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ABSTRACT
Exascale and extreme-scale systems impose fundamental new
requirements on software to target platforms with severe en-
ergy, data movement and resiliency constraints within and
across nodes, and large degrees of homogeneous and het-
erogeneous parallelism and locality within a node. These
challenges have led to the exploration of a diverse range of
many-core processor architectures and memory hierarchies
for future systems, that differ quite dramatically from cur-
rent systems. As a result, there is still a lack of consensus as
to what the main tenets should be for the execution model
and low-level runtime system in future architectures. The
Open Community Runtime (OCR) was created to engage
the broader community of software and hardware researchers
in identifying these underlying principles. While there is
broad support for including dynamic task parallelism as one
of the pillars of future execution models, there is currently
little agreement on what else should be included. OCR pro-
poses an approach to complete this picture by adding events
and relocatable data-blocks as two additional pillars to build
on, and shows how the three concepts (tasks, events, data
blocks) can be combined in very general ways to support a
wide range of higher-level programming constructs.

In this paper, we focus on the use of OCR for application
characterization. Despite the fact that the development of
OCR is still at an early stage, we are fortunate that a large
number of applications have already been implemented using
the OCR APIs. We study the behavior of OCR implemen-
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tations of these applications to gain insights into task dura-
tions, data block sizes, and access patterns. These insights
can provide feedback to both application developers (on how
to redesign algorithms for OCR-like execution models) and
to hardware designers (to optimize for common characteris-
tics of tasks, events and data blocks).

1. INTRODUCTION
Exascale and extreme-scale systems impose fundamental

new requirements on software to target platforms with se-
vere energy, data movement and resiliency constraints within
and across nodes, and large degrees of homogeneous and
heterogeneous parallelism and locality within a node. It is
widely agreed that major innovations in runtime systems
will be necessary to address these challenges of extreme-
scale computing. Further, these innovations need to be cou-
pled so that light-weight computations and data transfers
can be dynamically orchestrated across processor cores, cus-
tomized accelerators, memory hierarchies, and network in-
terfaces with unified approaches to parallelism, energy and
resilience. The runtime framework must also help bridge the
wide semantic gap between high-level programming models
and low-level exascale hardware.

The Open Community Runtime (OCR) [7] was created
to engage the broader community of application, compiler,
runtime, and hardware experts in designing this critical com-
ponent of the future exascale software stack so as to best ad-
dress these challenges and requirements. The OCR frame-
work allows for multiple implementations of common run-
time APIs, with different trade-offs in different dimensions of
resource usage. OCR is not intended to be a standardization
effort, but instead an open substrate that helps accelerate
innovations in the exascale software stack. As an example,
the creation of the OCR specification enabled researchers at
the University of Vienna to create a new implementation for
OCR that is completely independent of the OCR reference
implementation.



There are many differences between the proposed OCR
approach and existing solutions. Many current runtime sys-
tems have either been optimized for dynamic parallelism
that is oblivious of locality (e.g., OpenMP, Intel Thread
Building Blocks, Cilk) or for locality in the absence of dy-
namic parallelism (e.g., MPI, shmem, UPC). Further, MPI
and PGAS programming models only express two levels of
locality — local and remote — which are typically accessed
through a SPMD parallel execution model without dynamic
task parallelism. HPCS languages such as Chapel and X10
mitigate this limitation by allowing the programmer to ex-
press task parallelism in conjunction with“locales”and“plac-
es”, but their locality model is also restricted to two lev-
els. In contrast, OCR supports unbounded amounts of dy-
namic parallelism with the potential for hierarchical locality
control that can includes support for heterogeneous accel-
erators, while also allowing for tight integration with com-
munication runtimes (e.g., MPI, GASNet, UCX) and run-
time co-optimization of performance, energy, and resilience.
The most basic OCR primitives (summarized in Section 2)
include relocatable data-blocks and non-preemptive event-
driven tasks, and result in a fundamentally different execu-
tion model from past runtimes. In addition to running on
current hardware platforms, a functional simulator has also
been developed to map OCR on to a representative future
extreme-scale computer architecture [1].

