vinter. 2014. An Efficient GPU General Sparse Matrix-Matrix Mul-

tiplication for Irregular Data. In IEEE 28th International Parallel and Distributed
Processing Symposium. 370–381.

[31] Andrew Lumsdaine, Luke Dalessandro, Kevin Deweese, Jesun Firoz, and Scott

McMillan. 2020. Triangle Counting with Cyclic Distributions. In 2020 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1–8.

[32] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.

Introducing the graph 500. Cray Users Group (CUG) 19 (2010), 45–74.
[33] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2019. Perfor-

mance optimization, modeling and analysis of sparse matrix-matrix products on

multi-core and many-core processors. Parallel Comput. 90 (2019), 102545.
[34] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2017. High-Performance

and Memory-Saving Sparse General Matrix-Matrix Multiplication for NVIDIA

Pascal GPU. In 46th International Conference on Parallel Processing (ICPP). 101–
110.

[35] Md. Mostofa Ali Patwary et al. 2015. Parallel Efficient Sparse Matrix-Matrix

Multiplication on Multicore Platforms. In High Performance Computing, Julian M.

Kunkel and Thomas Ludwig (Eds.). Springer International Publishing, Cham,

48–57.

[36] Gerald Penn. 2006. Efficient Transitive Closure of Sparse Matrices over Closed

Semirings. Theor. Comput. Sci. 354, 1 (March 2006), 72–81.

[37] Oguz Selvitopi, Md Taufique Hussain, Ariful Azad, and Aydın Buluç. 2020. Opti-

mizing High Performance Markov Clustering for Pre-Exascale Architectures. In

IEEE International Parallel and Distributed Processing Symposium (IPDPS). 116–
126.

[38] Stijn Van Dongen. 2008. Graph Clustering Via a Discrete Uncoupling Process.

SIAM J. Matrix Anal. Appl. 30, 1 (2008), 121–141.
[39] Michael M. Wolf, Mehmet Deveci, Jonathan W. Berry, Simon D. Hammond, and

Sivasankaran Rajamanickam. 2017. Fast linear algebra-based triangle counting

with KokkosKernels. In IEEE High Performance Extreme Computing Conference
(HPEC). 1–7.

[40] Carl Yang, Aydın Buluç, and John D Owens. 2018. Implementing push-pull

efficiently in GraphBLAS. In Proceedings of the 47th International Conference on
Parallel Processing. 1–11.

[41] Carl Yang, Aydın Buluç, and John D Owens. 2022. GraphBLAST: A high-

performance linear algebra-based graph framework on the GPU. ACM Transac-
tions on Mathematical Software (TOMS) 48, 1 (2022), 1–51.

11

	Abstract
	1 Introduction
	2 Background and Notation
	2.1 Storage Formats
	2.2 Design Issues and Challenges

	3 Related Work
	4 Classification of Algorithm Families
	4.1 Pull-based Algorithms
	4.2 Push-Based algorithms
	4.3 High-level Comparison

	5 Our Algorithms
	5.1 Accumulator
	5.2 Masked Sparse Accumulator (MSA)
	5.3 Hash Accumulator
	5.4 Mask Compressed Accumulator (MCA)
	5.5 Masked Heap SpGEVM Algorithm

	6 Symbolic and Numeric Phases
	7 Experimental Setup
	8 Experimental Results
	8.1 Effect of Input Matrix and Mask Density
	8.2 Triangle Counting
	8.3 k-truss
	8.4 Betweenness Centrality

	9 Conclusions and Future Work
	Acknowledgments
	References