Despite the fact that the development of OCR is still at an
early stage, we are fortunate that a large number of applica-
tions have already been implemented using the OCR APIs,
including CoMD, HPGMG, LULESH, miniAMR, SNAP, Tem-
pest, RSBench, and XSBench, as well as a number of kernels
(Stencil1D, Cholesky, FFT, Fibonacci, Global Sum, SAR,
Smith Waterman, Synch p2p, triangle). Given the funda-
mental differences between OCR APIs and other parallel
runtime APIs, the focus of this paper is on understanding
the characteristics of current applications implemented in
OCR. These characterizations can provide insights for both
hardware and software designers. Hardware designers can
learn more about the typical ranges for task execution times
and data-block sizes. Software designers can explore op-
portunities for future work on compile-time and run-time
code/data transformations (e.g., splitting of data-blocks or
fusing of tasks) to improve the overall execution character-
istics.

The rest of the paper is organized as follows. Section 5
goes over some related work. Section 2 provides a brief sum-
mary of OCR, while referring the reader to the OCR speci-
fication for details [7]. Section 3 describes the experimental
methodology used in our work to study application charac-
teristics. Section 4 contains the results obtained for appli-
cation characteristics. Section 5 summarizes related work,
and Section 6 contains our conclusions.

2. OCR SUMMARY
The OCR effort seeks to develop, formalize and imple-

ment a task-based programming model for future exascale
systems. In this section, we focus on briefly describing the
philosophy behind the OCR programming model and its em-
bodiment in the current set of APIs and reference implemen-
tation.

2.1 The OCR programming model
Given that, in future machines, the cost of data movement

will vastly overshadow the cost of computation, OCR’s pro-
gramming model is similar to a data-flow model in the sense
that data is explicit and “flows” between tasks. It is not,
however, a traditional data-flow model as, unlike in pure
data-flow, the data graph is built dynamically.

2.1.1 OCR principles
OCR has several goals aimed at ensuring that it is a valid

model for future exascale systems: allow the expression of
the maximum amount of parallelism, insulate the program-
mer from the specificities of the hardware, and allow the
programmer to fully and accurately represent his knowledge
of the application.

Parallelism.
In future exascale machines, given the trend towards more

and more computing resources, whether this is in the form
of a GPU or chips like the Xeon Phi, a large amount of
parallelism will be required to keep the machine busy. It is
therefore important to provide a way a) for a programmer
to express the parallelism in his application and b) to have
light-weight tasks since increasing parallelism may come at
the expense of more traditional coarse grained division of
work.

Separation of concerns.
Traditionally, programmers seeking to eek out the last bit

of performance out of a particular machine will fine tune
their code to that particular architecture taking into account
cache sizes, instruction latency, etc. Given the constraints
on exascale machines, particularly in terms of power, future
large machines will be far more unpredictable and therefore
make it harder for a programmer to tweak his application to
a particular machine. Furthermore, given that the effort to
tweak an application to a particular machine increases with
the complexity of the machine, continuously adapting an
application to each new generation of machine will become
unsustainable.

An automated way of tuning the application to the ma-
chine it is being run is therefore required. Traditionally,
compiler-driven static scheduling has been used and is an ef-
ficient technique provided the compiler has an accurate view
of the hardware. As previously mentioned, on future hard-
ware, this may become more challenging. OCR therefore
takes the approach that scheduling decisions are best done
dynamically by a runtime that is aware of the exact exe-
cution conditions (i.e. the runtime is introspecting its own
execution). In OCR, the programmer is therefore mostly
insulated from the exact details of the hardware. The exact
“platform” exposed to the user is still an active area of re-
search but OCR currently takes the approach that the user
should not be able to directly reason about a machine.

Transfer of information.
Naturally, if more decisions are left to the runtime, the

programmer needs to be able to express as much of his
knowledge about an application as possible (access patterns,
affinity between tasks and data, etc.). The OCR API there-
fore strives a) to allow the programmer to express all of his
knowledge and b) to avoid having the runtime make assump-
tions about the programmer’s intent. In other words, we
seek to provide an API that allows all information through
but does not lose or assume any.



2.2 OCR concepts
Three concepts are central to the OCR programming model:

a) tasks, which we call event-driven tasks or EDTs, b) data-
blocks and c) events. Tasks are units of computation and
operate on explicit input data in the form of data-blocks.
Events are linked together (in a data-flow sense) through
events. All OCR objects are uniquely addressable using a
Globally Unique Identifier (GUID). An overview of these
concepts and the relationships between them are shown in
Figure 1.

OCR Programming Abstractions
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Figure 1: Basic Objects in OCR

OCR also introduces a number of secondary concepts that
we do not describe in this paper. A detailed description of all
these concepts is beyond the scope of this paper and we re-
strict ourselves to basic information on the central concepts;
more information can be found in the OCR specification [7].

2.2.1 Event driven tasks
EDTs are OCR’s abstractions for a unit of work. The

name “event driven” comes from the fact that the start of
an EDT’s execution depends on the satisfaction of its de-
pendences (events). A satisfied dependence may carry data
(a data-block) with it. This data can be operated on by the
EDT during its execution.

The lifetime of an EDT is as follows:

Creation Another EDT will create the EDT to execute.
Upon creation, the programmer will supply the code
to execute, the number of dependences that the EDT
has as well as supply optional parameters.

Setup The dependences for the EDT will then be setup.
An EDT can depend on an event (and will wait for

that event to be satisfied prior to executing), a data-
block (in effect, a pure data-dependence) as well as the
completion of other EDTs.

Execution Once all dependences are defined and satisfied,
the EDT will be scheduled by the runtime and execute
at some point in the future. Note that OCR does not
force EDTs to execute as soon as their dependences are
satisfied; the satisfaction of the last dependence is only
the lower-bound on the start of execution. During ex-
ecution, an EDT may create other EDTs, data-blocks
and events and satisfy events but may not wait on
anything or synchronize with another EDT; in other
words, once an EDT starts executing, it is guaran-
teed to complete execution irrespective of the actions
of other EDTs.

Cleanup Once an EDT has executed, it will be cleaned up
and its resources will be reclaimed. An EDT executes
at most once.

2.2.2 Data-blocks
A data-block is OCR’s abstraction for a chunk of data

that is operated on by EDTs. A data-block is a contiguous
chunk of memory which can be entirely accessed from a base
address. The base address may, however, change over the
execution of a program as the data-block migrates across the
memory system (as directed by the runtime; this is transpar-
ent to the user). An EDT can only operate on data-blocks
that it has a base address for and it can only get a base
address if a) it creates the data-block or b) the data-block
is passed in as a dependence to the EDT.

2.2.3 Events
Events are the synchronization mechanism in OCR. An

event is initially in an “unsatisfied” state and transitions to
a“satisfied”state when the programmer makes a special API
call. Upon satisfaction, the user may optionally pass along
a data-block which will be passed to the sink of the event
(the “waiters”).

2.3 Traleika Glacier — a strawman exascale
architecture

Although OCR is currently usable on existing platforms
and architectures, its design has been heavily influenced by
the Traleika Glacier (TG) strawman architecture [1, 3] of
a future exascale architecture. Note that OCR currently
runs on the FSim functional simulator developed for this
architecture. This section explains some of the reasoning
that went behind OCR based on this architecture.

2.3.1 Overview of the TG architecture
The TG architecture is a hierarchial, non-coherent NUMA

machine with heterogeneous cores. As seen in Figure 2,
the system consists of a few power-efficient specialized cores
(termed Execution Engines or XEs) controlled by an x86-
based general purpose core in the smallest collection of cores
called a block. Each core has access to its own scratchpad at
very low latency in addition to a larger portion of memory
common to the block. This pattern of hierarchical collection
is extended all the way to the machine level. Being a shared
memory system, any portion of any memory in the system
(including scratchpads) is addressable by any core using a
canonical address, albeit with different latencies depending



on the topological distance from the accessing core to the
accessed portion of the memory. Additionally, they can also
be addressed using a self-referential alias to its address that
is core-relative, for ease of programmability.

2.3.2 TG influences
Several design choices of the TG architecture are reflected

in the design of OCR, a few of which are outlined below.

GUIDs.
Data residing on the TG machine is bound to change ad-

dress both due to the use of scratchpads (closer scratchpads
are significantly smaller in size) and of its unique address-
ing scheme (the same location can have multiple addresses).
Given the cost of virtual addresses (and therefore its absence
in the TG architecture), memory addresses can no longer be
used as identifiers for data. OCR therefore relies on GUIDs,
an opaque identifier that will, at all times, uniquely identify
data and other objects in OCR.

EDTs.
The XEs, being specialized low power cores designed pri-

marily for number crunching, have limited/no interrupt han-
dling support. This property maps well to EDTs, since
EDTs, by definition, do not have any external synchroniza-
tion and can run from start to finish without having to wait
for anything. All the data that an EDT needs during its ex-
ecution is made available and all dependences resolved prior
to the EDT starting its execution.

Data-blocks.
As data movement costs are expected to be a significant

portion of Exascale systems’ overall power consumption, it is
important that only the necessary portion of data needed for
an EDT is made available to it. The data-block abstraction
allows the programmer to partition the application’s data
into chunks needed by each EDT, so that extraneous data
movement can be minimized.

Events.
The massive scale of Exascale applications, together with

the task-granular nature of OCR implies that the manage-
ment overheads can potentially quickly add up. The use of
events, however, simplifies the management costs by impos-
ing an implicit ordering of task execution. There are several
variants of events (detailed in the OCR specification [7]) to
address various types of flow-graphs, reducing the burden
on the task scheduler.

3. METHODOLOGY

3.1 Applications
In this paper, we will study the characteristics of 4 appli-

cations that have been written using OCR’s API. They are
CoMD, Cholesky, SAR and StencilID.

CoMD is molecular dynamics application that calculates
the force on each atom in a material resulting from other
atoms within a cutoff distance. The motion of the atoms
under these forces is simulated. The set of atoms being
evaluated are spatially decomposed into grids that are first
level data-blocks in the OCR application. The interatomic
potential and related forces on each atom is calculated using

OCR tasks. Since the range of neighboring atom elements
span over a radial distance equal to the cutoff distance, the
atom’s position determines which data blocks will contain
the elements that are its neighbors. The granularity of the
EDT is determined by the number of atoms evaluated in
that task.

Cholesky decomposition is a dense linear algebra appli-
cation. The OCR version is an iterative tiled application
where each tile on every iteration is executed by a unique
task. An iteration starts with a sequential cholesky com-
putation on the pivot tile. The pivot tile of an iteration is
the highest tile on the diagonal. The subsequent iteration
starts with the pivot tile being one step down the diagonal.
The application halts when the pivot computation is done
on the lowest element of the diagonal. In each iteration,
the sequential cholesky on the pivot tile is followed by the
trisolve computation of the pivot column tiles. These tasks
release the update computations for the rest of the tile space
in that iteration.

The Synthetic Aperture Radar (SAR) application is used
to construct images of objects based on the motion of a
radar antenna over a targeted region. A 3D array of voxels
are maintained to represent the probability of an object in
that space. The density of each voxel is initially 0. Wave-
form data sampled for each voxel adds the probability of the
existence of the object at that position. The version used
in this paper focuses on time-domain backprojection for im-
age construction, which is a computationally intensive step
but highly parallelizable using OCR tasks. The granular-
ity of a task is determined by the number of image points
constructed.

The Stencil1D application demonstrates the execution of a
repeated pattern. The element space is a 1D decomposition
in which each element reads the previous iteration data from
its neighbor elements to compute the values of its current
iteration. This repeated pattern is continued until conver-
gence of values occur in the computation. Each element is
represented by an independent task for each iteration and
the data exchanges are synchronized using OCR events.

3.2 Runtime Instrumentation
To study the characteristics of an OCR application in

a platform-neutral manner, we focus on metrics that are
largely invariant across platforms, such as loads, stores and
floating point instruction count. We gather these by a) mod-
ifying the compiler to emit instructions that track the above
counts, and b) modifying the runtime to associate these
counts to OCR objects such as EDTs and data-blocks, in
order to obtain per-object, context-sensitive metrics.

We achieve the first step by using the LLVM compiler [6],
along with a compiler pass that generates instructions to
count floating point operations, loads and stores within each
function. For the loads and stores, the address of the mem-
ory location and size of the operation are also recorded.
While this technique was used on an x86 platform, the same
can be applied to any other platform as well — in fact,
these metrics can be obtained even from a simulator such as
FSim [3] which tracks these internally on a per-instruction
basis.

These raw metrics are then associated with OCR objects
based on internally managed data structures within OCR.
Specifically, each newly created data-block’s start address
and size are maintained, and similarly, each newly created



Figure 2: Traleika Glacier Architecture
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Figure 3: Distribution of task lengths for Cholesky

task has its floating point instruction count zeroed. When
the computation proceeds and any loads/stores are encoun-
tered, the target address is used to determine which dat-
ablock the load/store is associated with, as well as the cor-
responding EDT that is executing. A detailed accounting of
each load/store and floating point operation is thus main-
tained by the runtime. At the end of each EDT’s execution,
these are printed to the console which is then collected for
post-processing by scripts.

4. RESULTS
Figures 3–6 show the distribution of task lenghts (in the

total number of instructions executed) for the four appli-
cations we have evaluated. This kind of information can
be used by the runtime to make informed scheduling deci-
sions, by picking more powerful (and more reliable) cores
for the longer running tasks, for example. We note that
while some applications (Cholesky and Stencil1D, for exam-
ple) have only a handful of tasks of different lenghts, oth-
ers (CoMD) have tasks of many varying lenghts. Discover-
ing this information, possibly with programmer’s assistance,
would be of very high importance for the runtime.

Figures 7–10 show the distribution of data-block sizes for
our four applications. This information can be used by the
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Figure 4: Distribution of task lengths for CoMD
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Figure 5: Distribution of task lengths for SAR
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Figure 6: Distribution of task lengths for Stencil1D
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Figure 7: Distribution of data-block sizes for Cholesky
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Figure 8: Distribution of data-block sizes for CoMD
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Figure 9: Distribution of data-block sizes for SAR
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Figure 10: Distribution of data-block sizes for Stencil1D
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Figure 11: Data-block use frequency for Cholesky
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Figure 12: Data-block use frequency for CoMD
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Figure 13: Data-block use frequency for SAR

1	
   1	
  

21	
  

2	
  

10	
  

1	
   1	
  

10	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

0	
   64008	
   64016	
   176088	
   224088	
   3040264	
   3040512	
   3072512	
  

N
um

be
r	
  o

f	
  D
Bs
	
  

Total	
  Byte	
  Accesses	
  

Figure 14: Data-block use frequency for Stencil1D
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Figure 15: Data-block cumulative access percentage for
Cholesky
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Figure 16: Data-block cumulative access percentage for
CoMD
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Figure 17: Data-block cumulative access percentage for SAR
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Figure 18: Data-block cumulative access percentage for
Stencil1D

runtime to make memory allocation decisions.
Figures 7–10 show the data-block use frequency (in toal

number of byte accesses) for the data-blocks in our applica-
tions. This information can be used by the runtime to make
allocation decisions by placing frequently accessed data-blocks
closer to the cores (for example, in block memory, or even
in the individual XE’s scratchpad on the TG proposed ma-
chine).

Figures 15–18 show the percentage of the total number
of data accesses to the data-blocks smaller than the size
shown on the X-axis. CoMD and Stencil1D applications
have mostly small data-blocks, and could potentially bene-
fit significantly from memory hierarchy optimizations, such
as allocating the data-blocks in the parts of the memory hi-
erarchy closer to the cores, with the faster access times but
smaller memory sizes.

The SAR and Cholesky applications use larger data-block
sizes. Such data-blocks would probably not fit into the lower
levels of the memory hierarchy for most of the future systems
being considered. One possible solution would be to split
up the data-blocks, either statically using a compiler, or
dynamically at runtime. Another would be to rely on the
programmer or compiler to provide parameterized tile sizes
that can be fine-tuned by the runtime.

While the measurements we obtained using the code in-
strumentation are very accurate, they also incur a very large
overhead (close to two orders of magnitude on some of the
benchmarks) because every memory read and write is instru-
mented. In order to make such measurements feasible for
use during the application execution, the runtime will have
to employ several approximations. For example, instead of
counting all the memory accesses to the data-block by an
EDT, the compiler can peel the first iteration of the loop
and instrument only the first memory access, then multiply
the access counter with the loop size. Also, the runtime can
run the application for a while with a more detailed instru-
mentation, then after making decisions about the scheduling
of certain types of EDTs and allocation of the certain types
of data-blocks, it can run a less-instrumented version of the
code, or even turn off the instrumentation completely. The
instrumentation can be also aided by user annotations on
the EDTs and data-blocks.

Another interesting challenge for the runtime will be to
strike a correct balance between locality and parallelism.
Placing a data-block high in the memory hierarchy will in-
crease the access time but will allow many EDTs that are
accessing the data-block and running on the cores under-
neath that node to do so in parallel. On the other hand,
placing the data-block lower in the memory hierarchy will
allow for a faster access, but by a smaller number of cores.
The information collected from the instrumentation, such
as the one presented here, on how many EDTs are access-
ing the given data-block and with what frequency, would be
invaluable to the runtime in making a correct decision.

The runtime could also break up a large data-block high in
the memory hierarchy in order to fit smaller pieces into the
lower parts of the memory hierarchy, but the cost of breaking
it up and reassembling would have to be offset by the benefits
of doing so. Read-only data blocks can be disassembled and
replicated in the lower levels of the hierarchy, closer to the
cores. Naturally, this would only pay off if those blocks are
accessed multiple times.



5. RELATED WORK
HPX [4] is another task-based runtime and programming

model that is aimed at future exascale systems. HPX im-
plements an active global address space, where globally-
addressable objects can be tracked by a unique global ID
as they are migrated throughout the system.

Charm++ [5] takes an object-oriented approach to build-
ing exascale software. Charm++ programs are decomposed
into distributed objects, called chars, which are distributed
throughout a system by the runtime. Messages are passed
throughout the system via method calls on remote char ob-
jects.

Realm [8] is a fully asynchronous, event-based runtime
for task-based computations. All runtime actions in Realm
are non-blocking, building on a lightweight event mechanism
for dependence management. Realm implements a concept
of physical regions for shared global data, which provides
type information for blocks of data that may be migrated
to remote locations by the runtime. The additional type
information provided for physical regions allows Realm to
combine compute operations, such as reductions, with data
movement within the runtime.

Carrington et al. at the San Diego Supercomputer Center
have been working to develop and characterize the perfor-
mance of several scientific compute kernels in OCR [2], in-
cluding the CoMD kernel used in section 4. Their work thus
far has focused on comparing the performance and scalabil-
ity characteristics of applications written in OCR with cor-
responding implementations in more traditional HPC pro-
gramming models, such as MPI+OpenMP; in contrast, this
work focuses on identifying trends in OCR applications’ data
and task usage patterns that in turn help to identify poten-
tial optimizations.

6. CONCLUSION
In this paper, we reported on results obtained from an ini-

tial study to characterize application execution using OCR.
Our early results provide insights into task durations, data
block sizes, and access patterns resulting from current imple-
mentation approaches. These insights suggest the possibility
of new approaches for application developers to redesign al-
gorithms for OCR-like execution models, for programming
systems to perform optimizations to split/fuse tasks and
data blocks, and for hardware designers to optimize for com-
mon characteristics of tasks, events and data blocks. We
believe that follow-on studies that study the intrinsic prop-
erties of OCR-enabled applications in more detail will lead
to additional opportunities for software and hardware opti-
mizations. Further, the fact that the OCR specification is
publicly available, and is independent of any specific imple-
mentation, allows for these studies to be conducted in an
implementation-independent manner.
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